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1. Introduction

The study of extreme, strongly exposed points of closed, convex and bounded sets in
Banach spaces has been developed especially by the interconnection of the Radon-
Nikodym property with the geometry of closed, convex and bounded subsets of Banach
spaces [5], [2]. In the theory of ordered Banach spaces as well as in the Choquet
theory, [4], we are interested in the study of a special type of convex sets, not
necessarily bounded, namely the bases for the positive cone. In [7] the geometry
(extreme points, dentability) of closed and convex subsets K of a Banach space X with
the Radon-Nikodym property is studied and special emphasis has been given to the
case where K is a base for a cone P of X. In [6, Theorem 1], it is proved that an
infinite-dimensional, separable, locally solid lattice Banach space is order-isomorphic to
/j if, and only if, X has the Krein-Milman property and its positive cone has a bounded
base.

In this paper (Section 3) we study the existence of strongly exposed points in a base B
for a cone P of a Banach space X and we characterize the strongly exposing functionals.
It is proved (Theorem 3.1) that the existence of strongly exposed points in a base B for
P is closely connected with the existence of a bounded base for the cone P.

In Section 4 we prove a similar result to [6, Theorem 1] for the space ^(F), (Theorem
4.1). Afterwards we prove that if a Banach space X ordered by the closed, generating
cone P has the R.D.P. then X is order-isomorphic to ^(F) if, and only if, P has the
Krein-Milman property and sep (B) =/= 0, for at least one base B for P, (Proposition 4.2).

2. Notations and definitions

Let X be a normed space, K a convex subset of X and x0 e K. We say that x0 is an
exposed point of K if there exists a continuous linear functional g of X (geX*) such
that g(xo)>g(x),yxeK\{x0}. In this case we say that g exposes x0 in K. We say that
x0 is a strongly exposed point of K if there exists geX* which exposes x0 in K and for
each sequence (xv) of K, g{xv)-*g(x0) implies xv-»x0. In this case we say that g strongly
exposes x0 in K. We denote by ep(K), sep(K) the set of extreme, strongly exposed
points of K. For each A ^ X we denote by A the closure of A and by co A the closed
convex hull of A. Let X be ordered by the cone P. xeP\{0} is an external point of P.
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272 IOANNIS A. POLYRAKIS

xeEP(P), if for each yeP, 0 < }>< x implies y = Xx. A subset B of P is a base for P if
there exists a strictly positive linear functional / of X such that B = {xeP|/(x) = l}.
Then we say that the base B is defined by the functional / . The cone P is generating if
X = P — P. We say that P is well-based if there exists a bounded base B for P and 0 £ B.
The space X is a locally solid linear lattice if X is a linear lattice and there exists a real
number a>0 such that for each x,yeX, |x|^|y|, implies ||x||^a||3>||. A linear functional
/ of X is uniformly monotonic if there exists a real number a>0 such that

It is easy to show that g strongly exposes 0 in P if, and only if, — g is uniformly
monotonic and therefore that Oesep(P) if, and only if, P is well-based. X is order-
isomorphic to an ordered normed space Y if there exists an isomorphism Tof X onto Y
and T,T~V are positive. An ordered linear space X has the Riesz decomposition
property (R.D.P.) if for any three positive elements x,y,z of X with x^y + z there exist
xt,x2eX such that 0^xx^y, 0 ^ x 2 ^ z and x=xt+x2. Each linear lattice has the
R.D.P.

3. Strongly exposed points in a base for a cone

Proposition 3.1. Let X be a normed space and K be an unbounded, convex subset of X.
If g strongly exposes the point x0 in K, then g(xv)-+ — oo, for each sequence (xv) of K
with ||xv||-> + oo.

Proof. Let peU such that ||xo||<p and (xv) be a sequence of K with limv_00||xv|| =
+ oo. Then there exists a sequence (yy) of K, such that

| | j \ | = p and yv = lvx0 + (l— Xv)xv, Ave(0,1).

Then

and therefore Av—>1.
If (g(xk) is a bounded subsequence of (g(xv)), then

and therefore ykv-*x0. This is a contradiction. Hence g(xv)-» —oo because g(
Let X be a normed space, K a convex subset of X, ueX* such that u(K) = {\} and

X £ U. By a simple computation we have:

(S^ A functional geX* strongly exposes x o in K if, and only if, g—Xu strongly
exposes x0 in K.

Since (g—g(xo)u)(xo) = 0, we have that

(S2) x0 is a strongly exposed point of K if, and only if, there exists geX* such that g
strongly exposes x0 in K and g(x0) = 0.
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STRONGLY EXPOSED POINTS 273

If g is as in (S2), then g(x)^0 for each xeK and we shall say that g is a negative-
strongly exposing functional of x0 in K. Let X be ordered by the cone P and x0 be an
extremal point of P. We shall say that x0 has a continuous projection PXo (or that x0 is
an extremal point of P with continuous projection PXo) if, and only if, PXo is a linear,
continuous, positive projection of X onto [x0] such that PXo{x) ̂  x, for each x e P.

Let x0 be an extremal point of P with continuous projection PXQ. We denote by
p(x0, •) the continuous linear functional of X, defined by the formula

o )xo, xeX.

Also for each heX* we denote by hx<j the functional

hXo(x) = h(PXo(x)-x), xeX.

If £ is a base for P defined by feX* and x'o = <bcoeB, then we have:

(Pi) P*o(x)<x'o, for each xe£\{x'o},
(P2) for each sequence (xv) of fl, f(PXo(xv))-*l implies P,,.o(xv)->Xo,
(P3) for each strictly positive, continuous linear functional h of X, hXo exposes x'o in £

The statement (PJ is true because x'oSPXo(x)gx implies f(x—x'o) = 0 hence x = xo.

Definition 3.1. A normed space X ordered by the cone P has the continuous
projection property (C.P.P.). if x e EP(P) implies that x has a continuous projection.

Proposition 3.2. Let X be a normed space ordered by the cone P. Then:

(i) X has the C.P.P. if, and only ifY=P-P has the C.P.P.,
(ii) if X is a locally solid linear lattice then X has the C.P.P.,
(iii) if X is a Banach space, X has the R.D.P. and the cone P is closed and generating,

then X has the C.P.P.

Proof. If X has the C.P.P. then Y, ordered by the cone P, has the C.P.P. Let Y have
the C.P.P. If xoeEP(P), there exists a continuous positive projection PXQ(x) = p(xo,x)xo

defined on Y. Let p'(x0,-) be a Hahn-Banach extension of p(x0>) on X. Then p'(x0,•),
is positive and P'Xg(x) = p'(xo,x)xo is a continuous projection of x0 defined on X. Hence
the statement (i) is true. To prove (ii) and (iii) we assume that the cone P is closed and
generating and that X has the R.D.P. Since P is closed X is Archimedean. If x0 e EP(P),
by [8, Theorem 1.2], there exists a positive linear functional / of X such that

VxeP.

(In [8, Theorem 1.2], the existence of/ is deduced from the fact that X is Archimedean
and X has the R.D.P.).

Let Px (x) = /(x)x0, VxeX. Then Px is a linear positive projection and
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274 IOANNIS A. POLYRAKIS

PXo(x) ̂  x Vx £ P because the cone P is closed. To show that PXf) is continuous it is
enough to show that / is continuous. By [3, 3.5.6.], the statement (iii) is true.

If X is a locally solid linear lattice then X has the R.D.P. and the cone P is
generating and closed. Since O^/(x)xo^x, VxeP, there exists aeU+ such that

| / (x) |^ ° \\x\\, VxeP.

Ifx£X then

|| | | | | ) ^ _ „
Fo|| Foil

Hence the statement (ii) is true.

Lemma 3.1. Let X be a normed space ordered by the cone P, B a base for P defined
by feX*, Y=UxX be ordered by the cone Y+ = U+xP and B' be the base for Y+

defined by the functional / ' ( ^x ) = ̂  + /(x). Then

(i) each extremal point (£,, 0) of Y+ has a continuous projection,
(ii) xoesep{B)-if and only if, (0,xo)esep(F),

(iii) for each aeU + \{0} and geX* we have: g is a negative-strongly exposing
functional of x0 in B if, and only if, g'(£,x)= — a£+g(x) is a negative-strongly
exposing functional o/(0,x0) in B'.

Proof. It is clear that the statement (i) is true.

Let xoesep(B) and geX* be a negative-strongly exposing functional of x0 in B. Then
for each a e U+\{0}, the functional g'{£, x) = — a£+g(x), exposes (0, x0) in B' and ̂ (0, x0) = 0.
Let K, ,x , )eF be such that g'(£v,xv)= -a£v+g(xv)->0. Since g(xv)g0 we have that

£v^0 and g(xv)^0.

Since f'(£v,xv) = £v + f(xv) = l we have that

Then f(xv/(/(xv)))^0, hence x v ^x o and (^v,xv)^(0,x0). So (0,xo)esep(B') and g' is a
negative-strongly exposing functional of (0, x0) in B'.

Let (0, x0) e sep(B') and h e Y* be a negative-strongly exposing functional of (0, x0) in
B'. Then there exist aelR+\{0} and geX* such that h{£,x)= —a£,+g{x). It is clear that
£(x)^0Vxe/\ If xveB and g(xy)->g{x0)=0, then (0,xv)eF and h(0,xv)=g(xv)^0 =
h(0,xo), hence xv->xo. So the statements (ii) and (iii) are true.

Theorem 3.1. Let X be a normed space ordered by the cone P, B be a base for P
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STRONGLY EXPOSED POINTS 275

defined by fe X*, x0 e sep(B), g a negative-strongly exposing functional of x0 in B and
h = f-g. Then:

(i) 1/ B' is a base for P defined by f'eX*, and y0 is an extreme point of B' with
continuous projection Py<j, then yoesep(B') and hyo strongly exposes y0 in B'.

(ii) the functional h is uniformly monotonic and the cone P is well-based.

Proof. Since g is a negative-strongly exposing functional of x0, we have that — g is
positive. Hence h is strictly positive.

Proof of (i). By (P3), hyo exposes y0 in B' and hyo(y0)=0. Let (xv) be a sequence of B'
such that

If ) \ = xv — Pyo(xv), then yveP and

- *,o(xv) = h(yv) = f(yv) -g(yv)

Since f{yv), — giyy)^0, we have that

/ ( y v H 0 and g(yv)^0.

We put

Then there exists voeN such that zveB for each v^v0. Since g{zv)=g(yv)->0 we have
that zv-»x0, hence yv->0. Since /'(^v) = /'(>'v) + / '(^0(^v)) = l, we have that
/'(^>>0(Xv))-»-l, hence, by (P2), Pyo(xv)^y0. So xv = Pyo(xv) + yv^yo, hence hyo strongly
exposes y0 in B'.

Proof of (ii). Let Y= U x X be ordered by the cone Y+ = U+ x P and B" be the base
for Y+ defined by the functional f"{£,x) = l; + f{x). Then (0,xo)esep(B") and the
functional g'(^,x)= — £+g{x) is a negative-strongly exposing functional of (0,x0) in B".

If h'=f"—g', then /i' is strictly positive and

Let

C = {(£, x) e Y+I/i'(£,x) = l}.

Then zo = (l/2, 0) is an extreme point of C with continuous projection P2 (<!;, x) = (<J, 0).
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276 IOANNIS A. POLYRAKIS

By (0> Ko strongly exposes z0 in C. Moreover, for each (£,, x) e C we have

By Proposition 3.1, C is bounded. So the base for P defined by h is bounded. Hence P
is well-based and the functional h is uniformly monotonic.

Proposition 3.3. Let X be a normed space ordered by the cone P and B be a base for
P defined by feX*. If h is a continuous uniformly monotonic linear functional of X, then
for each extreme point x0 of B with continuous projection PXo, the functional hXo strongly
exposes x0 in B.

Proof. Since h is uniformly monotonic, there exists ae(R+\{0} such that / i ( ) | | | |
for each xeP. Let C = {xeP\h(x) = l} and x'0 = AxoeC. To prove that hXo strongly
exposes x0 in B, by Theorem 3.1, it is enough to prove that hXo strongly exposes x'o in
C. Now hXo exposes x'o in C and hXo(x'o)=0. Let (xv) be a sequence of C such that

Then h(PXQ(xv))->l, hence

If yv = xv-PX o(xv) , then yveP and

hence /i(yv)->0. So we have that yv^0, because a||j;v||gfc(yv). Hence xv->x'o.

Corollary 3.1. Let X be a Banach space ordered by the closed, generating cone P, B be
a base for P and X have the R.D.P. If ep(B):/:0 then the following statements are
equivalent:

(i)

(ii) ep(B) = sep(B),

(iii) P is well-based.

Proof. By Proposition 3.2 X has the C.P.P. Also by [3, 3.5.6], each base for P is
defined by a continuous linear functional. By Theorem 3.1 we have that (i)=>(ii) and
(i)=>(iii). It is clear that (ii)=>(i). If the cone P is well-based, by [3, 3.8.12], there exists a
uniformly monotonic, continuous linear functional of X and by Proposition 3.3 we have
that (iii)=>(i).

Proposition 3.4. Let X be a normed space ordered by the cone P and B be a base for
P defined by feX*. If x0 is an extreme point of B with continuous projection Px , then
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(i) g is a negative-strongly exposing functional of x0 in B if, and only if, there exists a
uniformly monotonic, continuous linear functional h ofX such that g = h(xo)p(xo, -) — h.

(ii) g strongly exposes x0 in B if, and only if, there exists a uniformly monotonic,
continuous, linear functional h of X and AeIR such that g = h(xo)p(xo,-) —

Proof. Let heX* be uniformly monotonic. By Proposition 3.3,g=hXQ = h(xo)p(xo,-)—h
is a negative-strongly exposing functional of x0 in B. Let g strongly exposes x0 in B and
g(xo) = 0. By Theorem 3.1, h = f—g is uniformly monotonic. Let

w = h-f + p(x0,-).

Then w(xo) = l because f(xo) — h(xo)=g(x0)=0. So

g=w(xo)p(xo,-)-w.

To show that w is uniformly monotonic it is enough to show that w(x)^y>0,
V x e F = {xeP|h(x) = l}, because then w(x)^y/t(x) = }>a||x||VxeP. Let w(xv)->0 for a
sequence (xv) of B'. Then w(xv)= —^(xv)+p(xo,xv)->0 and therefore

g(xv)->0 and p(xo,xv)->0.

Moreover, / (xv)-»l because /i(xv) = / (x v ) — g(xv) = l. If yv = xv/(/(xv)) then yyeB and
g(yv)-*0. So _yv->xo, hence xv->xo and therefore p(xo,xv)->l. This is a contradiction,
hence w is uniformly monotonic and the proof of (i) is complete. The statement (ii)
follows by (i) because g strongly exposes x0 in B if, and only if, g + kf strongly exposes
x0 in B.

Proposition 3.5. Let X be a normed space ordered by the cone P and B be a base for
P defined by f eX*. If x0 is an extreme point of B with continuous projection PXQ then the
following statements are equivalent:

(i) B is bounded,

(ii) for each sequence (xv) of B, xv->x0 if, and only if, PXo(xv)^>xo.

Proof. Let B be bounded. Then / is uniformly monotonic and by Proposition 3.3,
fXo strongly exposes x0 in B. Let (xv) be a sequence of B. If xv->x0, then
Pxo(xv)-PXo(xo) = xo. If PXo(xv)->x0, then

/,„(*,) = f(P*0M ~ xv) = /(P,0(x,)) - 1 - / (x 0 ) - 1 = 0 = /Xo(xo).

Hence xv->x0. So (i)=>(ii).
Let the statement (ii) be true. To show that B is bounded, it is enough to show that

the functional fXo which is bounded on B strongly exposes x0 in B. (Proposition 3.1.).
Let (xv) be a sequence of B such that
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Then /Xo(xv) = f(PXo(xv))-1 -»0, hence PXo(xv)->xo and xv->x0. So fXo strongly exposes
x0 in B.

4. Characterizations of /, (F)

Let G be a closed and convex subset of a Banach space X. The set G has the Krein-
Milman property (K.M.P.) if K=coep(K), for each closed, convex and bounded subset
K of G. It is known, [2, 3.5.7], that the set G has the Radon-Nikodym property
(R.N.P.) if, and only if, K = cosep (/C), for each closed, convex and bounded subset K of
G. Moreover we know, [1], that in locally solid lattice Banach spaces the R.N.P. and
the K.M.P. are equivalent. Let F be any set. We denote by ^(F) the Banach space of
all functions £:F-+R, £ = ( » . r , such that £ isr |#0 |<+co, with norm ||{||=£««r|«0|-
The space ^(F) has the R.N.P., [2, 4.1.9] and ordered by the cone /,+ (F) =
{^e/1(r)|«S(0^OVier} is a Banach lattice. The set B = {{etf(r)|||£|| = l} is a closed
bounded base for the cone /^(F). We denote by /x space

Theorem 4.1. Let X be an infinite-dimensional Banach space ordered by the closed,
generating cone P and X have the R.D.P. Then:

(i) X is order-isomorphic to ^(F) if, and only if, P has a closed, bounded base with the
K.M.P.;

(ii) X is order-isomorphic to Zt if, and only if, P has a separable, closed, bounded base
with the K.M.P. f .

Proof. Let T be an order-isomorphism of X onto ^(F). Since B = {^e/^(r)f||^|| = l}
is a closed and bounded base for lf(T) with the K.M.P. we have that T~l(B) is a
closed, bounded base for P with the K.M.P. Let B be a closed, bounded base for P
defined by the functional / and let B have the K.M.P. By [3, 3.5.6], the functional / is
continuous. Let

By Proposition 3.2 we have that X has the C.P.P.

We shall prove that

x=Y,p(bi,x)bi and £ p(bltx) < + oo, VxeP. (1)
ier i<=r

At first we shall show that

L={xeP\Pbl(x)=0, VieF} = {0}.

The set L is a cone and it is closed because Pb. is continuous VieF. If L =£{()}, the set B' =
BnL is a non-empty, closed and bounded base for L. So EP(L)^=0 because ep(B')^0.
Also EP(L)£EP(P) because for each xeL and yeP, O^y^x implies that yeL. Hence
fr,eEP(L) for at least one yeF. This contradicts the definition of L because Pb(bj) = bj.
Hence L = {0}.
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We denote by F the set of finite subsets of F and for each x e P and 5 e F we denote
by xs the sum

ieS

Let xeB. Then (xs)StsF is an upward-directed net of P (if <5l5 <52eF we say that 5iS^2 if,
and only if, ^ S ^ ) . We shall show that xs = sup{Pb.{x)\ie8}. If z^Pb.(x)Vied, then
w = z-P,,.(x) ^0. If j e 3 and ;"f j , then w ̂ P,, .(w) = Pb.(z)'^ P6j(x) and therefore z^ P^/x) +
Pfc.(x). By a similar process we have that z^.xs, hence

By [3, 3.8.8], we have

ieF

This implies that Pb.(x) g y ̂  x Vi e T and therefore that P,,.(x-j>) = 0Vier because
Pfci.(x) ̂  Pfc.(y) ̂  P6.(x) Vi e T. Hence x = y and therefore

Since feX* and / define the base B we have that

So (1) is true because it is true for each xeB.
We define the map T:P->/^(r) as follows:

T(x) = (p(bi,x))ier, VxeP.

It is clear that T(kx + fiy) = XT(x) + nT(y), Vx,yeP and l , / ieR+. T is one-to-one
because

x=Y1p(bi,x)bi, VxeP.

Since the set B is bounded there exists MeU+ such that

||x||^M, VxeB.

We shall show that the map T is onto.
Let Z=(£(i))ierelt(r). For each SeF we put

0&i and & = T(x,).
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Let e > 0. Since lim £t = £, there exists <50 e F such that

11^,-^Jhe. V5l,52>80.

If 5'i=5l\d2 and d'2 = S2\Sl then ^ 5 - ^ = ^ , - ^ . Since £ai, f̂  are disjoint we have
that

and therefore

So

Hence the net {xd)dsF is Cauchy. If x=limx^, then xeP and p(bt,x) = £(1)VieP. So
T(x) = ^ and the map T is onto /^(F). By [3, 1.5.6] T can be extended to a linear map
T of X into MO as follows: T(x) = T{y)-T{z), where x = j>-z and y,zeP. Since 1^{T)
is generating the map T is onto ^(r). Also T is one-to-one because T(x) = 0 implies
T()>) = T(z) and therefore y = z. By the definition of T we have that T and T ~i are positive.

Let Z = T(x)=(p(bhx))ierel?(r). Then

Since the map T" 1 is linear and Zx(r) is a Banach lattice we have that T"1 is
continuous. By the open mapping theorem, T is continuous. So T is an order-
isomorphism of AT onto /,(r) and the statement (i) is true.

Let B be a separable, closed and bounded base for P and let B have the K.M.P. Then
X is order-isomorphic to l^F) and the base C=T(B) for /^(r) is separable. Also there
exists AeU+ such that ||£||^A>0 for each £eC. Let ep(Q = {^i\ieT}. Then

So the set F is countable because C is separable and ||^j—^||^2A, Vi^y. Hence X is
ordered isomorphic to lt and the statement (ii) is true.

Let K be a closed, convex, unbounded subset of a Banach space X. For each real
number p > 0 we denote by Kp,Ks p, the sets

respectively, whenever these sets are non-empty. In [7, Propositions 1 and 3] it is
proved:

(i) if X has the K.M.P. then Kp£coKs for at least one pe(R+ implies ep(X)f 0;
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STRONGLY EXPOSED POINTS 281

(ii) if X has the R.N.P., then: Kp4=c6Ksp for at least one peU+oK is

It is easy to show that the proof of these results can be accepted for the case where K is
a subset of a closed, convex and unbounded subset A of X and A has the K.M.P., the
R.N.P. respectively.

In [7, Corollary 3], it is shown that each closed and convex subset of /^ has at least
one strongly exposed point. In the following proposition we prove a similar result for
well-based cones.

Proposition 4.1. Let X be a Banach space ordered by the closed, well-based cone P
and K a closed and convex subset of P. If P has the K.M.P. (respectively, the R.N.P.) then
ep(K) ± 0 {respectively, sep(X) f 0).

Proof. If the set K is bounded the proposition is true. Let K be unbounded. To
show that e p ( £ ) ^ 0 (respectively, sep(/C)=f 0) it is enough to show that coKspJ=Kp, for
at least one peU+. Let a uniformly monotonic, continuous linear functional / of
X(f(x)^a\\x\\)^xeP, xoeK and a real number e>0. If p>| |xo | | and a p > / ( x o ) + e, then
xoeKp and for each convex combination x = £"=1AIx1 of elements of Ks p we have

i l I
i = 1

Hence for each yscoKs p we have that

and therefore coKs

Proposition 4.2. Let X be an infinite-dimensional Banach space ordered by the closed,
generating cone P and X have the R.D.P.

If P has the K.M.P. the statements (i), (ii), (iii), (iv) and (v) are equivalent.
If P has the R.N.P. all the following statements are equivalent:

(i) X is order-isomorphic to / i(r) ,

(ii) P is well-based,

(iii) sep(B) ^ 0 , for at least one base B for P,

(iv) Oesep(P),

(v) sep(/C)^0/or each closed and convex subset K of P,

(vi) B is dentable,for at least one base B for P,

(vii) P is dentable,

(viii) K is dentable, for each closed and convex subset K of P.

Proof. Let P have the K.M.P. If P is well-based, there exists a uniformly monotonic
continuous linear functional / of X. This functional defines a closed and bounded base
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C for P and C has the K.M.P. Hence, by Theorem 4.1, (ii)«>(i). Since ep(C)=£0, by
Corollary 3.1, we have that (ii)o(iii). It is easy to show that (ii)o(iv). Also
(v)=>(iii)=>(ii). Since (ii)<*(i), the statement (ii) implies that P has the R.N.P. and by
Proposition 4.1 we have that (ii)=>(v).

Let P have the R.N.P. Then for each closed and convex subset A of P we have:
sep(A) =/= 0 if and only if, A is dentable. Hence (iii)o{vi), (iv)o(vii) and (v)o(viii).
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