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RECURSIVE COLORINGS OF GRAPHS 

JAMES H. SCHMERL 

A graph G is an ordered pair G = (V, E) where E is a set of 2-element 
subsets of V. The set V is the set of vertices, and E is the set of edges. 
The vertices x and y are joined by an edge if \x, y) is an edge. If X is a set 
(of colors) and x '• V —>X, then we say tha t % is an X-coloring of G if 
whenever two vertices x and y are joined by an edge, then x(#) ^ x(3;)-
A graph is X-colorable if there is an X-coloring of it. We will identify the 
natural number n with the set {0, 1, . . . , n — 1}, and often refer to 
^-colorings and to graphs being n-colorable. 

A graph G = (V, E) is recursive if both V and E are recursive sets. An 
X-coloring x of the graph G is recursive if x is a recursive function; and G 
is said to be recursively X-colorable if such a recursive X-coloring exists. 
Unfortunately, as shown by Bean [1], counter-examples abound unless 
we make additional effectiveness assumptions about G. 

The degree of a vertex x is the number of vertices to which it is joined; 
it is denoted by deg(x) . The graph G = (V, E) is locally finite if deg(x) 
is finite for each vertex x. I t is highly recursive if it is recursive and locally 
finite and the function deg is recursive. (Bean also required tha t G be con
nected, bu t this seems not to be impor tant here.) 

A s tudy of the relationship between effectiveness and colorability was 
undertaken by Bean [1]. He proved tha t for every integer n ^ 3 and 
every connected, highly recursive graph G, if G is ^-colorable then it is 
recursively 2n-colorable. We improve upon this result in Theorem 1 
below. 

In the other direction, Bean produced an example of a connected, 
highly recursive, n-colorable graph which is not recursively n-colorable. 
(Such an example was anticipated by Manaster and Rosenstein [3].) 
This left as unsettled what the possibilities are with regard to a highly 
recursive, n-colorable graph being recursively w-colorable for n + 1 ^ m 
S 2n — 1. This gap is eliminated in this paper. Specifically, we prove the 
following two theorems. 

T H E O R E M 1. If n ^ 2 and G is a highly recursive, n-colorable graph, then 
G is recursively (fin — \)-colorable. 

T H E O R E M 2. If n ^ 2, then there is a highly recursive, n-colorable graph 
which is not recursively (fin — 2)-colorable. 
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Theorems 1 and 2 are proved in Sections 1 and 2, respectively. Some 
additional comments are contained in § 3. In § 4 we make an improvement 
of Theorem 2 by obtaining a graph which has even no (2n — 2)-coloring 
in the Boolean algebra generated by the r.e. relations. 

1. Proof of t h e o r e m 1. Let G = ( F , E) be a highly recursive, w-color-
able graph. Let V = [as : s < to} be a recursive enumerat ion of F. For 
each s < to define Vs and Vs so tha t : 

Vo = Vo = {do}', 
r. ,+i = [x£ V:3y(ye F , A {x,y} G E\ \J {as+l} KJ F , ; 

vs+1 = v8+1 - F,. 

Clearly V = \J s F,s.. Since G is highly recursive, it follows tha t each F,. 
is finite and tha t (F,> : 5 < to) is recursive. Let Gs be the (induced) sub
graph of G whose vertices are jus t those in F, . For each ,v < to let Xs = 
{0, 1, . . . , n - 1} if 5 is even, and Xs = {0} \J \n, n + 1, . . . , 2n - 2} 
if j is odd. 

We now recursively define functions /,s. : V2s —* 2n — 1 and 
Fs : VÏS+I —> Xs such tha t each of the following conditions is satisfied 
for each s < to: 

(1) /,, is a (2n — 1)-coloring of G2,; 

(2) / s = / s + 1 | r 2 s ; 

(3) Fs is an XtS.-coloring of G2s+i', 

(4) Fs\V2s =fs\V2s. 

Having obtained such a sequence ( / , : 5 < co), we easily see from (1) and 
(2) t h a t / = U s / s is a recursive (2n — l)-coloring of G. Conditions (3) 
and (4) are present only to maintain the recursion. 

Stage s = 0. Let F0 be the first n-coloring of Gi, and l e t /o = FQ\ F0. 

Stage s + 1. Suppose we already have/ . s and Fs satisfying (3) and (4). 
Let 

F s+l '• 1' 2.s+3 —> Xs+i 

be the first X6.+i-coloring of £25+3. (Such an Fs+i exists since G, and thus 
also G2H-3, is w-colorable.) Now d e f i n e / s + i : F 2 s + 2 —> 2w — 1 as follows: 

^ / s (x) if: 
/Fs+i(pc) if: 

: x Ç F 2 „ 
IT? .. <V\ ;f 

,/%(x) if x Ç F2s+i and /%+i(x) = 0. 

I t is immediate t h a t / s = / s + i | V2s and tha t Fs+Ï\ V2s+2 = / s +i | F 2 s + 2 . Thus , 
all t ha t remains is to show t h a t / s + i is a (2n — 1)-coloring of G2s+2. 

-. . , , r * € ^ + 2 , 
)Fs+i(x) if x G F 2 , f i and 7%+i(x) ^ 0, 
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To see that fs+1 is a (2n — 1)-coloring of G2s+2, suppose that x, y £ 
F25+2 and that x and y are joined by an edge. Several cases need to be 
considered, all of which are very straightforward. 

Case l.x,y£ F2s. Then/ ,+ i (x) = fs(x) ^ fs(y) = fs+i(y) by (1). 

Case 2. x £ F2s and y £ V2s+i. If ^s+i(y) ^ 0, then 

/,+ 1(y) - F8+1(y) d Xs. 

Butfs+i(x) = fs(x) G Xs. Hence,/,s+i(x) 9^fs+i(y). On the other hand, 
if Fs+i(y) = 0, then /6.+i(3>) = Fs(y). But x Ç F2, since x and 3/ are 
joined by an edge. Hence, 

fs+i(x) = fs(x) = Fs(x) 

by (4), so that from (3) we get Fs(x) 9^ Fs(y). Hence, fs+i(x) j* fs+i(y). 

Case 3. x Ç F2i,+i and 3> Ç F2s+i. Proceed as in Case 2. 

Case 4. x, y Ç F^+i- Since x and 3/ are joined by an edge, Fs+i(x) ^ 
Fs+i(y), so without loss of generality we can assume that 0 ^ 
F8+1(x) (2 X8. If F8+1(y) ^ 0 , then 

/5+i(x) - F5+i(x) 5* Fs+i(y) = fs+1(y). 

However, if Fs+1(y) = 0, then 

fs+i(y) = F8(y) <E Xs, 

so that fs+1(y) ^ / s + i ( x ) . 

Ca^ 5. x Ç F2.9+2 and 3> G t^Wi- If ^H-IOO ^ 0, then 

fs+i(x) = Fs+1(x) 9* Fs+1(y) =fs+1(y). 

If Fs+i(y) = 0, then Fs+i(x) ^ 0 since x and 3/ are joined by an edge. 
Thus,/ s + i (x) = Fs+1(x) g Xs, but fs+1(y) = j\(;y) Ç X,. 

Case 6. x G F2S+1 and 3; G F2,+2. Proceed as in Case 5. 

Case 7. x, 3/ G F2,+2. Then/ s + i (x) = ^,+i(^) ^ ^+1(3^) = /H-I(30-
This completes the proof of Theorem 1. 

2. Proof of theorem 2. We will first prove the theorem for n = 2. 
Let X, F Ç co be disjoint, recursively inseparable, recursively enumerable 
sets. Let Z = X U F, and let (z* : i < w) be a recursive, one to one 
enumeration of Z arranged so that zx: £ X if and only if i is even. We 
define a graph G = (F, E) as follows. Let 

V = {(z,n,k) e co3 : (Vf <n)(zt^z) A k <2}V 
{(z, i, 2) Ç co3 : 2 = z* and i is even}. 
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Let E, the set of edges, consist exactly of those pairs following which are 

subsets of V: 

{(z, n, ft), (z, n + 1, ft)}, 

{(z, n, ft), (z, n, 2)} , if z = zn, n is even, and ft < 2, 

{{z, n, 0) , (z, n, l)},iî z = zn and n is odd. 

The graph G is certainly highly recursive. I t is also 2-colorable. A par
ticular 2-coloring of G is the function x • V —•> 2 where x ( ( s , >̂ &)) = 0 
if and only if one of the following holds: 

ft = 0 and n is even; 

ft = 1, s G X and n is even; 

k = I, z (£ X and n is odd. 

However, G is not recursively 2-colorable. For, suppose x is a recursive 
2-coloring of G. Then let 

A = { 2 < a > : X « z , 0 , 0 » = X ( ( Z , 0 , 1) )} . 

Then X Ç A and Y C\ A = 0 . But clearly 4̂ is recursive, thus con
tradict ing the recursive inseparability of X and Y. This proves Theorem 
2 in the case t ha t n = 2. 

From now on assume tha t n ^ 3. We are going to define a graph 
Gn = (Vn, En). T h e set Fw. consists of those ordered pairs (i, j) where 
0 ^ i, j < n. Two vertices (i, j) and (r, s) are joined by an edge in En 

if and only if i ^ r and j ^ 5. (The graph Gn is the complement of the line 
graph of the complete bipar t i te graph Knt7l.) T h e i-th row of Gn is the set 
{(i, j) :0 ^j < n}j and the j - ^ column of Gn is the set{ (i, j) : 0 ^ i < n). 
Thus , two vertices are joined if, and only if, they are in different rows and 
different columns. T h e graph Gn is easily seen to be w-colorable: jus t color 
the vertices in the i-th row with color i. 

Now let x be an X-coloring of Gn. We say tha t x is row-oriented if for 
each i < n there are two distinct vertices y and z in the i-th rowr such 
tha t x(y) = x(z)- Similarly, x is column-oriented if for every j < n there 
are two distinct vertices y and z in the j - t h column such t ha t x(y) = x(^)• 

L E M M A 2.1. 7f x i^ a (2w — 2)-coloring of Gn> then x is either row-oriented 
or column-oriented, but not both. 

Proof. Suppose t ha t x is both row and column-oriented. For each i < n 
let pi < 2n — 2 be such tha t there are two dist inct vertices in the i-th 
row which are colored with color pt. For each j < n let g ; < 2n — 2 be 
such t ha t there are two dist inct vertices in the j - t h column which are 
colored with color qjt Since x is a coloring, it follows t h a t po, . . . , pn-i, 
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go, . . . , <Zn-i a r e pairwise distinct colors. But this contradicts there being 
only 2n — 2 colors. Thus x is not both row and column-oriented. 

Now suppose x is neither row-oriented nor column-oriented. Then 
there are i, j < n such that no two distinct vertices in the i-th row have 
the same color, and no two distinct vertices in the j - th column have the 
same color. But then {x(r, s) : r, s < n and either r = i or 5 = j) is a 
set of 2n — 1 distinct colors, and this is impossible. Hence x is either 
row-oriented or column-oriented. 

LEMMA 2.2. Suppose xi and xi are (2n — 2)-colorings of Gn such that 
if i j* s and j ^ r, then xi((h j)) ^ Xi{(?, s))- Then xi is row-oriented if, 
and only if, xz is column-oriented. 

Proof. By symmetry it will suffice to prove that X2 is column-oriented 
if xi is row-oriented. So we will assume xi is row-oriented. Let X3 be the 
(2w — 2)-coloring of Gn such that xz((s, r)) = X2((r, s)). Thus, X2 is 
column-oriented if, and only if, X3 is row-oriented, so that it suffices to 
prove that X3 is row-oriented. 

Suppose X3 is not row-oriented. Also xi is not column-oriented by 
Lemma 2.1. Thus the same reasoning as in the second half of the proof of 
Lemma 2.1 will produce 2n — I distinct colors, yielding a contradiction. 

We are now prepared to construct the highly recursive, w-colorable 
graph which is not recursively (2n — 2)-colorable. Let G = (V, E) be a 
highly recursive, 2-colorable graph which is not recursively 2-colorable. 
Such a graph was constructed at the beginning of this proof. We will 
define a graph (Gr, V). The set V of vertices will be V X Vn. If u, v Ç V 
and (i, j), (r, s) £ Vn, then there is an edge in Ef which joins the vertices 
(u, (i, j)) and (v, (r, s)) if, and only if, one of the following holds: 

(i) u = v, and (i,j), (V, s) are joined by an edge (of Gn); 
(ii) u and v are joined by an edge of V, and i 9^ s and j 9^ r. 

Clearly, G is a highly recursive graph. 
We first show that G' is ^-colorable. Let x be a 2-coloring of G. Now 

define x • V —> n so that: 

(iii) if xW) = 0, then x'((u, (i, j))) = i; 
(iv) if xM = 1, then x'((u, (i, j))) = j . 

It is easily seen that yf is an n-coloring of G'. 
Next we show that G' is not recursively (2n — 2)-colorable. Let 

x' : V —» 2n — 2 be any (2n — 2)-coloring of G'. For each u 6 V, let 
tyu '- Vn —> 2n — 2 be such that 

*u«i,J)) = x((u, (i,j))). 
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It follows from (i) that \pu is a (2w — 2)-coloring of Gn} so that by Lemma 
2.1 it is either row-oriented or column-oriented. Let x'• F —> 2 be such 
that xM = 0 if and only if \pu is row-oriented. Then x is a 2-coloring of 
V. For, suppose u, v £ V are joined by an edge. Let %i = tyu and X2 = tyv> 
It follows from (ii) that xi and X2 satisfy the hypothesis of Lemma 2.2. 
Thus, it follows from that lemma that x(u) 9e x(^)> so that x is a 
2-coloring. 

Finally, notice that x is recursive in x J and this implies that x is not 
recursive since there are no recursive 2-colorings of G. 

This completes the proof of Theorem 2. 

3. Additional comments . The example in Theorem 2 can be trans
formed into a connected one by a rather general procedure. Suppose 
G = (V, E) is a highly recursive graph, and \as : s < oo} is a recursive 
list of V. Let {bi : i < oo] be a recursive set disjoint from V. Let 
G' = (F ' , E') be the graph in which 

V = V\J \bs : 5 < œ}, 

E' = £ U {{as, M : 5 g i ^ 5 + 1}. 

Then G' is a connected, highly recursive graph. If n g: 3 and G is w-color-
able, then Gr is also w-colorable. To see this just color bs with the first 
color which does not color either as or a6+1. This procedure also shows that 
if G is recursively n-colorable, then so is G. 

One way of guaranteeing that a recursive graph is highly recursive is 
to have it be ^-regular for some k < oo. Recall that a graph is k-regular 
if each vertex is joined to exactly k vertices. For sufficiently large k we 
can arrange for our examples to be ^-regular. 

An aspect of the graphs constructed in the proof of Theorem 2 is that 
they are not just locally finite, but that deg is uniformly bounded. In the 
case of our examples, the least such bound is 3(w — l) 2 . It is rather easy 
to see that if a highly recursive graph has such a bound, say k, then G 
can be "fattened" to a recursive, ^-regular graph G'. Furthermore, if G 
is w-colorable then so is G, and if G is recursively w-colorable, then so 
isG r. 

Thus, we can "fatten" our examples to obtain (3(n — l)2)-regular 
ones. At the same time, it would be possible to turn them into connected 
graphs, being a little more careful than we were with the procedure pre
viously described, so as to obtain connected, (3(w — l)2)-regular graphs. 
But we will not wx>rry about that. 

All this suggests the following question. 

Question 3. If 2 g n ^ m S %n — 2, what is the least k for which 
there is a recursive, ^-regular, n-colorable graph which is not recursively 
m-colorable? 
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For m = 2« — 2 we know tha t k ^ 3(w — l ) 2 . For m = « we obtain 
from Bean's example a recursive, (2« — 2)-regular, «-colorable graph 
which is not recursively «-colorable. Thus k ^ 2m — 2. This same bound 
is obtainable from the example of Manaster and Rosenstein [3]. However, 
it is not optimal as a simple modification of Bean's example yields a 

3 n 11 \ 
-regular, «-colorable graph which is not recursively recursive (M) «-colorable. This results in an improvement whenever « ^ 4. 

T o construct this example, let G = ( F , E) be the recursive, 2-regular, 
2-colorable graph which was constructed a t the beginning of § 2. Now let 
« ^ 3. We will define a graph Gn = (Vv, En) as follows. Let 

Vn = \(p,i) 6 V X « : if p = {z, «, fe) and k = 2, then i < « / 2 j . 

Suppose p = (zi, «i, &i), # = (22, «2, ^2) and (p, i), (q, j) £ F„. Then 
there is an edge in En joining (p, i) and (q, j) if and only if they are 
dist inct and one of the following holds: 

(1) 

(2) 

(2') 

(3) 

(3') 

(4) 

P = g\ 
Z\ — 22, ki = k2 < 2, «1 = «2 + 1 and i < « /2 ^ j ; 

ki = &2 < 2, «2 = «1 + 1 and j < « / 2 ^ i\ Z\ — Z2, 

z\ = z2, ki < k2 = 2, «1 = «2, and n/2 ^ i; 

Zi = z2, k2 < ki = 2, «1 = «2 and « / 2 ^ j ; 

zi = z2, [ku k2} = {0, 1}, «1 = «2, n/2 S i,j, (zij «1, 2) $ V 
and (zi, «1 + 1, ki) g F. 

Clearly the graph Gn is highly recursive. Also, if « = 2m then each vertex 
is joined to a t most 3m — 1 vertices, and if « — 2m + 1, then each vertex 
is joined to a t most 3m + 1 vertices. In either case, each vertex is joined 

T3« - l l 
to a t most ~ vertices. 

T o see tha t Gn is «-colorable, let \f/ : V —> 2 be a 2-coloring of V. Let 
X •' Vn —» « be such tha t if (£>, i ) 6 F„, where /? = (z, m, k), then 

U if & = 0 or & = 2, 
x(<£, *)) = j * \ if k = 1 and <//(» = ^((z , m, 0 ) ) , 

( « — z — 1, if k = 1 and \p(p) j* \K(S> m, 0 ) ) . 

Then % is an «-coloring of Gn. 
Now let x be any «-coloring of Gn. For p = {z, m, k) and j < 2 set 

J , = { x ( « z , w , j ) , i » : i < n/2}. 

Then define 
(0 , if IQ = Ii, m is odd, and k < 2; 

^(p) = JO, if /o ^ /1 and m + & is even; 
( 1, otherwise. 
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Then ^ is a 2-coloring of G and is recursive in x- Since there are no recur
sive 2-colorings of G, then there are no recursive n-colorings of Gn. 

Then , by " fa t t en ing" this example we obtain a recursive (M) regular graph which is n-colorable bu t not recursively w-colorable. 
~ %n _ \~ 

1 optimal? For n ^ 4 we know t h a t it is. For, in Is the bound 
2 

a subsequent paper [4] we will show if n = m then the least k answering 
Question 3 is > n. 

Another way of improving Theorem 2 would be to increase the recur
siveness of the graph to the point of having it decidable. Bean did jus t 
t ha t in his examples. I t is not hard to verify t ha t all the examples con
structed in the proof of Theorem 2 actually are decidable, since they all 
have effective elimination of quantifiers. 

One final way we shall improve Theorem 2 is by construct ing graphs 
which not only do not have recursive colorings, bu t do not have colorings 
which are in the Boolean algebra generated by the r.e. relations. This we 
do in § 4. 

4. A n i m p r o v e m e n t . Let Se be the Boolean algebra generated by the 
r.e. subsets of co (or, where the context requires, by the r.e. b inary rela
tions on co). In this section we will make an improvement of Theorem 2 
by considering colorings in Se ra ther than jus t recursive colorings. 

T H E O R E M 4. If n ^ 2, then there is a highly recursive, n-colorable graph 
which has no (2n — 2)-coloring in Se\ 

Proof. We will prove the Theorem only in the case n = 2. T h e construc
tion in the proof of Theorem 2 can then be used to extend it to a rb i t ra ry 
n > 2. T h e graph G = ( F , E) which will be constructed is 2-regular and 
contains no cycles. (Tha t is, if x0, . . . , xn+2 £ V are such tha t xt is joined 
to xi+\ for each i < n + 2, then x0 and xn+2 are not joined.) Such a graph 
is 2-colorable. 

At stage s of the construction we will define a graph Gs = ( F s , Es), 
each of its vertices having degree 1 or 2, and each of its components 
having exactly 2 vertices of degree 1. If s < t < co, then Gs is a subgraph 
of Gt. T h e graph G = U {Gs : s < œ] wTill be the desired graph. 

In component X of Gs let ps(X) be the smaller ver tex of degree 1 and 
q.s(X) be the larger vertex of degree 1. Each graph Gs is 2-colorable; in 
fact, there is a unique 2-coloring \ps : Vs —> 2 such t h a t \l/s(ps(X)) = 0 
for each component X of Gs. If A C co, then we will say t ha t the com
ponent X of Gs splits A if there are a, b G A such t ha t \f/s(a) ^ ^s{b). 

Let Wn be the n-th r.e. set. Let {(xr, nr) : r < co} be a recursive enum
eration arranged so tha t 

Wn = {x < co : J s < co((x,, nH) = (x, n))}. 
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For each r < o>, let 

Wn
T = {x < co : 3 s ^ r((xs, ns) = (x, n))}. 

Stage s = 0. Let F, = {0, 1} and Es = {{0,1}}. 

5/ag£ 5 + 1 = 2r + 1. Let X0, . . . , Xn be the components of Gs 

arranged so that ps(X0) < . . . < ps(Xn). Let a0, &o, #i, &i, . . . , an+i, 
bn+i be the first 2^ + 4 natural numbers not in Vs. Let 

Fs+i = F s W {a0, 60, . • • , an+u bn+1}} 

Es+1 = E\J {{aups(Xi)} :i^n] 

U{{6 i f g,(Z f )} : ^ n } U { { a , + 1 , ^ + 1 } } . 

Stage s + 1 = 2r + 2. Let w = wr. If there do not exist components 
X, Y of G8 such that X C\ Wn

T ^ 0 ^ F H Wn
r, » < min(Z) < 

min(F), and X and F do not split Wn
r, then let Gs+i = Gs. Otherwise, 

select such X and F so that min(X) and min(F) are minimal. Let a, b 
be the two least natural numbers not in Vs. If \j/s(ps{X)) = \l/s(ps(Y)), 
then set 

F s + 1 = V8U{a,b], 

Es+1 = Esyj {{ps(X), a], {a, b], {b, p,(Y)}\. 

If 4,,(p,(X)) 9**s(ps(Y)), then set 

Vs+1 = V8U{a], 

Es+1 = E,U{{p8(X),a},{a,Ps(Y)\}. 

It is clear in either case that X and Fare subsets of the same component 
Z of Gs+u and that Z splits Wn

r. 
Clearly, G is recursive. Each vertex in G has degree 1 or 2, and if 

x £ F2r then x has degree 2 in G2r+i- Thus G is 2-regular and, conse
quently, is highly recursive. Also, G has no cycles since none of the Gs has 
a cycle; therefore, G is 2-colorable. 

Let ^ be a 2-coloring of G. We will show that \p is not in 38. 
Let J^ be the collection of sets I C co such that whenever £ C co is 

r.e. and either 

(1) E C\ X Ç / for all but finitely many components X of G, 

or 

(2) £ Pi J Pi / = 0 for all but finitely many components X of G, 

then 

(3) E C\ X = 0 for all but finitely many components X of G. 

We prove two lemmas about J which together imply that ty ^ 38. 

LEMMA 4.1. ^ ( O ) G </. 
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T o prove the lemma, let / = ^~l(0) and E = Wn, and wi thout loss of 
generality suppose / and E satisfy (1). Then there are components X and 
F of G such tha t E C\ X , E C\ Y C I and n < m i n ( X ) < m i n ( F ) . I t 
follows from the construction of G (at even stages s) t h a t either 
EC\X = $ or EC\ Y = 0. Thus , there is a t most one component Z of 
G such t ha t min(Z) > n and E C\ Z ^ 0. Hence, (3) holds, so the lemma 
is proved. 

LEMMA 4.2. SeC\ J = 0. 

To prove the lemma, it suffices to show tha t whenever I (I J and 
B, C are r.e. sets such t h a t C C B and / C\ (B — C) = 0 then 
IU (B - C) d J.LetA = IU(B- C), and assume A G J.Smcel^ J 
but A G c-/, there is an r.e. set E such tha t (2) holds and (3) fails. Since 
E C\ C is r.e. and E C\ C C\ A C\ X = 0 for all bu t finitely many com
ponents X of G, it follows tha t E Pi C Pi X = 0 for all bu t finitely many 
components X. Since E P B is r.e. and E P J3 P X Ç 4̂ for all but 
finitely many X , then E P Z3 P X = 0 for all bu t finitely many X . 
Therefore, £ P yl P X = 0 for all bu t finitely many X . But since 
yl (z J, it follows tha t (3) holds, and this is a contradict ion, so the lemma 
is proved. 

T o complete the proof of the Theorem, simply note t ha t if \p Ç 8ë, then 
t~l(0) 6 &j which by Lemma 4.2 implies i//~1 (0) 0-_ J, and this con
tradicts Lemma 4.1. 

Since the class of 2-colorings of a recursive graph is a IT0 class, Theorem 
4 implies the existence of a non-empty IIi° class which is disjoint from Se. 
The existence of such a class had been shown some t ime ago by Specker 
[5] and later, independently, by Jockusch [2]. Our proof of Theorem 4 
makes use of ideas from Jockusch's proof. 

A related question, raised by Bean and still unresolved, is this: If X 
is a III0 class, is there an n < co and a recursive graph G such t ha t the 
class of n-colorings of G is degree-isomorphic to X ? 
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