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BIG COHEN–MACAULAY TEST IDEALS IN EQUAL
CHARACTERISTIC ZERO VIA ULTRAPRODUCTS

TATSUKI YAMAGUCHI

Abstract. Utilizing ultraproducts, Schoutens constructed a big Cohen–

Macaulay (BCM) algebra B(R) over a local domain R essentially of finite

type over C. We show that if R is normal and Δ is an effective Q-Weil

divisor on SpecR such that KR +Δ is Q-Cartier, then the BCM test ideal

τB̂(R)
( ̂R, ̂Δ) of ( ̂R, ̂Δ) with respect to B̂(R) coincides with the multiplier ideal

J ( ̂R, ̂Δ) of ( ̂R, ̂Δ), where ̂R and B̂(R) are the m-adic completions of R and

B(R), respectively, and ̂Δ is the flat pullback of Δ by the canonical morphism

Spec ̂R → SpecR. As an application, we obtain a result on the behavior of

multiplier ideals under pure ring extensions.

§1. Introduction

A (balanced) big Cohen–Macaulay (BCM) algebra over a Noetherian local ring (R,m)

is an R-algebra B such that every system of parameters is a regular sequence on B. Its

existence implies many fundamental homological conjectures including the direct summand

conjecture (now a theorem). Hochster and Huneke [14], [15] proved the existence of a BCM

algebra in equal characteristic, and André [1] settled the mixed characteristic case. Recently,

using BCM algebras, Ma and Schwede [18], [19] introduced the notion of BCM test ideals

as an analog of test ideals in tight closure theory.

The test ideal τ(R) of a Noetherian local ring R of positive characteristic was originally

defined as the annihilator ideal of all tight closure relations of R. Since it turned out that

τ(R) was related to multiplier ideals via reduction to characteristic p, the definition of τ(R)

was generalized in [11], [29] to involve effective Q-Weil divisors Δ on SpecR and ideals a⊆R

with real exponent t > 0. In these papers, it was shown that multiplier ideals coincide, after

reduction to characteristic p� 0, with such generalized test ideals τ(R,Δ,at). In positive

characteristic, Ma-Schwede’s BCM test ideals are the same as the generalized test ideals.

In this paper, we study BCM test ideals in equal characteristic zero.

Using ultraproducts, Schoutens [24] gave a characterization of log-terminal singularities,

an important class of singularities in the minimal model program. He also gave an explicit

construction of a BCM algebra B(R) in equal characteristic zero: B(R) is described as

the ultraproduct of the absolute integral closures of Noetherian local domains of positive

characteristic. He defined a closure operation associated with B(R) to introduce the notions

of B-rationality and B-regularity, which are closely related to BCM rationality and BCM

regularity defined in [19], and proved that B-rationality is equivalent to being rational

singularities. The aim of this paper is to give a geometric characterization of BCM test

ideals associated with B(R). Our main result is stated as follows:
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Theorem 1.1 (Theorem 6.4). Let R be a normal local domain essentially of finite type

over C. Let Δ be an effective Q-Weil divisor on SpecR such that KR+Δ is Q-Cartier, where

KR is a canonical divisor on SpecR. Suppose that R̂ and B̂(R) are the m-adic completions

of R and B(R), and Δ̂ is the flat pullback of Δ by the canonical morphism SpecR̂→ SpecR.

Then we have

τB̂(R)
(R̂,Δ̂) = J (R̂,Δ̂),

where τB̂(R)
(R̂,Δ̂) is the BCM test ideal of (R̂,Δ̂) with respect to B̂(R) and J (R̂,Δ̂) is the

multiplier ideal of (R̂,Δ̂).

The inclusion J (R̂,Δ̂) ⊆ τB̂(R)
(R̂,Δ̂) is obtained by comparing reductions of the

multiplier ideal modulo p � 0 to its approximations. We prove the opposite inclusion by

combining an argument similar to that in [25] with the description of multiplier ideals

as the kernel of a map between local cohomology modules in [29]. As an application of

Theorem 1.1, we show the next result about a behavior of multiplier ideals under pure ring

extensions, which is a generalization of [31, Cor. 5.30].

Theorem 1.2 (Corollary 7.11). Let R ↪→ S be a pure local homomorphism of normal

local domains essentially of finite type over C. Suppose that R is Q-Gorenstein. Let ΔS

be an effective Q-Weil divisor such that KS +ΔS is Q-Cartier, where KS is a canonical

divisor on SpecS. Let a⊆R be a nonzero ideal, and let t > 0 be a positive rational number.

Then we have

J (S,ΔS ,(aS)
t)∩R⊆ J (R,at).

In [31], we defined ultra-test ideals, a variant of test ideals in equal characteristic zero,

to generalize the notion of ultra-F -regularity introduced by Schoutens [24]. Theorem 1.2

was proved by using ultra-test ideals under the assumption that a is a principal ideal. The

description of multiplier ideals as BCM test ideals associated with B(R) (Theorem 1.1) and

a generalization of module closures in [20] enables us to show Theorem 1.2 without any

assumptions.

As another application of Theorem 1.1, we give an affirmative answer to one of

the conjectures proposed by Schoutens [24, Rem. 3.10], which says that B-regularity is

equivalent to being log-terminal singularities (see Theorem 8.2).

This paper is organized as follows: in the preliminary section, we give definitions of

multiplier ideals, test ideals, and BCM test ideals. In §3, we quickly review the theory of

ultraproducts in commutative algebra including non-standard and relative hulls. In §4,
we prove some fundamental results on BCM algebras constructed via ultraproducts

following [23]. In §5, we review the relationship between approximations and reductions

modulo p� 0 and consider approximations of multiplier ideals. In §6, we show Theorem 1.1,

the main theorem of this paper. In §7, using a generalized module closure, we show

Theorem 1.2 as an application of Theorem 1.1. In §8, we show that B-regularity is equivalent

to log-terminal singularities. Finally in §9, we discuss a question, a variant of [7, Quest. 2.7],

to handle BCM algebras that cannot be constructed via ultraproducts, and consider the

equivalence of BCM-rationality and being rational singularities.
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§2. Preliminaries

Throughout this paper, all rings will be commutative with unity.

2.1 Multiplier ideals

Here, we briefly review the definition of multiplier ideals and refer the reader to [16], [21]

for more details. Throughout this subsection, we assume that X is a normal integral scheme

essentially of finite type over a field of characteristic zero or X = SpecR̂, where (R,m) is a

normal local domain essentially of finite type over a field of characteristic zero and R̂ is its

m-adic completion.

Definition 2.1. A proper birational morphism f : Y →X between integral schemes is

said to be a resolution of singularities of X if Y is regular. When Δ is a Q-Weil divisor on

X and a⊆OX is a nonzero coherent ideal sheaf, a resolution f : Y →X is said to be a log

resolution of (X,Δ,a) if aOY = OY (−F ) is invertible and if the union of the exceptional

locus Exc(f) of f and the support F and the strict transform f−1
∗ Δ of Δ is a simple normal

crossing divisor.

If f : Y →X is a proper birational morphism with Y a normal integral scheme and Δ is a

Q-Weil divisor, then we can choose KY such that f∗(KX +Δ)−KY is a divisor supported

on the exceptional locus of f. With this convention:

Definition 2.2. Let Δ � 0 be an effective Q-Weil divisor on X such that KX +Δ is

Q-Cartier, let a ⊆ OX be a nonzero coherent ideal sheaf, and let t > 0 be a positive real

number. Then the multiplier ideal sheaf J (X,Δ,at) associated with (X,Δ,at) is defined by

J (X,Δ,at) = f∗OY (KY −�f∗(KX +Δ)+ tF �).

where f : Y →X is a log resolution of (X,Δ,a). Note that this definition is independent of

the choice of log resolution.

Definition 2.3. Let X be a normal integral scheme essentially of finite type over a field

of characteristic zero. We say that X has rational singularities if X is Cohen–Macaulay at x

and if for any projective birational morphism f : Y → SpecOX,x with Y a normal integral

scheme, the natural morphism f∗ωY → ωX,x is an isomorphism.

2.2 Tight closure and test ideals

In this subsection, we quickly review the basic notion of tight closure and test ideals. We

refer the reader to [4], [11], [13], [29].

Definition 2.4. Let R be a normal domain of characteristic p > 0, let Δ � 0 be an

effective Q-Weil divisor, let a ⊆ R be a nonzero ideal, and let t > 0 be a real number. Let

E =
⊕

E(R/m) be the direct sum, taken over all maximal ideals m of R, of the injective

hulls ER(R/m) of the residue fields R/m.

(1) Let I be an ideal of R. The (Δ,at)-tight closureI∗Δ,at

of I is defined as follows: x ∈
I∗Δ,at

if and only if there exists a nonzero element c ∈R◦ such that

ca�t(q−1)�xq ⊆ I [q]R(	(q−1)Δ
)

for all large q = pe, where I [q] = {fq|f ∈ I} and R◦ =R\{0}.
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(2) IfM is an R-module, then the (Δ,at)-tight closure 0∗Δ,at

M is defined as follows: z ∈ 0∗Δ,at

M

if and only if there exists a nonzero element c ∈R◦ such that

(ca�t(q−1)�)1/q⊗z = 0 in R(	(q−1)Δ
)1/q⊗RM

for all large q = pe.

(3) The (big) test ideal τ(R,Δ,at) associated with(R,Δ,at) is defined by

τ(R,Δ,at) = AnnR(0
∗Δ,at

E ).

When a= R, then we simply denote the ideal τ(R,Δ). We call the triple (R,Δ,at)

is strongly F-regular if τ(R,Δ,at) =R.

Definition 2.5 [8]. Let R be an F -finite Noetherian local domain of characteristic

p > 0 of dimension d. We say that R is F-rational if any ideal I = (x1, . . . ,xd) generated by

a system of parameters satisfies I = I∗.

2.3 Big Cohen–Macaulay algebras

In this subsection, we will briefly review the theory of BCM algebras. Throughout this

subsection, we assume that local rings (R,m) are Noetherian.

Definition 2.6. Let (R,m) be a local ring, and let x = x1, . . . ,xn be a system of

parameters. R-algebra B is said to be BCM with respect to x if x is a regular sequence

on B. B is called a (balanced) BCM algebra if it is BCM with respect to x for every system

of parameters x.

Remark 2.7 [5, Cor. 8.5.3]. If B is BCM with respect to x, then the m-adic completion

B̂ is (balanced) BCM.

About the existence of BCM algebras of residue characteristic p > 0, the following are

proved in [3], [14].

Theorem 2.8. If (R,m) is an excellent local domain of residue characteristic p > 0,

then the p-adic completion of absolute integral closure R+ is a (balanced) BCM R-algebra.

Using BCM algebras, we can define a class of singularities.

Definition 2.9. If R is an excellent local ring of dimension d, and let B be a BCM

R-algebra. We say that R is BCM-rational with respect to B (or simply BCMB-rational) if

R is Cohen–Macaulay and if Hd
m(R)→Hd

m(B) is injective. We say that R is BCM-rational

if R is BCMB-rational for any BCM algebra B.

We explain BCM test ideals introduced in [19].

Setting 2.10. Let (R,m) be a normal local domain of dimension d.

(i) Δ� 0 is a Q-Weil divisor on SpecR such that KR+Δ is Q-Cartier.

(ii) Fixing Δ, we also fix an embedding R ⊆ ωR ⊆ FracR, where ωR is the canonical

module.

(iii) Since KR+Δ is effective and Q-Cartier, there exist an integer n > 0 and f ∈ R such

that n(KR+Δ) = div(f).

Definition 2.11. With notation as in Setting 2.10, if B is a BCM R[f1/n]-algebra,

then we define 0B,KR+Δ
Hd

m(ωR)
to be Kerψ, where ψ is the homomorphism determined by the
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below commutative diagram:

Hd
m(R) ��

��

Hd
m(B)

·f1/n

��

��

Hd
m(B)

Hd
m(ωR) ��

ψ

��

Hd
m(B⊗R ωR)

�������������

.

If R is m-adically complete, then we define

τB(R,Δ) = AnnR 0B,KR+Δ
Hd

m(ωR)
.

We call τB(R,Δ) the BCM test ideal of (R,Δ) with respect to B. We say that (R,Δ) is BCM

regular with respect to B (or simply BCMB regular) if τB(R,Δ) =R.

Proposition 2.12 [19]. Let (R,m) be a complete normal local domain of characteristic

p > 0, let Δ� 0 be an effective Q-Weil divisor on SpecR, and let B be a BCM R+-algebra.

Fix an effective canonical divisor KR � 0. Suppose that KR+Δ is Q-Cartier. Then

τB(R,Δ) = τ(R,Δ).

§3. Ultraproducts

3.1 Basic notions

In this subsection, we quickly review basic notions from the theory of ultraproduct. The

reader is referred to [22], [26] for details. We fix an infinite set W. We use P(W ) to denote

the power set of W.

Definition 3.1. A nonempty subset F ⊆ P(W ) is called a filter if the following two

conditions hold.

(i) If A,B ∈ F , then A∩B ∈ F .

(ii) If A ∈ F and A⊆B ⊆W , then B ∈ F .

Definition 3.2. Let F be a filter on W.

(1) F is called an ultrafilter if for all A ∈ P(W ), we have A ∈ F or Ac ∈ F , where Ac is

the complement of A.

(2) F is called principal if there exists a finite subset A⊆W such that A ∈ F .

Remark 3.3. By Zorn’s lemma, non-principal ultrafilters always exist.

Remark 3.4. Ultrafilters are an equivalent notion to two-valued finitely additive

measures. If we have an ultrafilter F on W, then

m(A) :=

{
1 (A ∈ F)

0 (A /∈ F)

is a two-valued finitely additive measure. Conversely, if m : P(W ) → {0,1} is a nonzero

finitely additive measure, then F := {A⊆W |m(A) = 1} is an ultrafilter. Here, F is principal

if and only if there exists an element w0 of W such that m({w0}) = 1. Hence, F is not

principal if and only if m(A) = 0 for any finite subset A of W.
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Definition 3.5. Let Aw be a family of sets indexed by W and F be an ultrafilter on

W. Suppose that aw ∈Aw for all w ∈W and ϕ is a predicate. We say ϕ(aw) holds for almost

all w if {w ∈W |ϕ(aw) holds} ∈ F .

Remark 3.6. This is an analog of “almost everywhere” or “almost surely” in analysis.

The difference is that m is not countably but finitely additive. We can consider elements in

F as “large” sets and elements in the complement Fc as “small” sets. If F is not principal,

all finite subsets of W are “small.”

Definition 3.7. Let Aw be a family of sets indexed by W and F be a non-principal

ultrafilter on W. The ultraproduct ofAw is defined by

ulim
w

Aw =A∞ :=
∏
w

Aw/∼,

where (aw)∼ (bw) if and only if {w ∈W |aw = bw} ∈ F . We denote the equivalence class of

(aw) by ulimw aw.

Remark 3.8 [17, Sec. 3]. If Aw are local rings, then the ultraproduct is equivalent to

the localization of
∏

Aw at a maximal ideal.

Example 3.9. We use ∗N and ∗R to denote the ultraproduct of |W | copies of N
and R, respectively. ∗N is a semiring and ∗R is a field (see Definition-Proposition 3.10

and Theorem 3.20). ∗N is a non-standard model of Peano arithmetic. ∗R is a system of

hyperreal numbers used in non-standard analysis.

Definition-Proposition 3.10. Let A1w, . . . ,Anw, Bw be families of sets indexed by

W and F be a non-principal ultrafilter. Suppose that fw :A1w×·· ·×Anw →Bw is a family

of maps. Then we define the ultraproductf∞ = ulimw fw :A1∞×·· ·×An∞ →B∞ of fw by

f∞(ulim
w

a1w, . . . ,ulim
w

anw) := ulim
w

fw(a1w, . . . ,anw).

This is well-defined.

Corollary 3.11. Let Aw be a family of rings. Suppose that Bw is an Aw-algebra and

Mw is an Aw-module for almost all w. Then the following hold:

(1) A∞ is a ring.

(2) B∞ is an A∞-algebra.

(3) M∞ is an A∞-module.

Proof. Let 0 := ulimw 0, 1 := ulimw 1 in A∞, B∞ and 0 := ulimw 0 in M∞. By the above

Definition–Proposition, A∞, B∞ have natural additions, subtractions, and multiplications

and we have a natural ring homomorphism A∞ →B∞. Similarly,M∞ has a natural addition

and a scalar multiplication between elements of M∞ and A∞.

Proposition 3.12. Suppose that, for almost all w, we have an exact sequence

0→ Lw →Mw →Nw → 0

of abelian groups. Then

0→ ulim
w

Lw → ulim
w

Mw → ulim
w

Nw → 0

is an exact sequence of abelian groups. In particular, ulimw :
∏

wAb → Ab is an exact

functor.
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Proof. Let fw : Lw → Mw and gw : Mw → Nw be the morphisms in the given exact

sequence. Here, we only prove the injectivity of ulimw fw and the surjectivity of ulimw gw.

Suppose that ulimw fw(aw) = 0 for ulimw aw ∈ ulimwLw. Then fw(aw) = 0 for almost all w.

Since fw is injective for almost all w, we have aw =0 for almost all w. Therefore, ulimw aw =0

in ulimwLw. Hence, ulimw fw is injective. Next, let ulimw cw be any element in ulimwNw.

Since gw is surjective for almost all w, there exists bw ∈ Mw such that gw(bw) = cw for

almost all w. Let b = ulimw bw. Then we have (ulimw gw)(b) = ulimw gw(bw) = ulimw cw.

Hence, ulimw gw is surjective. The rest of the proof is similar.

�Loś’s theorem is a fundamental theorem in the theory of ultraproducts. We will prepare

some notions needed to state the theorem.

Definition 3.13. The language L of rings is the set defined by

L := {0,1,+,−, ·}.

Definition 3.14. Terms of L are defined as follows:

(i) 0, 1 are terms.

(ii) Variables are terms.

(iii) If s, t are terms, then −(s),(s)+(t),(s) · (t) are terms.

(iv) A string of symbols is a term only if it can be shown to be a term by finitely many

applications of the above three rules.

We omit parentheses and “·” if there is no ambiguity.

Example 3.15. 1+1, x1(x2+1),−(−x) are terms.

Definition 3.16. Formulas of L are defined as follows:

(i) If s, t are terms, then (s= t) is a formula.

(ii) If ϕ,ψ are formulas, then (ϕ∧ψ),(ϕ∨ψ),(ϕ→ ψ),(¬ϕ) are formulas.

(iii) If ϕ is a formula and x is a variable, then ∀xϕ,∃xϕ are formulas.

(iv) A string of symbols is a formula only if it can be shown to be a formula by finitely

many applications of the above three rules.

We omit parentheses if there is no ambiguity and use �=, � in the usual way.

Remark 3.17. ϕ∧ψ means “ϕ and ψ,” ϕ∨ψ means “ϕ or ψ,” ϕ→ ψ means “ϕ implies

ψ,” and ¬ϕ means “ϕ does not hold.”

Example 3.18. 0=1, x= 0∧y �= 1, ∀x∀y(xy = yx) are formulas.

Remark 3.19. Variables in a formula ϕ which is not bounded by ∀ or ∃ are called

free variables of ϕ. If x1, . . . ,xn are free variables of ϕ, we denote ϕ(x1, . . . ,xn) and we can

substitute elements of a ring for x1, . . . ,xn.

Theorem 3.20 (�Loś’s theorem in the case of rings). Suppose that ϕ(x1, . . . ,xn) is a

formula of L and Aw is a family of rings indexed by a set W endowed with a non-principal

ultrafilter. Let aiw ∈ Aw. Then ϕ(ulimw a1w, . . . ,ulimw anw) holds in A∞ if and only if

ϕ(a1w, . . . ,anw) holds in Aw for almost all w.

Remark 3.21. Even if Aw are not rings, replacing L properly, we can get the same

theorem as above. We use one in the case of modules.
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Example 3.22. Let A be a ring. If a property of rings is written by some formula, we

can apply �Loś’s theorem.

(1) A is a field if and only if ∀x(x= 0∨∃y(xy = 1)) holds.

(2) A is a domain if and only if ∀x∀y(xy = 0→ (x= 0∨y = 0)) holds.

(3) A is a local ring if and only if

∀x∀y(�z(xz = 1)∧�w(yw = 1)→ �u((x+y)u= 1))

holds.

(4) The condition that A is an algebraically closed field is written by countably many

formulas, that is, the formula in (1) and for all n ∈ N,

∀a0 . . .an−1∃x(xn+an−1x
n−1+ · · ·+a0 = 0).

(5) The condition that A is Noetherian cannot be written by formulas. Indeed, if W = N
with some non-principal ultrafilter and Aw = C�x�, then ulimnx

n �= 0 is in ∩nm
n
∞,

where m∞ is the maximal ideal of A∞. Hence, A∞ is not Noetherian.

Proposition 3.23 ([22, 2.8.2]; see Example 3.22). If almost all Kw are algebraically

closed field, then K∞ is an algebraically closed field.

Theorem 3.24 (Lefschetz principle [22, Th. 2.4]). Let W be the set of prime numbers

endowed with some non-principal ultrafilter. Then

ulim
p∈W

Fp
∼= C.

Proof. Let C = ulimpFp. By the above theorem, C is an algebraically closed field. For

any prime number q, we have q �= 0 in Fp for almost all p. Hence, q �= 0 in C, that is, C is of

characteristic zero. We can check that C has the same cardinality as C. If two algebraically

closed uncountable field of characteristic zero have the equal cardinality, then they are

isomorphic. Hence, C ∼= C. (Note that this isomorphism is not canonical.)

3.2 Non-standard hulls

In this subsection, we will introduce the notion of non-standard hulls along [22], [26].

Throughout this subsection, let P be the set of prime numbers and we fix a non-principal

ultrafilter on P and an isomorphism ulimpFp
∼= C.

Let C[X1, . . . ,Xn]∞ := ulimpFp[X1, . . . ,Xn]. Then we have the following proposition.

Proposition 3.25 [22, Th. 2.6]. We have a natural map C[X1, . . . ,Xn] →
C[X1, . . . ,Xn]∞, which is faithfully flat.

Definition 3.26. The ring C[X1, . . . ,Xn]∞ is said to be the non-standard hull of

C[X1, . . . ,Xn].

Remark 3.27. If n � 1, then C[X1, . . . ,Xn]∞ is not Noetherian. Let y = ulimpX
p
1 .

Then, for any integer l � 1, Xp
1 ∈ (X1, . . . ,Xn)

l for almost all p. Hence, y ∈ (X1, . . . ,Xn)
l

for any l by �Loś’s theorem. Therefore, ∩l(X1, . . . ,Xn)
l �= 0. By Krull’s intersection theorem,

C[X1, . . . ,Xn]∞ is not Noetherian.

Definition 3.28. Suppose that R is a finitely generated C-algebra. Let

R∼= C[X1, . . . ,Xn]/I
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be a presentation of R. The non-standard hull R∞ of R is defined by

R∞ := C[X1, . . . ,Xn]∞/IC[X1, . . . ,Xn]∞.

Remark 3.29. The non-standard hull is independent of a representation of R. If R ∼=
C[X1, . . . ,Xn]/I ∼= C[Y1, . . . ,Ym]/J , then Fp[X1, . . . ,Xn]/Ip ∼= Fp[Y1, . . . ,Ym]/Jp for almost

all p (see Definitions 3.33 and 3.35).

Remark 3.30. The natural map R→R∞ is faithfully flat since this is a base change of

the homomorphism C[X1, . . . ,Xn]→C[X1, . . . ,Xn]∞. By faithfully flatness, we have IR∞∩
R=R for any ideal I ⊆R.

Definition 3.31. Let a ∈ C. Since ulimpFp
∼=C, we have a family (ap)p of elements of

Fp such that ulimap = a. Then we call (ap)p an approximation of a.

Proposition 3.32. Let I = (f1, . . . ,fs) be an ideal of C[X1, . . . ,Xn] and fi =
∑

aiνX
ν .

Let Ip = (f1p, . . . ,fsp)Fp[X1, . . . ,Xn], where fip =
∑

aiνpX
ν and each (aiνp)p is an approxi-

mation of aiν . Then we have

IC[X1, . . . ,Xn]∞ = ulim
p

Ip

and

R∞ ∼= ulim
p

(Fp[X1, . . . ,Xn]/Ip).

Definition 3.33. Let R be a finitely generated C-algebra.

(1) In the setting of Proposition 3.32, a family Rp is said to be an approximation of R

if Rp is an Fp-algebra and Rp
∼= Fp[X1, . . . ,Xn]/Ip for almost all p. Then we have

R∞ ∼= ulimpRp.

(2) For an element f ∈ R, a family fp is said to be an approximation of f if fp ∈ Rp for

almost all p and f = ulimp fp in R∞. For f ∈ R∞, we define an approximation of f in

the same way.

(3) For an ideal I = (f1, . . . ,fs) ⊆ R, a family Ip is said to be an approximation of I if Ip
is an ideal of Rp and Ip = (f1p, . . . ,fsp) for almost all p. For finitely generated ideal

I ⊆R∞, we define an approximation of I in the same way.

Remark 3.34. This is an abuse of notation since approximations should be denoted by

(Rp)p, (fp)p, (Ip)p, and so forth.

Definition 3.35. Let ϕ : R → S be a C-algebra homomorphism between finitely

generated C-algebras. Suppose that R ∼= C[X1, . . . ,Xn]/I and S ∼= C[Y1, . . . ,Ym]/J . Let

fi ∈ C[Y1, . . . ,Ym] be a lifting of the image of Xi mod I under ϕ. Then we define an

approximation ϕp :Rp →Sp of ϕ as the morphism induced byXi �−→ fip. Let ϕ∞ := ulimpϕp,

then the following diagram commutes.

R
ϕ ��

��

S

��
R∞

ϕ∞ �� S∞
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Proposition 3.36 [22, Cor. 4.2], [26, Th. 4.3.4]. Let R be a finitely generated C-algebra.
An ideal I ⊆ R is prime if and only if Ip is prime for almost all p if and only if IR∞ is

prime.

Definition 3.37. Let R be a local ring essentially of finite type over C. Suppose that

R ∼= Sp, where S is a finitely generated C-algebra and p is a prime ideal of S. Then we

define the non-standard hull R∞ of R by

R∞ := (S∞)pS∞ .

Remark 3.38. Since S → S∞ is faithfully flat, R→R∞ is faithfully flat.

Definition 3.39. Let S be a finitely generated C-algebra, let p be a prime ideal of S,

and let R∼= Sp.

(1) A family Rp is said to be an approximation of R if Rp is an Fp-algebra and Rp
∼= (Sp)pp

for almost all p. Then we have R∞ ∼= ulimpRp.

(2) For an element f ∈ R, a family fp is said to be an approximation of f if fp ∈ Rp for

almost all p and f = ulimp fp in R∞. For f ∈ R∞, we define an approximation of f in

the same way.

(3) For an ideal I = (f1, . . . ,fs) ⊆ R, a family Ip is said to be an approximation of I if Ip
is an ideal of Rp and Ip = (f1p, . . . ,fsp) for almost all p. For finitely generated ideal

I ⊆R∞, we define an approximation of I in the same way.

Definition 3.40. Let S1,S2 be finitely generated C-algebras, and let p1,p2 be prime

ideals of S1,S2, respectively. Suppose that Ri
∼= (Si)pi and ϕ :R1 →R2 is a local C-algebra

homomorphism. Let S1
∼= C[X1, . . . ,Xn]/I and fj/gj be the image of Xj under ϕ, where

fj ∈ S2, gj ∈ S2 \ p2. Then we say that a homomorphism R1p → R2p induced by Xj �−→
fjp/gjp is an approximation of ϕ. Let ϕ∞ := ulimpϕp. Then the following commutative

diagram commutes:

R
ϕ ��

��

S

��
R∞

ϕ∞ �� S∞

.

Definition 3.41. Let R be a finitely generated C-algebra or a local ring essentially of

finite type over C, and let M be a finitely generated R-module. Write M as the cokernel of

a matrix A, that is, given by an exact sequence

Rm A−→Rn →M → 0,

where m,n are positive integers. Let Ap be an approximation of A defined by entrywise

approximations. Then the cokernel Mp of the matrix Ap is called an approximation of M

and the ultraproduct M∞ := ulimpMp is called the non-standard hull of M. M∞ is a finitely

generated R∞-module and independent of the choice of matrix A.

Remark 3.42. Tensoring the above exact sequence with R∞, we have an exact sequence

Rm
∞

A−→Rn
∞ →M ⊗RR∞ → 0.
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Taking the ultraproduct of exact sequences

Rm
p

Ap−−→Rn
p →Mp → 0,

we have an exact sequence

Rm
∞

A−→Rn
∞ →M∞ → 0.

Therefore, M∞ ∼=M ⊗RR∞. Note that if m,n are not integers but infinite cardinals, then

the naive definition of an approximation of A does not work and the ultraproduct of R⊕n
p

is not necessarily equal to R⊕n
∞ .

Here, we state basic properties about non-standard hulls and approximations.

Proposition 3.43 [22, 2.9.5, 2.9.7, Ths. 4.5 and 4.6], [26, §4.3]; cf. [2, 5.1]. Let R be a

local ring essentially of finite type over C, then the following hold:

(1) R has dimension d if and only if Rp has dimension d for almost all p.

(2) x= x1, . . . ,xi is an R-regular sequence if and only if xp = x1p, . . . ,xip is an Rp-regular

sequence for almost all p if and only if x is an R∞-regular sequence.

(3) x= x1, . . . ,xd is a system of parameters of R if and only if xp is a system of parameters

of Rp for almost all p.

(4) R is regular if and only if Rp is regular for almost all p.

(5) R is Gorenstein if and only if Rp is Gorenstein for almost all p.

(6) R is Cohen–Macaulay if and only if Rp is Cohen–Macaulay for almost all p.

Proposition 3.44 [31, Prop. 3.9]. Let R be a local ring essentially of finite type over

C. The following conditions are equivalent to each other.

(1) R is normal.

(2) Rp is normal for almost all p.

(3) R∞ is normal.

Definition 3.45. Let R be a normal local domain essentially of finite type over C, and
let Δ =

∑
iaiΔi be a Q-Weil divisor. Assume that Δi are prime divisors and pi is a prime

ideal associated with Δi for each i. Suppose that pip is an approximation of pi and Δip is

a divisor associated with pip. We say Δp :=
∑

iaiΔip is an approximation of Δ.

Remark 3.46. If Δ is an effective integral divisor, then this definition is compatible

with Definition 3.33 by [22, Th. 4.4]. Hence, if Δ is Q-Cartier, then Δp is Q-Cartier for

almost all p.

Lastly, we review some singularities introduced by Schoutens via ultraproducts.

Definition 3.47 [22, Def. 5.2], [25, Def. 3.1]. Suppose that R is a finitely generated

C-algebra or a local domain essentially of finite type over C. Let I ⊆ R be an ideal. The

generic tight closure I∗gen of I is defined by

I∗gen = (ulim
p

Ip)
∗∩R.

Remark 3.48. The generic tight closure I∗gen of I does not depend on the choice of

approximation of I since any two approximations are almost equal.
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Definition 3.49 [25, Def. 4.1 and Rem. 4.7], [23, Def. 4.3]. Suppose that R is a finitely

generated C-algebra or a local ring essentially of finite type over C.

(1) R is said to be weakly generically F-regular if I∗gen = I for any ideal I ⊆R.

(2) R is said to be generically F-regular if Rp is weakly generically F -regular for any prime

ideal p ∈ SpecR.

(3) Let R be a local ring essentially of finite type over C. R is said to be generically

F-rational if I∗gen = I for some ideal I generated by a system of parameters.

Proposition 3.50 [25, Th. 4.3]. If R is generically F-rational, then I∗gen = I for any

ideal I generated by part of a system of parameters.

Proposition 3.51 [25, Th. 6.2], [23, Prop. 4.5 and Th. 4.12]. If R is generically

F-rational if and only if Rp is F-rational for almost all p if and only if R has rational

singularities.

Definition 3.52 [24, 3.2]. Let R be a local ring essentially of finite type over C and

Rp be an approximation. Let ε := ulimp ep ∈ ∗N. Then an ultra-Frobenius F ε : R → R∞
associated with ε is defined by x �−→ ulimp(F

ep
p (xp)), where Fp is a Frobenius morphism in

characteristic p.

Definition 3.53 [24, Def. 3.3]. Let R be a local domain essentially of finite type over C.
R is said to be ultra-F-regular if, for each c ∈R◦, there exists ε ∈ ∗N such that

R
cF ε

−−→R∞

is pure.

Proposition 3.54 [24, Th. A]. Let R be a Q-Gorenstein normal local domain essentially

of finite type over C. Then R is ultra-F-regular if and only if R has log-terminal singularities.

3.3 Relative hulls

In this subsection, we introduce the concept of relative hulls and approximations of

schemes, cohomologies, and so forth. We refer the reader to [22], [24], [25].

Definition 3.55 (Cf. [25]). Let R be a local ring essentially of finite type over C.
Suppose that X is a finite tuple of indeterminates and f ∈ R[X] is a polynomial such

that f =
∑

ν aνX
ν , where ν is a multi-index. If aνp is an approximation of aν for each ν,

then the sequence of polynomials fp :=
∑

ν aνpX
ν is said to be an R-approximation of f. If

I := (f1, . . . ,fs) is an ideal in R[X], then we call Ip := (f1p, . . . ,fsp)Rp[X] an R-approximation

of I, and if S =R[X]/I, then we call Sp :=Rp[X]/Ip an R-approximation of S.

Remark 3.56. Any two R-approximations of a polynomial f are almost equal. Similarly,

any two R-approximations of an ideal I are almost equal.

Definition 3.57 (Cf. [25]). Let S be a finitely generated R-algebra, and let Sp be an

R-approximation of S, then we call S∞ = ulimpSp the (relative) R-hull of S.

Definition 3.58 (Cf. [24]). If X is an affine scheme SpecS of finite type over SpecR,

then we call Xp := SpecSp is an R-approximation of X.

Definition 3.59 (Cf. [24]). Suppose that f : Y →X is a morphism of affine schemes

of finite type over SpecR. If X = SpecS,Y = SpecT and ϕ : S → T is the morphism
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corresponding to f, then we call fp : Yp → Xp is an R-approximation of f, where fp is a

morphism of Rp-schemes induced by an R-approximation ϕp : Sp → Tp.

Definition 3.60 (Cf. [24]). Let S be a finitely generated R-algebra, and let M be a

finitely generated S -module. Write M as the cokernel of a matrix A, that is, given by an

exact sequence

Sm A−→ Sn →M → 0,

where m,n are positive integers. Let Ap be an R-approximation of A defined by entrywise

R-approximations. Then the cokernel Mp of the matrix Ap is called an R-approximation of

M and the ultraproduct M∞ := ulimpMp is called the R-hull of M. M∞ is independent of

the choice of the matrix A and M∞ ∼=M ⊗S S∞.

Remark 3.61. IfM is not finitely generated, then we cannot define an R-approximation

of M in this way. It is crucial that any two R-approximations of A is equal for almost all p.

Definition 3.62 [24]. Let X be a scheme of finite type over SpecR. Let U= {Ui} is a

finite affine open covering of X and Uip be an R-approximation of Ui. Gluing {Uip} together,
we obtain a scheme Xp of finite type over SpecRp. We call Xp an R-approximation of X.

Remark 3.63. Suppose that {Uijk}k is a finite affine open covering of Ui ∩Uj and

ϕijk :OUi |Uk
∼=OUj |Uk

are isomorphisms. Then R-approximations ϕp :OUip |Ukp
→OUjp |Ukp

are isomorphisms for almost all p (note that indices ijk are finitely many). Hence, we can

glue these together. For any other choice of finite affine open covering U′ of X, the resulting

R-approximation X ′
p is isomorphic to Xp for almost all p.

Definition 3.64 (Cf. [24]). Suppose that f : Y →X is a morphism between schemes

of finite type over SpecR. Let U, V be finite affine open coverings of X and Y, respectively,

such that for any V ∈ V, there exists some U ∈ U such that f(V ) ⊆ U . Let Up, Vp

be R-approximations of U, V and (f |V )p an R-approximation of f |V . We define an R-

approximation fp of f by the morphism determined by (f |V )p.

Remark 3.65. In the same way as the above Remark 3.63, (f |V )p and (f |V ′)p agree

on V ∩V ′ for any two opens V,V ′ ∈V for almost all p.

Definition 3.66 (Cf. [24]). Let X be a scheme of finite type over SpecR, and let F
be a coherent OX -module. Let U be a finite affine open covering of X. For any U ∈ U, we

have an R-approximation MUp of MU such that MU is a finitely generated OU -module and

M̃U
∼=F|U . We define an R-approximation Fp ofF by the coherent OXp-module determined

by M̃Up.

Definition 3.67 (Cf. [24]). Let X be a separated scheme of finite type over SpecR,

and let F be a coherent OX -module. Then the ultra-cohomology of F is defined by

Hi
∞(X,F) := ulim

p
Hi(Xp,Fp).

Remark 3.68. In the above setting, let U= {Ui}i=1,...,n be a finite affine open covering

of X, let

Cj(U,F) :=
∏

i0<···<ij

F(Ui0...ij ),
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where Ui0...ij := Ui0 ∩· · ·∩Uij , and let

(Cj(U,F))p :=
∏

i0...ij

(F(Ui0...ij ))p,

where F(Ui0...ij )p is an R-approximation considered as O(Ui0...ij )-module. Then

(Cj(U,F))p

coincides with the j th term of the Čech complex of Xp, Up, and Fp. We have a commutative

diagram

Cj−1(U,F) ��

��

Cj(U,F) ��

��

Cj+1(U,F)

��
ulimp(C

j−1(U,F))p �� ulimp(C
j(U,F))p �� ulimp(C

j+1(U,F))p.

Since ulimp(-) is an exact functor, we have

Ȟj(U,F)→ ulim
p

Ȟj(Up,Fp).

If X is separated, then Xp is separated for almost all p. This can be checked by taking

a finite affine open covering and observing that if the diagonal morphism ΔX/SpecR is a

closed immersion, then ΔXp/SpecRp
is also a closed immersion for almost all p. Hence, we

have the map

Hj(U,F)→ ulim
p

Hj(Up,Fp).

Note that we do not know whether this map is injective or not.

Proposition 3.69. Let R be a local ring essentially of finite type over C of dimension

d, x= x1, . . . ,xd a system of parameters and M a finitely generated R-module. Then we have

a natural homomorphism Hd
m(M)→ ulimpH

d
mp

(Mp).

Proof. Since Mx1···x̂i···xd
is a finitely generated Rx1···x̂i···xd

-module and Mx1···xd
is

a finitely generated Rx1···xd
-module, we have an R-approximation (Mx1···x̂1···xd

)p ∼=
(Mp)x1p···x̂ip···xdp

and (Mx1···xd
)p ∼= (Mp)x1p···xdp

for almost all p. We have a commutative

diagram ⊕
iMx1···x̂i···xd

��

��

Mx1···xd

��⊕
iulimp(Mp)x1p···x̂ip···xdp

�� ulimp(Mp)x1p···xdp

.

Taking the cokernel of rows, we have the desired map.

Remark 3.70. We do not know whether Hd
m(M)→ ulimpH

d
mp

(Mp) is injective or not.

Proposition 3.71. Let R be a local ring essentially of finite type over C of dimension d,

x= x, . . . ,xd be a system of parameters and Mp be an Rp-module for almost all p. Then we

have a natural homomorphism Hd
m(ulimpMp)→ ulimpH

d
m(Mp).
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Proof. We have a commutative diagram⊕
i(ulimpMp)x1···x̂i···xd

��

��

(ulimpMp)x1···xd

��⊕
iulimp(Mp)x1p···x̂ip···xdp

�� ulimp(Mp)x1p···xdp

.

Taking the cokernel of rows, we have the desired map.

§4. Big Cohen–Macaulay algebras constructed via ultraproducts

In [23], Schoutens constructed the canonical BCM algebra in characteristic zero.

Following the idea of [23], we will deal with BCM algebras constructed via ultraproducts in

slightly general settings. In this section, suppose that (R,m) is a local domain essentially

of finite type over C and Rp is an approximation of R.

Definition 4.1 [23, §2]. Suppose that R is a local domain essentially of finite type

over C. Then we define the canonical BCM algebra B(R) of R by

B(R) := ulim
p

R+
p .

Setting 4.2. Let R be a local domain essentially of finite type over C of dimension d,

and let Bp be a BCM Rp
+-algebra for almost all p. We use B to denote ulimpBp.

Remark 4.3. By Theorem 2.8, we can set Bp =R+
p and B = B(R) in Setting 4.2.

Proposition 4.4. B(R) is a domain over R+-algebra.

Proof. By �Loś’s theorem, B(R) is a domain over R∞ = ulimpRp. Hence, B(R) is an

R-algebra. Let f =
∑

anx
n ∈ B(R)[x] be a monic polynomial in one variable over B(R) and

let fp =
∑

anpx
n be an approximation of f. Since fp is a monic polynomial for almost all

p and R+
p is absolutely integrally closed, fp has a root cp in R+

p for almost all p. Hence,

c := ulimp cp ∈ B(R) is a root of f by �Loś’s theorem. Hence, B(R) is absolutely integrally

closed. In particular, B(R) contains an absolute integral closure R+ of R.

Corollary 4.5. In Setting 4.2, B is an R+-algebra.

Proof. Since Bp is an R+
p -algebra for almost all p, B is an R+-algebra by the above

proposition.

Proposition 4.6. In Setting 4.2, B is a BCM R-algebra.

Proof. Assume that B is not a BCM R-algebra. Since Bp �= mpBp for almost all p,

we have B �= mB. Hence, there exists part of system of parameters x1, . . . ,xi of R

such that (x1, . . . ,xi−1)B � (x1, . . . ,xi−1)B :B xi. Then there exists y ∈ B such that

xiy ∈ (x1, . . . ,xi−1)B and y /∈ (x1, . . . ,xi−1)B. Taking approximations, we have xipyp ∈
(x1p, . . . ,x(i−1)p)Bp and yp /∈ (x1p . . . ,x(i−1)p)Bp for almost all p. Since x1p, . . . ,xip is part

of a system of parameters of Rp and Bp is a BCMRp-algebra for almost all p, x1p, . . . ,xip

is a regular sequence for almost all p. This is a contradiction. Therefore, B is a BCM

R-algebra.

Lemma 4.7. In Setting 4.2, the natural homomorphism Hd
m(B) → ulimpH

d
mp

(Bp) is

injective.

https://doi.org/10.1017/nmj.2022.41 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2022.41


564 T. YAMAGUCHI

Proof. Let x= x1 · · ·xd be the product of a system of parameters and [ z
xt ] be an element

of Hd
m(B) such that the image in ulimpH

d
mp

(Bp) is zero. Then there exists sp ∈N such that

xspz ∈ (x
sp+t
1p , . . . ,x

sp+t
dp )Bp for almost all p. Since Bp is a BCM Rp-algebra for almost all p,

z ∈ (xt
1p, . . . ,x

t
dp)Bp for almost all p. Hence, z ∈ (xt

1, . . . ,x
t
d)B and [ z

xt ] = 0 in Hd
m(B).

We generalize [23, Th. 4.2] to the cases other than the canonical BCM algebra.

Proposition 4.8 (Cf. [23, Th. 4.2], [19, Prop. 3.7]). In Setting 4.2, R is BCMB-rational

if and only if R has rational singularities. In particular, R has rational singularities if R is

BCM-rational.

Proof. Let x := x1 · · ·xd is the product of a system of parameters. Suppose that R has

rational singularities. By [23, Prop. 4.11] and [9], Rp is F -rational for almost all p. Let

η := [ z
xt ] be an element of Hd

m(R) such that η = 0 in Hd
m(B). Then we have a commutative

diagram

Hd
m(R) ��

��

ulimpH
d
mp

(Rp)

��
Hd

m(B) �� ulimpH
d
mp

(Bp).

By [19, Prop. 3.5], Hd
mp

(Rp) → Hd
mp

(Bp) is injective for almost all p. Hence,

ulimpH
d
mp

(Rp) → ulimpH
d
mp

(Bp) is injective. Therefore, [
zp
xt
p
] = 0 in Hd

mp
(Rp) for almost

all p. Since Rp is Cohen–Macaulay for almost all p, we have zp ∈ (xt
1p, . . . ,x

t
dp) for almost

all p. Hence, z ∈ (xt
1, . . . ,x

t
d) by �Loś’s theorem. Therefore, Hd

m(R) → Hd
m(B) is injective.

Conversely, suppose that R is BCMB-rational. Let I = (x1, . . . ,xd) be an ideal generated

by the system of parameters. Let z ∈ I∗gen. Since I∗p ⊆ IpBp∩Rp by [27, Th. 5.1] for almost

all p, we have [
zp
xp
] = 0 in Hd

mp
(Bp) for almost all p. Since Hd

m(B) → ulimpH
d
mp

(Bp) and

Hd
m(R) → Hd

m(B) are injective, we have [ zx ] = 0 in Hd
m(R). Since R is Cohen–Macaulay,

z ∈ I. Therefore, R is generically F -rational. By Proposition 3.51 (see [25, Th. 6.2]), R has

rational singularities.

§5. Approximations of multiplier ideals

In this section, we will explain the relationship between approximations and reductions

modulo p� 0. Note that an isomorphism ulimpFp
∼= C is fixed.

Definition 5.1. Let R be a finitely generated C-algebra. A pair (A,RA) is called a

model of R if the following two conditions hold:

(i) A⊆ C is a finitely generated Z-subalgebra.
(ii) RA is a finitely generated A-algebra such that RA⊗AC∼=R.

Proposition 5.2 [23, Lem. 4.10]. Let A be a finitely generated Z-subalgebra of C.
There exists a family (γp)p which satisfies the following two conditions:

(i) γp :A→ Fp is a ring homomorphism for almost all p.

(ii) For any x ∈A, x= ulimp γp(x).

Proposition 5.3 (Cf. [23, Cor. 4.10]). Let R be a finitely generated C-algebra, and let

a= a1, . . . ,al be finitely many elements of R. Let Rp be an approximation of R. Then there

exists a model (A,RA) which satisfies the following conditions:
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(i) There exists a family (γp) as in Proposition 5.2.

(ii) a⊆RA.

(iii) RA⊗A Fp
∼=Rp for almost all p.

(iv) For any x ∈RA, the ultraproduct of the image of x under idRA
⊗Aγp is x.

Proof. Let X =X1, . . . ,Xn and R ∼= C[X]/I for some ideal I ⊆ C[X]. Take any model

(A,RA) which contains a. Enlarging this model, we may assume that there exits an ideal

IA ⊆A[X] such thatRA
∼=A[X]/IA and IA⊗AC= I in C[X]. Take (γp) as in Proposition 5.2.

Let I = (f1, . . . ,fm). For f =
∑

ν cνX
ν ∈ A[X] ⊆ C[X], by the definition of approxima-

tions, fp :=
∑

ν γp(cν)X
ν ∈ Fp[X] is an approximation of f. Hence, by the definition of

approximations of finitely generated C-algebras, RA ⊗A Fp
∼= Fp[X]/(f1p, . . . ,fmp)Fp[X]

is an approximation of R. Since two approximations are isomorphic for almost all p,

RA⊗A Fp
∼=Rp for almost all p. The condition (iv) is clear by the above argument.

Remark 5.4. Let p= (x1, . . . ,xn)⊆ R be a prime ideal. Enlarging the model (A,RA),

we may assume that x1, . . . ,xn ∈ RA. Let μp be the kernel of γp : A → Fp. Then this is

a maximal ideal of A and A/μp is a finite field. pμp = (x1, . . . ,xn)RA/μpRA is prime for

almost all p since this is a reduction to p� 0. On the other hand, pp := (x1, . . . ,xn)RA⊗A

Fp ⊆ Rp is an approximation of p. Hence, pp is prime for almost all p. Here, (Rp)pp is an

approximation of Rp. Thus we have a flat local homomorphism (RA/μpRA)pμp
→Rp with

pμpRp = pp. Moreover, if p is maximal, then pμp ,pp are maximal for almost all p. Then, the

map RA/pμp →Rp/pp ∼= Fp is a separable field extension since RA/pμp is a finite field.

The next result is a generalization of [31, Th. 4.6] from ideal pairs to triples.

Proposition 5.5. Let R be a normal local domain essentially of finite type over C, let
Δ � 0 be an effective Q-Weil divisor such that KR +Δ is Q-Cartier, let a be a nonzero

ideal, and let t > 0 be a real number. Suppose that Rp, Δp, ap are approximations. Then

τ(Rp,Δp,a
t
p) is an approximation of J (SpecR,Δ,at).

Proof. Let R = Sp, where S is a normal domain of finite type over C and p is a prime

ideal. Let m be a maximal ideal contains p. Then there exists a model (A,SA) of S such

that the properties in Proposition 5.3 hold and SA containing a system of generators of

J (SpecR,Δ,at) and ΔA, aA can be defined properly. Let μp be maximal ideals of SA as in

Remark 5.4, and let mμp ,pμp be reductions to p� 0. Since, for almost all p, (SA/μp)mμp
→

(Sm)p is a flat local homomorphism such that SA/mμp → (S/m)p ∼= Fp is a separable field

extension, we have

τ((SA/μp)mμp
,Δ(SA/μp)mμp

,at(SA/μp)mμp
)(Sm)p = τ((Sm)p,Δmp ,a

t
mp

),

by a generalization of [28, Lem. 1.5]. Since the localization commutes with test ideals

[10, Prop. 3.1], we have

τ((SA/μp)pμp
,Δ(SA/μp)pμp

,at(SA/μp)pμp
)Rp = τ(Rp,Δp,a

t
p)

for almost all p. Since the reduction of multiplier ideals modulo p � 0 is the test ideal

[29, Th. 3.2], τ((SA/μp)pμp
,Δ(SA/μp)pμp

,at(SA/μp)pμp
) is a reduction of

J (SpecR,Δ,at)

to characteristic p� 0. Hence, τ(Rp,Δp,a
t
p) is an approximation of J (SpecR,Δ,at).
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§6. BCM test ideal with respect to a big Cohen–Macaulay algebra

constructed via ultraproducts

Throughout this section, we assume that (R,m) is a normal local domain essentially

of finite type over C. Fix a canonical divisor KR such that R ⊆ ωR := R(KR) ⊆ Frac(R).

Let Δ � 0 be an effective Q-Weil divisor such that KR +Δ is Q-Cartier. Suppose that

divf = n(KR+Δ) for f ∈ R◦, n ∈ N. Let Bp be a BCM R+
p -algebra for almost all p and

B := ulimpBp. We use R̂ to denote the completion of R with respect to m and Δ̂ to denote

the flat pullback of Δ by SpecR̂→ SpecR.

Proposition 6.1. In the setting as above, we have

J (R̂,Δ̂)⊆ τ
̂B(R̂,Δ̂).

Proof. Consider the following commutative diagram:

0B,KR+Δ
Hd

m(ωR)
��

��

ulimp 0
Bp,KRp+Δp

Hd
mp

(ωRp)

��
Hd

m(ωR) ��

ψ

��

ulimpH
d
mp

(ωRp)

��
Hd

m(B) �� ulimpH
d
mp

(Bp)

.

By Proposition 2.12, we have

0
Bp,KRp+Δp

Hd
mp

(ωRp)
= 0

∗Δp

Hd
mp

(ωRp)

for almost all p. Let x1, . . . ,xd be a system of parameters, and let x = x1 · · ·xd be the

product of them. Take a ∈ J (R,Δ) = ulimp τ(Rp,Δp)∩R and [ z
xt ] ∈ 0B,KR+Δ

Hd
m(ωR)

. Let J be a

divisorial ideal which is isomorphic to ωR and g ∈ R◦ an element such that ωR
·g−→ J is an

isomorphism. As in Proof of [29, Th. 2.8], we have gpzpx
t
p ∈ ((x2t

1p, . . . ,x
2t
dp)Jp)

∗Δp for almost

all p. Hence, apgpzpx
t
p ∈ (x2t

1p, . . . ,x
2t
dp)Jp for almost all p. Therefore, agzxt ∈ (x2t

1 , . . . ,x2t
d )J

and [azxt ] = 0 in Hd
m(ωR). Hence, we have a ∈ AnnR 0B,KR+Δ

Hd
m(ωR)

. In conclusion, we have

J (R,Δ)R̂⊆ τ
̂B(R̂,Δ̂).

Lemma 6.2 [29, Th. 2.13]. Let (R,m) be an F-finite normal local domain of character-

istic p > 0 and Δ � 0 be an effective Q-Weil divisor on X := SpecR such that KX +Δ is

Q-Cartier. Let f : Y → X be a proper birational morphism with X normal. Suppose that

Z := f−1(m) and δ : Hd
m(R(KX)) → Hd

Z(Y,OY (�f∗(KX +Δ)�) is the Matlis dual of the

natural inclusion map H0(Y,OY (	KY − f∗(KX +Δ)
)) ↪→ R. Then Kerδ ⊆ 0∗ΔE , where E

is the injective hull of the residue field R/m of R.

Proof. By [29, Th. 2.13], we have τ(R,Δ)⊆H0(Y,OY (	KY −f∗(KX +Δ)
)). Hence,

Kerδ =AnnEH0(Y,OY (	KY −f∗(KX +Δ)
))
⊆AnnE τ(R,Δ)

= AnnE τ(R,Δ)R̂
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= AnnE τ(R̂,Δ̂)

= AnnEAnn
̂R 0∗ΔE

= 0∗ΔE .

Remark 6.3. Moreover, we have Kerδ = 0∗ΔE if f is a reduction of a log resolution in

characteristic zero modulo p� 0 by [29, Th. 3.2].

Theorem 6.4. Let R be a normal local domain essentially of finite type over C. Fix
an effective canonical divisor KR � 0 on SpecR. Let Δ � 0 be an effective Q-Weil divisor

on SpecR such that KR+Δ is Q-Cartier and Bp is a BCM R+
p -algebra for almost all p.

Suppose that n(KR+Δ) = div(f) for f ∈R◦,n ∈ N. Then we have

τ
̂B(R̂,Δ̂) = J (R̂,Δ̂).

Proof. Thanks to Proposition 6.1, it suffices to prove τ
̂B(R̂,Δ̂)⊆ J (R̂,Δ̂). Let μ : Y →

X := SpecR be a log resolution of (X,Δ), and let Z :=μ−1(m). Considering approximations,

we have a corresponding morphisms μp : Yp →Xp := SpecRp, Zp = μ−1
p (mp) for almost all p.

Then we have a commutative diagram

Hd
m(ωR)

γ

��

δ

����
���

���
���

��

Hd−1(Y,L)

��

�� Hd−1(Y \Z,L|Y \Z) ��

ud−1

��

HZ(L)

Hd−1
∞ (Y,L) ρd−1

∞ �� Hd−1
∞ (Y \Z,L|Y \Z)

,

where L :=OY (�μ∗(KX+Δ)�) and the middle row is exact. Similarly, we have the following

commutative diagram for almost all p:

Hd
mp

(ωRp)

γp

��

δp

����
���

���
���

��

Hd−1(Yp,Lp)
ρd−1
p �� Hd−1(Yp \Zp,Lp|Yp\Zp

) �� Hd
Zp

(Lp)

,

where the middle row is exact. Assume that η ∈Kerδ. Then ud−1(γ(η))∈ Imρd−1
∞ . Therefore,

γp(ηp) ∈ Imρd−1
p for almost all p. Hence, ηp ∈Kerδp for almost all p. By Lemma 6.2, ηp ∈

0
∗Δp

Hd
mp

(ωRp)
for almost all p. Hence, by Propositon 2.12, we have ηp ∈ 0

Bp,KRp+Δp

Hd
mp

(ωRp)
for almost

all p. We have a commutative diagram

Hd
m(ωR) ��

ψ

��

ulimpH
d
mp

(ωRp)

ψ∞:=ulimpψp

��
Hd

m(B) �� ulimpH
d
mp

(Bp)

,

where ψ, ψp are the morphisms as in Definition 2.11. Since ψ∞(ulimp ηp) = 0 and Hd
m(B)→

ulimpH
d
mp

(Bp) is injective by Lemma 4.7, we have ψ(η) = 0 in Hd
m(B). Hence, η ∈ 0B,KR+Δ

Hd
m(ωR)

.

Therefore, we have
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τ
̂B(R̂,Δ̂)⊆Ann

̂R(Kerδ)

= Ann
̂RAnnHd

m(ωR)J (R,Δ)

= J (R̂,Δ̂).

Remark 6.5. We can generalize the notion of ultra-test ideals in [31, Def. 5.5] to the

pair (R,Δ). Using Lemma 6.2 instead of [11, Th. 6.9], we can show that generalized ultra-

test ideals are equal to multiplier ideals.

§7. Generalized module closures and applications

We introduce the notion of generalized module closures inspired by [20]. Using the

generalized module closures, we will generalize [31, Cor. 5.30]. We also use [19, §6.1] as
reference in the following arguments.

Setting 7.1. Suppose that R is a normal local domain essentially of finite type over C
of dimension d, KR � 0 is a fixed effective canonical divisor and Δ� 0 is an effective Q-Weil

divisor such that KR+Δ is Q-Cartier. Moreover, we assume that Bp is a BCM R+
p -algebra

for almost all p, B := ulimpBp and r(KR+Δ) = divf for f ∈R, r ∈ N. Let R′ ⊆R+ be an

integrally closed finite extension of R such that f1/r ∈ R′ and π∗Δ is Weil divisor, where

π : SpecR′ → SpecR.

Definition 7.2. Assume Setting 7.1 and let g ∈ R◦ and t > 0 be a positive rational

number. We use B̂Δ to denote

B⊗R′ R′(π∗Δ)⊗R R̂.

For any R̂-modules N ⊆M , we define N
cl

̂BΔ,gt

M as follows: x∈N
cl

̂BΔ,gt

M if and only if gt⊗x∈
Im(B̂Δ⊗

̂RN → B̂Δ⊗
̂RM). We use τcl

̂BΔ,gt
(R̂) to denote

⋂
N⊆M

(N :
̂R N

cl
̂BΔ

,gt

M ),

where M runs through all R̂-modules and N runs through all R̂-submodules of M.

Proposition 7.3. In Setting 7.1, if g ∈R◦ and t > 0 is a positive rational number, then

we have

τcl
̂BΔ,gt

(R̂) =
⋂
M

Ann
̂R 0

cl
̂BΔ,gt

M =Ann
̂R 0

cl
̂BΔ,gt

E ,

where M runs through all R̂-modules and E is the injective hull of the residue field of R.

Proof. We can prove this by arguments similar to [20, Lem. 3.3 and Prop. 3.9].

Proposition 7.4. In Setting 7.1, if g ∈R◦ and t > 0 is a positive rational number, then

we have

0B,KR+Δ+tdivg
E = 0

cl
̂BΔ,gt

E .

Proof. Since the reflexive hull (R′(π∗Δ)⊗R ωR)
∗∗ is equal to R′(div(f

1
r )), we have

Hd
m(R

′(π∗Δ)⊗R ωR)∼=Hd
m(R

′(div(f
1
r ))). Hence, we have
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B̂Δ⊗
̂RE ∼=B⊗R′ Hd

m(R
′(π∗Δ)⊗R ωR)

∼=B⊗R′ Hd
m(R

′(div(f
1
r ))).

Then there exists a commutative diagram

E ∼=Hd
m(ωR) ��

��

B̂Δ⊗
̂RE

gt⊗1
��

B̂Δ⊗
̂RE

∼=
��

B⊗R′ Hd
m(R

′(div(f
1
r )))

id⊗(·f1/r)
��

B⊗R′ Hd
m(R

′)

∼=
��

Hd
m(B⊗R ωR)

ψ
�� Hd

m(B)

,

where ψ is the second map of

·f 1
r gt :Hd

m(B)→Hd
m(B⊗R ωR)→Hd

m(B).

The result follows by the above commutative diagram.

Definition 7.5. Let R ↪→ S be an injective local homomorphism of normal local

domains essentially of finite type over C. Fix KR,KS � 0 effective canonical divisors on

SpecR and on SpecS, respectively. Let ΔR,ΔS � 0 be effective Q-Weil divisors on SpecR

and on SpecS, respectively, such that KR+ΔR, KS +ΔS are Q-Cartier. Let a ⊆ R be a

nonzero ideal and t > 0 be a positive rational number. Suppose that B̂ΔR
and B̂ΔS

are

defined as in Definition 7.2. Then, for an R̂-module M and an Ŝ-module N, we define

0
cl

̂BΔR
,at

M , 0
cl

̂BΔS
at

N by

0
cl

̂BΔR
,at

M :=
⋂
n∈N

⋂
g∈a�nt�

0

cl
̂BΔR

,g
1
n

M ,

0
cl

̂BΔS
at

N :=
⋂
n∈N

⋂
g∈a�nt�

0

cl
̂BΔS

g
1
n

N .

We use τcl
̂BΔR

,at
(R̂), τcl

̂BΔS
,at

(Ŝ) to denote

⋂
M

Ann
̂R 0

cl
̂BΔR

,at

M ,

⋂
N

Ann
̂S 0

cl
̂BΔS

,at

N ,

where M runs through all R̂-modules and N runs through all Ŝ-modules.
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Proposition 7.6. In the setting of Definition 7.5, we have

Ann
̂R 0

cl
̂BΔR

,at

ER
=
⋂
M

Ann
̂R 0

cl
̂BΔR

,at

M ,

Ann
̂S 0

cl
̂BΔS

,at

ES
=
⋂
N

Ann
̂S 0

cl
̂BΔS

,at

N ,

where M,N run through all R̂-modules and Ŝ-modules, respectively, and ER, ES are the

injective hulls of the residue fields of R and S, respectively.

Proof. We can show this by arguments similar to Proposition 7.3.

Proposition 7.7. In the setting of Definition 7.5, we have

τcl
̂BΔR

,at
(R̂) = J (R̂,Δ̂,(aR̂)t).

Proof. Let E be the injective hull of the residue field of R. Then

0
cl

̂BΔR
,at

E =
⋂
n∈N

⋂
g∈a�nt�

0

cl
̂BΔR

,g
1
n

E

=
⋂
n∈N

⋂
g∈a�nt�

AnnEJ (R̂,Δ̂,g
1
n )

= AnnE
∑
n∈N

∑
g∈a�nt�

J (R̂,Δ̂,g
1
n )

= AnnEJ (R̂,Δ̂,(aR̂)t),

where the second equality follows from Theorem 6.4. Hence, we have

Ann
̂R 0

cl
̂BΔR

,at

E = J (R̂,Δ̂,(aR̂)t).

The next lemma is a generalization of [30, Th. 3.2].

Lemma 7.8. Let R be a normal local domain essentially of finite type over C, and let

Δ� 0 be an effective Q-Weil divisor such that KR+Δ is Q-Cartier. Let a1, . . . ,an ⊆ R be

nonzero ideals, and let t > 0 be a positive rational number. Then we have

J (R,Δ,(a1+ · · ·+an)
t) =

∑
λ1+···+λn=t

J (R,Δ,aλ1
1 · · ·aλn

n ).

Lemma 7.9. In the setting of Definition 7.5, we have∑
n∈N

∑
g∈a�nt�

J (S,ΔS ,g
1
n ) = J (S,ΔS ,(aS)

t).

Proof.
∑

n∈N

∑
g∈a�nt� J (S,ΔS ,g

1/n)⊆ J (S,ΔS ,(aS)
t) is clear. If t= q/p, p,q > 0 and

a= (g1, . . . ,gl), then∑
n∈N

∑
g∈a�nt�

J (S,ΔS ,g
1
n )⊇

∑
n∈N

∑
i1+···+il=nq

J (S,ΔS ,(g
i1
1 · · ·gill )

1
np )

= J (S,ΔS ,(aS)
t),

by the above lemma.
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Theorem 7.10. Let R ↪→ S be a pure local homomorphism of normal local domains

essentially of finite type over C. Fix effective canonical divisors KR and KS on SpecR and

SpecS, respectively. Let ΔR,ΔS � 0 be effective Q-Weil divisors on SpecR, SpecS such

that KR+ΔR, KS+ΔS are Q-Cartier. Take normal domains R′,S′ and morphisms πR,πS

as in Setting 7.1. Moreover, let a⊆R be a nonzero ideal, and let t > 0 be a positive rational

number. If R′(π∗
RΔR)⊆ S′(π∗

SΔS), then we have

J (S,ΔS ,(aS)
t)∩R⊆ J (R,ΔR,a

t).

Proof. Since R ↪→ S is pure, R̂ ↪→ Ŝ is pure (see [6, Cor. 3.2.1]). Since R → R̂, S → Ŝ

are pure, it is enough to show

J (Ŝ,Δ̂S ,(aŜ)
t)∩ R̂⊆ J (R̂,Δ̂R,(aR̂)t).

Let B(R), B(S) be the canonical BCM algebras. Let B̂ΔR
:= ̂B(R)ΔR

and B̂ΔS
:= B̂(S)ΔS

.

Take an R̂-module M. Then we have a commutative diagram

R̂ � � pure ��

��

Ŝ

��

B̂ΔR
�� B̂ΔS

.

Tensoring the commutative diagram with M, we have

M � � ��

��

Ŝ⊗
̂RM

��

B̂ΔR
⊗

̂RM �� B̂ΔS
⊗

̂RM

.

Hence, we have

0
cl

̂BΔR
,at

M ⊆ 0
cl

̂BΔS
,at

̂S⊗
̂RM

.

Then we have

J (R̂,Δ̂R,a
t) =

⋂
M

Ann
̂R 0

cl
̂BΔR

,at

M

⊇
⋂
M

Ann
̂R 0

cl
̂BΔS

,at

M⊗S

⊇
⋂
N

Ann
̂R 0

cl
̂BΔS

,at

N

=
⋂
N

(Ann
̂S 0

cl
̂BΔS

,at

N ∩ R̂)

= (Ann
̂S 0

cl
̂BΔS

,at

ES
)∩ R̂

= (Ann
̂S

⋂
n∈N

⋂
g∈a�nt�

0

cl
̂BΔS

,g
1
n

ES
)∩ R̂
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= (Ann
̂SAnnES

∑
n∈N

∑
g∈a�nt�

J (Ŝ,Δ̂S ,g
1
n ))∩ R̂

= J (Ŝ,Δ̂S ,(aŜ)
t))∩ R̂,

whereM runs through all R̂-modules, N runs through all Ŝ-modules, and ES is the injective

hull of the residue field of S.

As a corollary, we have a generalization of [31, Cor. 5.30] to the case that a is not

necessarily a principal ideal.

Corollary 7.11. Let R ↪→ S be a pure local homomorphism of normal local domains

essentially of finite type over C. Suppose that R is Q-Gorenstein. Fix effective canonical

divisors KR and KS on SpecR and SpecS, respectively. Let ΔS be an effective Q-Weil

divisor on SpecS such that KS +ΔS is Q-Cartier. Let a⊆ R be a nonzero ideal and t > 0

a positive rational number. Then we have

J (S,ΔS ,(aS)
t)∩R⊆ J (R,at).

Proof. Let R′ be the integral closure of R[f1/r] in R+. Then the result follows from

Theorem 7.10.

§8. B-regularity

As another application of the main theorem, we will give a partial answer to [24, Rem.

3.10]. For this, we will review the definition of B-regularity.

Definition 8.1 [23, Def. 4.3]. Let R be a normal Q-Gorenstein local domain essentially

of finite type over C.

(1) R is said to be weakly B-regular if R→B(R) is cyclically pure.

(2) R is said to be B-regular if every localization of R at a prime ideal is weakly B-regular.

Theorem 8.2. Let R be a normal Q-Gorenstein local domain. Then the following are

equivalent:

(1) R has log-terminal singularities.

(2) R is ultra-F-regular.

(3) R is weakly generically F-regular.

(4) R is generically F-regular.

(5) R is weakly B-regular.
(6) R is B-regular.
(7) R̂ is BCMB̂(R)

-regular.

Proof. The equivalence of (1) and (2) follows from Proposition 3.54 and the equivalence

of (1) and (7) follows from Theorem 6.4. Since, if R has log-terminal singularities, then

every localization of R at a prime ideal is log-terminal, it is enough to show the equivalence

of (1), (3), and (5). (1) is equivalent to (3) by [31, Th. 5.24 and Proof of Th. 5.25]. Lastly,

we will show the equivalence of (5) and (7). Let E be the injective hull of the residue field

of R. By Proposition 7.4, we have 0
clB(R)⊗R

̂R

E = 0
B(R),KR

E . Hence, E →B(R)⊗RE is injective

if and only if R̂ is BCMB̂(R)
-regular. R → B(R) is pure if and only if E → B(R)⊗R E is
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injective by [15, Lem. 2.1(e)]. R→B(R) is pure if and only if R→B(R) is cyclically pure

by [12, Th. 1.7]. Therefore, (5) is equivalent to (7).

Remark 8.3. For the equivalence of (5) and (7) (see [19, Prop. 6.14]).

§9. Further questions and remarks

In this section, we will consider whether R is BCM-rational if R has rational singularities.

The next question is a variant of [7, Quest. 2.7].

Question 1. Let R be a local domain essentially of finite type over C, and let B be

a BCM R-algebra. If S is finitely generated R-algebra such that the following diagram

commutes:

R ��

��

B

S

����������

then does there exist a BCM Rp-algebra for almost all p which fits into the following

commutative diagram:

Rp
��

��

Bp

Sp

����������

where Sp is an R-approximation of S?

Proposition 9.1 (Cf. [19, Conj. 3.9]). Let R be a normal local domain essentially of

finite type over C of dimension d. Suppose that R has rational singularities. If Question 1

has an affirmative answer, then R is BCM-rational.

Proof. Let B be a BCM R+-algebra. Suppose that η ∈ Ker(Hd
m(R) → Hd

m(B)). Then

there exists a finitely generated R-subalgebra of B such that the image of η in Hd
m(S) is

zero. If Question 1 has an affirmative answer, we can take Sp and Bp as in Question 1.

Then we have a commutative diagram

Hd
m(R) ��

��

ulimpH
d
mp

(Rp)

��
Hd

m(S) ��

��

ulimpH
d
mp

(Sp)

��
Hd

m(B) ulimpH
d
mp

(Bp)

By the proof of Proposition 4.8, ulimpH
d
mp

(Rp) → ulimpH
d
mp

(Sp) is injective. Therefore,

the image of η in ulimpH
d
mp

(Rp) is zero. Suppose that η = [ y
xt ], where y ∈ R, t ∈ N and x

is the product of a system of parameters x1, . . . ,xd of R. Since Rp is Cohen–Macaulay for

almost all p, yp ∈ (xt
1p, . . . ,x

t
dp) for almost all p. Hence, y ∈ (xt

1, . . . ,x
t
d) and η = 0 in Hd

m(R).

Thus, Hd
m(R)→Hd

m(B) is injective.
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The next result follows from a similar argument.

Proposition 9.2. Let R be a normal local domain essentially of finite type over C of

dimension d. Fix an effective canonical divisor KR on SpecR. Let Δ � 0 be an effective

Q-Weil divisor on SpecR such that KR+Δ is Q-Cartier. Suppose that C is a BCM R+-

algebra. If Question 1 has an affirmative answer, then we have

J (R,Δ)⊆ τ
̂C(R̂,Δ̂).

Definition 9.3 (Cf. [19, Def. 6.9]). Let R be a normal local domain essentially of finite

type over C. Fix an effective canonical divisor KR on SpecR. Let Δ� 0 be a Q-Weil divisor

on SpecR such that KR+Δ is Q-Cartier. Suppose that n(KR+Δ) = div(f) for f ∈ R◦,

n ∈ N. We define

0B,KR+Δ
Hd

m(R)
:= {η ∈Hd

m(R)| ∃C BCM R+-algebra

such that f
1
n η = 0 in Hd

m(C)}.

We define the BCM test idealτB(R,Δ) of (R̂,Δ̂) by

τB(R̂,Δ̂) := Annω
̂R
0B,KR+Δ
Hd

m(R)
.

Corollary 9.4 (Cf. [19, Th. 6.21]). In the setting of the above proposition, if

Question 1 has an affirmative answer, then we have

τB(R̂,Δ̂) = J (R̂,Δ̂).
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