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1. Introduction

This paper introduces two new separation axioms, point paracompactness
and point countable paracompactness, both somewhat weaker than regularity,
and shows that they can replace regularity in several standard theorems about
paracompact or absolutely H-closed or Lindelof spaces. Thus we obtain sharpened
versions of these theorems. We also show that under certain hypotheses the new
properties are equivalent to regularity.

When we speak of a topological space we are not assuming that the space
satisfies any of the separation axioms, and by a paracompact space X we mean
a space X such that every open cover of X has a locally finite open refinement.
We shall denote the closure of a set A by cl A, and we shall let N(a), V(a), etc.
be open sets containing the point a. Similarly, if A is a set we shall let N(A), V(A),
etc. denote open sets containing the set A.

DEFINITION 1. A collection of sets {Gx | a e A} is locally finite with respect to
a set S or point S if and only if there exists V(S) such that V(S) O Gx i= 0
for only finitely many ae A.

DEFINITION 2. A topological space X is said to be point (countably) para-
compact if and only if every (countable) open cover of X has, for each aeX,
an open refinement which is locally finite with respect to a .

The concept point paracompactness is not to be confused with the usual
pointwise paracompactness.

We remark that every paracompact space is point paracompact, and every
countably paracompact space is point countable paracompact.

1 The author is grateful to the referee for his beneficial suggestions concerning the paper.

The research for this paper was done at Virginia Polytechnic Institute, Blacksburg, Virginia.

138

https://doi.org/10.1017/S144678870001288X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870001288X


[2] Point paracompactness 139

THEOREM 1. A topological space X is point {countably) paracompact if
and only if every {countable) open cover of X has, for each a eX, a finite subset
whose union contains the closure of some neighborhood of a.

PROOF. We shall only give a proof for point paracompactness, since a similar
proof holds for point countable paracompactness.

Suppose X is point paracompact. Let C = {Gx | a e A} be an open cover of
X with a an arbitrary point of the space. Now there exists an open refinement,
{Vk\ AeA0}, of C for which there exists N{a) such that N(a)C\ Vx =£ 0 for only
finitely many X e Aa. It follows that there exists a finite subset, {Ga(fc)}, k = 1, • • • ,n,
of C such that

clN(a)c= ( J {GaW}

Conversely, suppose { G a | a e ^ } is an open cover of X. If a eX then there
exist N(a), and a finite subset, {Gam}, k = 1, •••, n, for which

cl N(a) c ( J {Gxm} .
Let * = 1

C = {(X-clN(a))nGx\aeA} U {Ga(t)} , k = l , - , n .

Clearly C is an open refinement of {Gx \cteA} with N(a) intersecting only finitely
many elements of C. So X is point paracompact.

The following corollary follows immediately from Theorem 1.

COROLLARY 1. Every regular space is point paracompact.

THEOREM 2. In a T2 space point paracompactness is equivalent to regularity.

PROOF. We have by Corollary 1 that every regular space is point paracompact.
Conversely, suppose X is a T2 point paracompact space. Let F be a closed set,

and suppose x e X - F . Then for each zeF there exists V{z) such that x 4cl V{z). If

C = {X-F}v{V(z)\zeF},

then C is an open cover of X. Because X is point paracompact, it follows from
Theorem 1 that there exists N(x) such that cl N(x) c (X - F). The desired result
now follows.

The following example shows that we need T2 in the above theorem.

EXAMPLE 1. If X is an infinite set with the cofinite topology, then X is 7 \
and point paracompact but not regular.

EXAMPLE 2. If X is the space of ordinals ~^<ou in which points have their
usual order neighborhoods except that from the neighborhoods of a^ we omit
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140 J. M. Boyte [3]

all limit ordinals, then X is a countably compact T2 space which is not regular;
hence X is point countably paracompact but not point paracompact.

THEOREM 3. In a Lindelof space, point countable paracompactness is equiv-
alent to paracompactness.

PROOF. It is clear that paracompactness implies point countable paracompact-
ness.

Suppose X is a Lindelof space which is point countably paracompact. Let
Cx = {Gx | ix e A} be an open cover of X. There exists a countable subcover
C2 = {Gxk} , /c=l ,2 , • •• . For each xeX, there exists N(x) and a finite subset Dx

of C2 such that
cl JV(x)cM(x) = \JDX.

Let C3 = {N(x) | x e X}. Now C3 is an open cover of X; so there exists a countable
subcover {N(xi), N(x2),•••} of C3. Put Hx = M(xj) and for each positive
integer n > 1,

n - l

#„ = M(xn) - U (cl 7V(x,)).

Suppose x eX and x$Hx. Clearly x eM(xn) for some n ?M. Let fc be the least,
positive integer such that x e c l N(xk); then clearly xeHk. Therefore C4 = {Hu

H2, ••• } is an open cover of X. Put

C5 = {^nC^lG^efl^n = 1,2,-}.

Then C5 is open cover of X which is a refinement of C1. To show that C5 is locally
finite, let xeX. Then there exists a positive integer k such that x e N(xk). lfn>k,
then iV(xft) n Hn — <f>. It now follows that N(xk) intersects only finitely many
members of C5. Thus C5 is locally finite. So X is paracompact.

It is obvious that every point paracompact space is point countably paracom-
pact. Therefore from Corollary 1 and Theorem 3 we have the following well
known corollary [5].

COROLLARY 2. Every regular Lindelof space is paracompact.

The main theorem of this section is a generalization of one of Alexandrov's
and Urysohn's theorems [1].

DEFINITION 3. A sequence {xn} converges openly to a point a if and only
if, for each N(a), there exists a positive integer k such that j Si k implies Xj e
clIV(a).

We shall denote a sequence {xn} converging openly to a point a by {xn}°-> a.

https://doi.org/10.1017/S144678870001288X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870001288X


[4] Point paracompactness 141

Because the proof of Theorem 4 is trivial and the proof of Theorem 5 is
not very difficult, we state the following two theorems without proofs.

THEOREM 4. If x is a regular space, then a sequence {xn} converges openly
to a point a if and only if it converges to a.

THEOREM 5. If X is a first countable space, then X is regular if and only
if {xn}^a implies {xn}->a.

THEOREM 6. If X is a first countable T2 topological space, then the fol-
lowing are equivalent.

(a) X is point countably paracompact.
(b) If F is a countable closed set and a eX — F, then there exists N(a) and

V(F) such that N(a) n V(F) = 0 .
(c) X is regular.
(d) X is point paracompact.

PROOF, (a => b). Let F be a countable closed set and suppose a eX — F.
Then for each xeF there exists V(x) such that a $ cl F(x). If we put

C = {X-F} u{F(x ) | xe f}

then C is a countable open cover of X, and because X is point countable paracom-
pact it follows from Theorem 1 that there exists N(a) such that cl N(a) is contained
in X - F. The result follows since N(a)n(X - clJV(a)) = 0 .

(b => c). If we assume X is not regular, then by Theorem 5 there exists a sequence
{xn} converging openly to a point a such that {xn} does not converge to a. Clearly
there exists a subsequence {xn(J)} of {xn} for which {xn(j)} +̂ a and

(UK(.
Because X is T2, cl(Uj°=1{xn0)}) is countable which implies there exist dis-
joint open sets V(a) and iV(cl[Uj°=i{xM(y)}]). This is a contradiction to
{xMj)} ^-> a. Therefore X is regular.

(c =*- d). c implies d is true by Corollary 1.
(d => a). Trivial.

The following corollary for countable compactness was proven by Alexandrov
and Urysohn [1], and for countable paracompactness, was proven by Aull [2].

COROLLARY 3. If X is a first countable T2 space which is countably compact
or more generally, countably paracompact, then X is regular.

We also have the following as a corollary to Theorem 6.
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142 J. M. Boyte [5]

COROLLARY 4. / / X is a first countable T2 space, then X is regular if and
only if given aeX and M{a) such that X — M(a) is countable then there exists
V(a) for which c\(V(a) <= M(a).

REMARK. We remark that the definition of open convergence extends straight-
forwardly to nets; the proof of Theorem 5 goes over to non-first-countable
spaces; and the proof b => c of Theorem 6 can be modified into an alternative
proof of Theorem 2. But the proof actually given for Theorem 2 is of course
simpler.

A topological space X is said to be absolutely H-closed [6] if and only if
every open cover of X has a finite subset whose union is dense in X.

THEOREM 7. A topological space X is compact if and only if it is point
paracompact and absolutely H-closed.

PROOF. Assume X is point paracompact and absolutely H-closed. Let
C = {Ga | a e A} be an open cover of X, and let

Cx = {N(x) \xeX and cl N(x) is contained in the union of some finite subset of C}.

By Theorem 1, Ct is an open cover of X. Thus there exists a finite subset, {N(x);}
i = l,---,n, of C1 such that

We have cl( U" = 1 {N(x);}) contained in the union of finitely many elements
of C. It follows from this that X is compact.

It is clear that compactness implies point paracompactness and absolutely
H-closedness.

The following result, which is well known [6 ] , follows from Corollary 1,
Theorem 7, and the fact that every compact T2 space is regular.

COROLLARY 5. A T2 space X is compact if and only if it is regular and absolute-
ly H-closed.

4

We shall generalize in this section one of Michael's well known theorems
[4] on paracompactness.

THEOREM 8. If X is normal, then each open cover {Gx\ aeA} of X has for
each fie A and each closed set F c G ^ an open refinement which is locally finite
with respect to F. Conversely, if X is T2 and each open cover {Gx\cceA} of X has
for each fie A and each closed set FcGp, an open refinement which is locally
finite with respect to F, then X is normal.
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[6] Point paracompactness 143

PROOF. Suppose X is a normal space and {Gx | a e A} is an open cover of X.
Let F be a closed set contained in Gfi for an arbitrary fie A. Since X is normal
there exists N(F) such that cl N(.F) c Gj,. Clearly a refinement satisfying the desired
property is

C = (X-c\N(F))nGa\aeA}u{Gf}.

Conversely, let F be a closed set with N(F) an open set containing F. We shall
show that X is normal by showing there exists 0{F) such that cl O(F) <= N(F).
By Theorem 2, X is regular from which it follows that

C = {N(F)} \J{X -d M(F) | M(F) is an open set containing F}

is an open cover of X. There exists an open refinement which is locally finite
with respect to F. Thus there exists a finite subset

Ct = {N(F)}(J {X-clM(F\\i = l , - ,n}

of C and V(F) for which cl V(F)CZ\JC1 . Put

Now cl O(F)czN(F). So X is normal.

We observe that the condition of T2 in the converse part of Theorem 8 cannot
be replaced by 7 \ , since an infinite space X with the cofinite topology is not
normal, but it satisfies the given condition if we only require 7\ .

The following theorem is a slight generalization of Michael's Theorem [4]
which states that a regular space is paracompact if and only if every open cover
of X has a <r-locally finite open refinement.

THEOREM 9. A topological space X is paracompact if and only if it is
point paracompact and each open cover ofX has a a-locally finite open refinement.

PROOF. It is clear that if X is paracompact then it is point paracompact
and each open cover of X has a c-locally finite open refinement.

Suppose X is point paracompact and that each cover of X has a c-locally
finite open refinement (which covers X) . Let C = {l / a | ae .4} be an open cover
of X. For each xsX there exist N(x) and a finite subset {J7a(x,t) | k = 1,••• ,n{x)}
of C such that

Put Ct = {N(x) | x e X} . Michael has shown [4] that if each open cover of X
has a c-locally finite open refinement, then each open cover of X has a locally
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finite refinement which consists of sets not necessarily open or closed. Since Ct

is an open cover of X, there exists a locally finite refinement C2 of Ct where
UC2 = X, and MeC2 is not necessarily open. If we put C3 = {clM/MeC2}
then C3 is also locally finite. For each cl M e C3 , cl M is contained in a finite
union of elements of C. There exists, for each xeX, V(x) such that V(x) intersects
only a finite number of elements of C 3 . Now C4 = {F(x)jxeX} is an open
cover of X. Duplicating what we have done above, we can obtain a locally finite
collection of closed sets, C5, where UC5 = X, and for each F e C5 , F is contained
in a finite union of elements of C 4 . Thus for each F e C5, we have F intersecting
only a finite number of elements of C3 . Because F e Cs implies f intersects only
a finite number of elements of C3 , there exists an open locally finite covering
C6 of X such that, for each cl MeC3, there exists F(clJW)eC6 for which
c l M c F(clM). See Theorem 1.5 in [3, p.162] . Because C2 refines C t , we choose
for each M e C 2 a finite subset {Ux(Mtk) | k = 1,2, ••• ,n(M)} whose union contains
c l M . If

C7 = {V(dM)nU«M,k)\MeC2,k = 1,2,-,n(M)},

then clearly C7 is an open locally finite refinement of C which covers X. So X
is paracompact.

The result of Michael [4] now follows as a corollary.

References

[1] P. S. Alexandrov and P. Urysohn, Memoire sur les espaces topologiques compacts (Verh.
Akad. Wetensch. Amsterdam, 14, 1929).

[2] C. E. Aull, 'A note on countably paracompact spaces and metrization,' Proc. Amer. Math.
Soc. 16 (1965), 1316-1317.

[3] James Dugundji, Topology (Allyn and Bacon, Boston, 1966).
[4] Ernest Michael, 'A note on paracompact spaces,' Proc. Amer. Math. Soc. 4 (1953), 831-838.
[5] Ki-iti Morita, 'Star-finite coverings and the star-finite property' Mathematica Japonicae,

1 (1948), 66.
[6] W. J. Thron, Topological Structures (Holt, Rinehart and Winston, New York, 1966), p. 144.

Appalachian State University,
Boone, North Carolina, 28607
U.S.A.

https://doi.org/10.1017/S144678870001288X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870001288X

