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The aim of this review was to determine the impact of the fatty acid desaturase (FADS)
genotype on plasma and tissue concentrations of the long-chain (LC) n-3 PUFA, including
EPA and DHA, which are associated with the risk of several diet-related chronic diseases,
including CVD. In addition to dietary intakes, which are low for many individuals, tissue
EPA and DHA are also influenced by the rate of bioconversion from α-linolenic acid
(αLNA). Δ-5 and Δ-6 desaturase enzymes, encoded for by FADS1 and FADS2 genes,
are key desaturation enzymes involved in the bioconversion of essential fatty acids
(αLNA and linoleic acid (LA)) to longer chained PUFA. In general, carriers of FADS
minor alleles tend to have higher habitual plasma and tissue levels of LA and αLNA,
and lower levels of arachidonic acid, EPA and also to a lesser extent DHA. In conclusion,
available research findings suggest that FADS minor alleles are also associated with
reduced inflammation and CVD risk, and that dietary total fat and fatty acid intake have
the potential to modify relationships between FADS gene variants and circulating fatty
acid levels. However to date, neither the size-effects of FADS variants on fatty acid
status, nor the functional SNP in FADS1 and 2 have been identified. Such information
could contribute to the refinement and targeting of EPA and DHA recommendations,
whereby additional LC n-3 PUFA intakes could be recommended for those carrying
FADS minor alleles.

EPA: DHA: Arachidonic acid: Long-chain PUFA: Genotype: FADS: Cardiovascular: CVD

Plasma and tissue long-chain (LC) PUFA concentrations
are associated with the risk of several diet-related
chronic diseases, including CVD(1–5). Therefore it is im-
portant that the determinants of LC-PUFA metabolism,
and concentrations in the circulation and in target tissues
are fully understood. n-3 Fatty acids are PUFA, which
contain the first double bond at the third carbon atom
from the methyl end of the fatty acid. There are three
major LC n-3 PUFA in the human diet and mammalian
tissues, namely α-linolenic acid (αLNA), EPA and DHA.
Although the most effective means to increase EPA and
DHA status is through increased consumption of fish, bio-
conversion from the essential fatty acid, αLNA, represents

a significant source and in particular in non-fish/EPA plus
DHA supplement consumers who have 57–80 % lower
intakes than fish eaters, with EPA and DHA derived
from the sequential desaturation and elongation from
αLNA(6).

The potential health benefits associated with consump-
tion of EPA and DHA are numerous, with the most
studied and accepted being a reduction in CVD risk.
As summarised in several systematic reviews and meta-
analysis of prospective epidemiological studies and
randomised controlled trials, the ability of LC n-3
PUFA to reduce all-cause mortality and cardiovascular
mortality has been widely described(1,2,4,7,8). However,
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it should be noted that this is not a fully consistent
finding, with the heterogeneity in responsiveness as yet
not fully understood(9,10). Consumption of EPA and
DHA has also been shown to be associated with many
other diseases, for example, autoimmune diseases such
as rheumatoid arthritis, cancer, diabetes, respiratory dis-
eases, gastrointestinal diseases, Alzheimer’s disease, de-
pression, as well as psychotic disorders, for example
schizophrenia(11–14).

The current recommended intakes for EPA plus
DHA in the UK are ⩾450 mg/d(15). This recommenda-
tion is based largely on the cardiovascular benefits of
these fatty acids and can be achieved by consuming
two portions of fish per week, one of which should
be oily(15). However, the estimated EPA and DHA con-
sumption in adults in the UK is approximately 270 mg/d
for men and 220 mg/d for women, which is far below the
recommended minimal intake(6). Furthermore, mean
population intakes are known to be highly skewed,
with a large proportion of the population who
do not consume fish or an EPA/DHA-containing sup-
plement having a typical EPA plus DHA intake of
<50 mg/d(6,16).

n-6 PUFA, including linoleic acid (LA) and arachi-
donic acid (AA), contain the first double bond at the
sixth carbon atom from the methyl end of the fatty
acid. LA is an essential fatty acid that is found in vege-
table oils and is the most abundant PUFA in the modern
Western diet(17). LA can be metabolised to AA, which in
turn, is a precursor of eicosanoids, such as PG, throm-
boxanes and leukotrienes. These eicoisanoids tend to be
pro-inflammatory and therefore may negatively impact
on the development of CVD(18).

There is now a large published literature reporting on
the impact of individual gene variants on LC-PUFA me-
tabolism and CVD incidence and biomarker profiles.
This review will focus on the fatty acid desaturase
(FADS) genotypes, which are emerging as the most sign-
ificant common genetic determinants identified to date.
Accumulating evidence suggests that the locus may, in
the future, be useful in stratification and targeting of
LC-PUFA recommendations towards individuals likely
to be deficient and responsive.

PUFA bioconversion and the fatty acid desaturase
genotype

In addition to dietary intake, tissue EPA and DHA is
influenced by the rate of bioconversion from αLNA,
which involves multiple desaturation and elongation
steps (Fig. 1). The Δ-5 and Δ-6 desaturase enzymes are
the key rate-limiting enzymes in this pathway(19). The
human desaturase complementary DNAwere first cloned
in 1999 by Cho et al.(20,21) and were later identified as
FADS1 and FADS2 in the human genome(22), located in
a cluster on chromosome 11 (11q12–13.1). Δ-5 desaturase
and Δ-6 desaturase are found in many human tissues, but
the liver is the site at which they are most highly
expressed(20,21). LA and αLNA are metabolised by the
same series of enzymes. EPA and DHA are produced at

limited conversion rates of 0·2–6 % for EPA and <0·1 %
for DHA in human males and post-menopausal females,
with higher rates evident in pre-menopausal females(23).
The more efficient EPA and DHA synthesis in pre-
menopausal women is thought to be an evolutionary adap-
tation, so that younger females have sufficient LC-PUFA
to meet the demands of pregnancy and the developing
fetus. As will be described, variation across the FADS
gene region appears to be important in modulating
LC-PUFA status. The functional SNP in FADS1 and 2
have not yet been identified.

Impact of fatty acid desaturase genotype on PUFA
status

Using both a candidate gene (Table 1) and a genome wide
association study (Table 2) approach, numerous studies
have reported associations between variations in the
FADS locus and desaturase activity and fatty acid status
in human subjects. Desaturase activity can be approxi-
mated by calculating the product-to-precursor ratio of
fatty acids. In 2006, Schaeffer et al.(24) analysed eighteen
SNP and reconstructed haplotypes in the FADS1–2 cluster
in 727 adults. A five-locus FADS haplotype accounted for
27·7, 5·2 and 1·4 % of the variation in AA, EPA and DHA
in serum phospholipids, respectively. The minor alleles
were associated with higher αLNA and LA and lower
γ-linolenic acid, AA, EPA and n-3 docosapentaenoic
acid concentrations, with no significant impact on
DHA(24). More recently, Ameur et al. performed genome
wide genotyping in 5652 individuals, and targeted
resequencing (n 960) of the FADS region, across five
European population cohorts and reported that present-
day human subjects have two common FADS haplotypes,
which are defined by twenty-eight closely linked SNP, one
of which was considered to be more efficient in relation
to the biosynthesis of LC-PUFA(25). This FADS haplo-
type was associated with lower levels of LA (borderline
significant) and αLNA and higher levels of EPA,
γ-linolenic acid, DHA and AA. Over the last decade, a
number of other candidate gene approach studies, as
well as genome wide association studies, have been con-
ducted and the association between FADS SNP/haplo-
types and PUFA status, as well as desaturase activities,
in plasma have been confirmed and extended to tissue
fatty acid composition (Tables 1 and 2). However, infor-
mation on how factors, including n-3 PUFA intakes,
health status and ethnicity, may influence the penetrance
of the FADS genotype, and in turn the effect size, is rela-
tively unknown. Further research, expanding on the recent
research by Wang et al.(26), is also required to determine
the functional SNP, as well the molecular mechanism(s)
responsible for the effect of the FADS genotype on EPA
and DHA status. Wang et al. examined the association be-
tween six FADS SNP and the lipidomic profile and
FADS1–3 expression in liver samples (n 154) and reported
all six alleles to be associated with FADS1 (but not
FADS2 and 3) gene expression and protein levels, suggest-
ing that the causal variant(s) may be located at FADS1(26).
In addition, twenty out of forty-two highly linked SNP

Impact of FADS genotype on fatty acid status and cardiovascular health in adults 65

P
ro
ce
ed
in
gs

o
f
th
e
N
u
tr
it
io
n
So

ci
et
y

https://doi.org/10.1017/S0029665116000732 Published online by Cambridge University Press

https://doi.org/10.1017/S0029665116000732


were located in the transcription factor-binding sites of the
locus. Although it is unclear exactly which SNP is causal
and exactly how the SNP influences transcription factor
binding and activation of FADS1, the findings add consid-
erable credibility to the observations that FADS genotypes
influence EPA and DHA status.

Impact of fatty acid desaturase genotype on
cardiovascular health

The majority of studies to date suggest that FADS minor
alleles (associated with decreased desaturase activity) are
associated with reduced inflammation, total cholesterol,
LDL-cholesterol and coronary artery disease risk
(Tables 1 and 2)(18,27–31). In the Verona Heart Study
(2008), a coronary artery disease incidence of 84 v. 66 %
was evident in individuals with six to seven v. two to
three risk alleles and a higher AA:LA ratio was an
independent risk factor for coronary artery disease (18).
A potential reason for these findings could involve the
high LA intakes in the Western diet, resulting in reduced
synthesis of LC n-3 PUFA from αLNA(32). The higher

n-6 conversion also leads to increased levels of AA,
which is a direct precursor ofmanypro-inflammatory eico-
sanoids(33,34). Hester et al.(33) recently showed that subjects
with the major allele for FADS SNP rs174537 had signifi-
cantly higher levels of pro-inflammatory eicosanoids,
LTB4 and 5-HETE, compared with minor allele car-
riers(33). However, a few studies have reported contradic-
tory results(35–37) which could be due to the ethnicity of
the participants or differences in the n-6 : n-3 PUFA con-
tent of the habitual diet. For example, two studies carried
out in aChinese-Han population reported the frequencyof
the rs174556minor allele to be significantly higher in cases
of both coronary artery disease and acute coronary syn-
drome compared with control groups(35,37).

Impact of diet composition on the relationship between
the fatty acid desaturase genotype and PUFA and

cardiovascular health status

There have been a number of studies that show that diet
composition can influence the relationship between
FADS genotype and plasma fatty acid and lipid status
(Table 3). In 2012, Hellstrand et al. reported that the

Fig. 1. Synthesis of long-chain PUFA from linoleic acid (LA) and alpha-linolenic acid (αLNA). Both LA (n-6) and αLNA
(n-3) are elongated, desaturated and β-oxidised using the same enzyme system. AA, arachidonic acid.
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FADS rs174547 minor allele was associated with lower
LDL-cholesterol among individuals in the lowest
tertile of LC n-3 PUFA intakes(38). A significant inter-
action between rs174547 and the ratio of αLNA and
LA intakes on HDL-C was also observed(38). More re-
cently, a 14-year follow-up in 24 032 participants
reported that the αLNA:LA intake ratio was inversely
associated with CVD risk only among participants
homozygous for the rs174547 minor allele(39). αLNA
intakes were also inversely associated with ischaemic
stroke in this genotype group. In addition to observation-
al analysis, the impact of FADS variants on response to
LC-PUFA supplementation has also been examined.
Gillingham et al. carried out a randomised crossover
trial in thirty-six hyperlipidemic subjects in which
three diets (enriched with flaxseed oil or high-oleic acid
canola oil compared with a typical Western diet) were
consumed for 4 weeks and five FADS SNP
were analysed(40). Subjects with minor allele variants
(rs174545, rs174583, rs174561, rs174537) had decreased
desaturase activity, but an increase in αLNA intakes
resulted in greater increases in plasma EPA than in
major allele homozygotes consuming αLNA intakes typ-
ical of a Western diet(40). Cormier et al. conducted a
study in 208 subjects examining the impact of fish-oil
supplementation (1·9–2·2 g/d EPA and 1·1 g/d DHA)
for 6 weeks and nineteen FADS SNP on plasma TAG
and reported that rs174546 was associated with TAG,
but no significant genotype by supplementation inter-
action was observed(41). In terms of whole-diet interven-
tions, one study to date has examined the interaction of
FADS genotype and the Mediterranean diet on
serum and colonic fatty acid profiles(42). In a 6-month
intervention (n 108) and genotyping for four FADS
SNP, a significant diet by genotype interaction for AA
concentrations in the colon was observed; subjects with
FADS major alleles following the Mediterranean diet
had 18 % lower AA concentrations than subjects on the
control diet (healthy eating diet)(42). There were no
significant diets by genotype interactions for other
colonic or serum fatty acids. Overall, it is clear that further
research is necessary to determine the potential of the diet,
particularly dietary fatty acids, to modify the relationship
between the FADS genotype and fatty acid status. An in-
vestigation of diet composition × FADS genotype × fatty
acid status represents a secondary objective of the recently
completed NU-AGE intervention.

NU-AGE: a focus on older adults

The NU-AGE (New dietary strategies addressing the
specific needs of the elderly population for healthy age-
ing in Europe) study investigated the impact of a whole-
diet intervention on markers of chronic inflammation in
older adults (aged 65–79 years)(43). The NU-AGE
recommendations for the consumption of oily fish, as
well as the provision of an αLNA-rich spread, aimed
to increase total n-3 PUFA intakes and the dietary
n-6 : n-3 PUFA ratio of study participants. As previous-
ly discussed, although a small number of dietary

interventions have been shown to modify the relation-
ship between the FADS genotype and PUFA sta-
tus(40,42,44), none have examined the impact of a
1-year whole-diet (including significant fatty acid ma-
nipulation) intervention in older adults, a group who
are likely to be in a higher state of chronic inflamma-
tion and CVD risk relative to healthy general adult
population. Therefore, we aim to examine whether the
NU-AGE diet could influence the relationship between
the FADS genotype and plasma PUFA status in our
study population. Specifically, we wish to establish if
the NU-AGE diet can overcome any identified negative
impacts of FADS minor alleles on EPA and DHA sta-
tus, as well as the potential negative effect that the
major allele has on AA status. We will also examine
the interactive impact of diet and FADS genotype on
CVD risk biomarkers, including inflammatory and
plasma lipid status and measures of vascular function
and arterial stiffness(18,27,28).

Conclusion

Current estimates indicate that for most countries, aver-
age population intakes of EPA and DHA are 0·2 g/d,
and <0·05 g/d in non-fish consumers(16). In this latter
large population subgroup, the efficacy of endogenous
synthesis from αLNA determines the tissue EPA and
DHA status. A comprehensive understanding of the
determinants of the regulation of the desaturation and
elongation pathway is lacking. Although common
FADS variants have been consistently associated with
LC-PUFA status, the exact size of the effect is relatively
unquantified and the FADS functional gene variant(s)
has not been identified. A recent study by Li et al.(28)

(described in Table 1) reported a difference of 8·3 % in
plasma EPA and DHA combined between those homo-
zygous for the major allele and those homozygous for
the minor allele of the rs174537 FADS genotype(45).
This is clinically significant as previous research,
which showed that EPA and DHA status was associated
with sudden cardiac death in US males, reported 9·0 %
lower blood EPA and DHA concentrations in the sudden
death group compared with controls(46). Modest dietary
intakes of EPA and DHA could overcome this genotype
effect; supplementation of 300 mg EPA and DHA or 90 g
salmon per week has been shown to increase combined
plasma EPA plus DHA by about 30 %(47,48). The mechan-
istic basis of the relationship between the FADS genotype
and LC n-3 PUFA interactions are also poorly under-
stood. The impact of FADS genotype on PUFA status
should be carefully considered when using plasma and tis-
sue EPA and DHA concentrations as biomarkers of diet-
ary EPA and DHA exposure in randomised controlled
trials and epidemiological studies, with a greater contribu-
tion of endogenously synthesised EPA, and to a lesser
extent DHA, to the total pool likely in FADSmajor allele
carriers. Furthermore, FADS genotype could contribute
to future stratification and targeting of dietary advice
with additional EPA and DHA intakes recommended
for those carrying the FADS minor allele.
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