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1. Introduction

Consider a Markov process defined in discrete time t= 1, 2, 3, • • •
on a state space S. The state of the process at time t will be specified by a
random variable Vt, taking values in S. This paper presents some results
concerning the behaviour of the sequence Vlt Vz, V3, • • •, considered as a
time series. In general, S will be assumed to be a Borel subset of an h-
•dimensional Euclidean space, where h is finite. The results apply, in partic-
ular, to a continuous state space, taking 5 to be an interval of the real line,
or to a discrete process having finitely or enumerably many states. Certain
results, which are indicated in what follows, apply also to more general
(infinite-dimensional) state spaces.

The Markov process may be partially described by the probability
distribution functions (p.d.f.) of Vt, for each value of t= 1, 2, 3, • • • ,
namely

(1) F((x0)^F^(xB) = ¥r(yt^x0).

Here, if S is fc-dimensional, and Vt and x0 are A-vectors with components
xoio> vtu) (* = 1» 2 . • • •» A), then F , 52 x0 means VtU) g xou) for each i.

More information about the process is given by the joint p.d.f. of
consecutive variables Vt, namely

(2) F[*(x0, xlt---,xv) = Pr(F« < x0, F H rg xx, • • -, Vt_, ^ xP).

For various Markov processes — e.g. Markov chains imbedded into
•queueing systems — the p.d.f. of Vt has been calculated both (a) for the
stationary state

lim Ft(x0),

assuming that this exists, and (b) for the transient distribution, i.e. obtaining
F(?](x) as a function of t, for given F^(x). If, however, Vt, or some variable
correlated with Vt, forms the input to a second stochastic process, then the
behaviour of the second process, to the extent that the sequence {V,}
determines it, depends not only on FlO)(x), but on F[p)(xa, • • •,xt>), the
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joint p.d.f. of p-\-l consecutive state variables Vt, for some appropriate
value of p, possibly infinite. This joint distribution has only rarely been
calculated. Benes [1], in discussing the virtual waiting time for a queue
with Poisson arrivals, obtained its covaxiance function (in continuous time);
this amounts to a partial specification of (2). There appear to be no similar
results for such a process considered in discrete time. The study of the joint
distribution (2) is equivalent to analyzing the stochastic sequence {Vt}
as a time series.

This paper investigates the relation between the joint p.d.f. (2) and the
p.d.f. (1). A general expression is given for (2). If (1) is known explicitly,
both (a) for the stationary case, and (b) for the transient case, then any
moment of the joint stationary distribution (2) is shown to be explicitly
determined by a finite recursion; the number of steps depends on the order
of the moment, but not on the time t. In particular, the quadratic moment
E(VtVt_f) (this is an hxh matrix if S is A-dimensional), is, apart from a
constant multiplicative factor, equal to the expectation of the transient
p.d.f. (1) at t = i, given that the stochastic process begins at t = 0 with a
particular initial p.d.f.

Two applications are discussed — to waiting times for successive custom-
ers in the M/M/l queue, and to a class of queues, or storage systems, with
periodic input.

2. Basic results for a Markov process

Let the process be specified by a transition function Gt(x, «), which may
or may not depend on t, so that

(3) F^(x0) = jsGt(x0, u)dF™(u

Construct from the process {Vt} a vector stochastic process whose state
variable is

Wt={Wi,W\,---,W't),
where

w\ = vt_( (i = o,i,-'-.py.
Then

= Pr{F<+1 rg xo, Vt < xx, • • •, F4_B+1 S x,}

- Pr {W°t+1 ^xo,W°t^xlt---, Wf-1 ^ x,}

Now, by (3), Pr{W%! ^ x0} depends only on Gt(x0, u) and on Pr{W? £ «}.
Therefore Pr{W^+1 g x0, • • •, Wf+1 ^ *„} depends only on Gt(x0, u) and on
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Fi'](x0, • • • , * , ) = Pr{tF? ^ x0, • • •, W\ < xp}.

Thus the sequence {Wt} forms a Markov process. For this process, (3) shows
that

?*{VM ^xo,Vt^Xl,---, Vt_v+1 ^ xp}

= js,
Gt(xo> uo)dF\v)(uo, ux, ••-, uv),

integrated over the subset S' of the product space Sv+1 defined by w0 sS xx,
«i ^ #2> • • •, «^_! Ss xp, uv g oo; here {F t : F t ̂  oo} denotes the whole
space S. Then, performing explicitly the integrations with respect to
«,, • • -,uP in (4),

(5) F\l\(x0, • • - ,* , ) = [ Gt(x0, «0)iFi'>(«0, * „ * „ • • • . * , . co).

Since

F«"(«o. *., • • •, x,, oo) = ^ i ^ ' K , *8, • • • , * , ) ,

(5) may be written as

(6)

Equation (6) specifies FQ in terms of i^""1'; hence, if Fjo)(a;o) and
Gt(x0, u0) are given as fuctions of t, then the joint p.d.f. F\v)(x0, • • •, xp)
is obtained by a ^>-step recursion.

For the stationary state of the process, the recurrence relations (6),
for p = 1, 2, 3, • • • may be combined into a single integral equation. Define
the generating function

(7) y ( *« . * ! . • • • ; * ) =
p=0

The suffixes t are dropped, since the stationary state {t-> oo) is considered.
The expression (7) is well defined for |A| < 1. It is sufficient, in fact, to
consider only functions of finitely many arguments; if xf = oo for all * > N,
where N is an arbitrarily large constant integer, then

* ! , - • - , x N , •••) = F^(x0, x x , ••-,xN) f o r f ^ N.

Then from (6)

(8) A G(xo,u)dy>(u,x2,x3,---;l)

G(xo,u)dFi»(u,xa,xt,-")

v=o
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This integral equation for tp has a recursive solution given by (6), but
there appears to be no general approach to solving (8), other than by a
recursion in p. A direct solution may be possible for particular transition
functions G.

The joint moment generating function (m.g.f.) of Vt, Vt_x, • • •, Vt_p is

£{exp(-50F4 spVt_p)};

in which, if each Vt is a A-vector, then so is each sit and the expressions
SiV^ are interpreted as inner products. The joint m.g.f. may be calculated
in terms of an unnormalized joint conditional m.g.f., defined by

(9) Q<»>(x; s1( s,, • • •, s,) = E{exp(-s1Vt_1~s2Vt_s spVt_P)\Vt g x ) .

Then

= J • • • J expC-Sj*! s , , ^ ) ^ . . . ^ ' ^ ^ ^ , •••,*„)

Here #, a ,̂ • • •, xp are ̂ -vectors, and each stxt is an inner product. (Terminals
of integration are omitted, here and in later equations, when the range of
integration is the whole of S.) It is assumed that the stochastic process is
such that (9) is finite, for a suitable domain of (slt • • •, sp), which includes
the origin.

The (unconditional) joint m.g.f. is then given by

E{exp(-s0Vt spVt_P)} = J«-*XQi"(* ; s1; • • •, sp).

Now, substituting (6) in (10),

(11) = j j
^ x , x,)dXi\- • •\e-»*>--->x>dXt...xF^{x1,x2, •••,*,)

on integrating with respect to u, and rearranging

s2, s3, • • - , s . )

on substituting Q^ 1 J from (10).

Thus the conditional m.g.f. Qj1"1 is determined, by (11), recursively in terms
of Qj^1 ' , in a similar manner to the recursive determination of the joint
p.d.f. F'3" by (6).

Equation (6) applies also to a state space S more general than a finite-
dimensional Euclidean space. It applies, in fact, to any space with a vector
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ordering 5S, such that {Vt :Vf^x) is always defined, and possessing a
measure for which the integral in (3) is defined. Similarly, (7) to (11) remain
valid if S is a Hilbert space of sequences (*(1), a;(2) ,•••)> with x ^ y defined

3. Moments of the joint distribution

If the Markov process begins with Vx = f, a constant, then

where //(•) denotes Heaviside's unit function, and S is A-dimensionaL
Denote the consequent Ff](x), determined using (3) for t = 2, 3, 4, • • •, by
<f>t(x, f ) ; t h u s

If, instead, the initial distribution F^(x) is any arbitrary p.d.f., then

Consider now the stationary state. Let <f>(x) denote the stationary p.d.f.

<f,(x) = Um

For 1 ^ k <[ p, define the function C(k; x), whose values are h-vectovs, by

(13) C(*;«)=[ - i -Q<«(*;s l l S l l - 1 s , ) l

Then, substituting for Q<»> from (10),

(14) C(k; * ) = / • • •jxti.1....9F<»(z, xlt • • -,xv).

In this integral, and in various subsequent expressions, xk is an A-vector;
likewise dQjdsk is a A-vector. From (14), C (k; x) is independent of p, provided
p^k.

Now for k ^ 2, substituting in (14) for FiP), and using (6), gives

C(k; * ) = / • • • jxkdXi...Xpju&xG(x, u)duF<-»(u, x2, • • •, x,)

(15) = G(x, u)duj---jxkdXt...xfi*-»(u, xt, '-',x9)

since 2 ^ k ^ p

= JG(x,x1)dC(k—l;x1) again using (14).
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Also, for k=l, (14) and (6) give

C(l;x)=jx1dF<»(x,x1)

(16) =jx1dju^G(x,u)dF^(u)

= jx1G(x,x1)d<f>(x1),

since Fm(xt) = ^>{x^) for the stationary state.
In (3), if k is written for £+1, and x1 for u, then

(17)

and this implies (12), i.e.

F[°>(*) =

where <j>k does not depend on F^K Comparing (17) with (15), it is seen that
the recurrence relation which connects C(k; x) with C(k—l;x) is identical
with that connecting F^](x) with Fgl^x). So from (12),

(18) C ( k ; x ) = {<t>h(x,g)dC(l;£) f o r k = 2 , 3 , ••• .

It does not follow that C(k;x) is a p.d.f. However, the substitution
-Fĵ !(a:) = H(x1—^) into (17) shows that G(a;, a )̂ is a p.d.f. of x for each
fixed a^. So C(l; a;), which, by (16), is obtained from G(x, x-J by integration
over xlt can differ from a p.d.f. only by a constant multiplier. Therefore
C(l;x)/C(l; oo) is a p.d.f.

Let
C*(k; x) = C(k; x)[C(k; oo) k = 1, 2, 3, • • •.

By setting x = oo in (18) and in (16), it follows that, for k > 1,

C(k; oo) = C(l; oo) = B{Vt).

So equations (15) and (18) remain valid with C*(k;x) substituted for
C(k;x). Now in (17), if Ffl^x) is any p.d.f., then F^(x) is also a p.d.f.
Consequently, from (15), if C*(k—l;x) is a p.d.f., then so is C*(k;x).
But C*(l;a;) was shown above to be a p.d.f. From this result and (15),
therefore, the functions C*(k; x) are the transient probability distribution
functions F^ft) of a Markov process, with the same transition function
G(x, u) as the given process, and commencing with the particular p.d.f.

calculable from (16).
Considering still the stationary state, let FJ"a denote component a

https://doi.org/10.1017/S1446788700027737 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700027737
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of the A-vector Vt, raised to the power m. For given integers i, j , • • •, k;
a, /?, • • •, y\ m, n, • • •, q, define the product moment

The indices a, /?, • • •, y will be considered fixed throughout the calculation,
and are, for brevity, omitted from the symbol MT(-). The superscript
r = m-\-n-\- • • • -\-q will be omitted whenever no ambiguity can result.
Then in particular, from (14), the moments of order two are given by

(19) M(0,k) =jzdC(k;x).

(The values of (19), for all possible a, ft, form an hxh matrix.) It follows
from (19) that M(0, k)IC(k, oo) = •E(F<F,_i)/E(F<) equals the expectation
of the Markov random variable whose p.d.f. is C*{k;x).

Now from (18),

limC(&;a:)/C(*; oo) = flim^(a;; £)dC{\; |)/C(1; oo)
(20) k"°° k"°°

= *{*):
by Lebesgue's theorem on limits of integrals, assuming that the stationary
p.d.f. ^(a;) is unique. Therefore

(21) li
*-»00

i.e. the covariance of Vt with Vt_k tends to zero as k -*• oo, as would be
expected.

Equation (19) may be compared with Benes' expression [1] for the
covariance function R(t) for virtual waiting time for a queue with Poisson
arrivals;

(22) R(t) = Jo~ w • E{W(t)\W(0) = w}dA(w)-[E{W(0))]i

where A{w) is the stationary distribution of virtual waiting time W(t),
and t is continuous time. This comparison shows that a result similar to (19)
holds for some Markov processes in continuous time.

To determine moments of higher order than two, let

l<i<j<---<K<X<p; and r = g+m+ • • • +/i+v.

Then from (8), assuming the stationary state, define the "conditional
product moment"

(23)
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Substituting for Q(v) from (11), and performing the differentiation with
respect to s1,

(24)

=f?G(x, f)iK'-((*-l)-, • • •, (A-l)"; £),

using (23) again.
A similar calculation, using (11), shows that

(25) * ( * ' » ' •* '*>
= jG(a!, e)dK'{{i-l)», ( / - I ) - , • • •, (A-l)"; | ) .

This equation is of the same form as (15), if m, n, • • •, v, r are held constant,
and (i, j , • • •, X) is considered as a multiple index, in place of k in (15).
The argument leading from (15) to (18) shows, therefore, that

(26) K'(*«, /-, - , J l ' ; * ) = J^ (x , Z)dK*(l™, (j-i+l)n, ••-, (A-*+l) ' ; f).

Equations (24) and (26) thus enableKr(l', im, • • -, A"; x) to be expressed
in terms of similar functions with smaller values of i, j , • • •, L This may be
done systematically as follows. Define the linear operators Q, and A( by

fl./(«) = J ?£(*- eww (g = i. 2, • • •)

AJ(x) = j</>((x, l-)df(Z) (i = 2, 3, • • •)•

Then

i ^ F , *», /», • • -, A"; *) = i?,Xr-»((t-l)", • • •, (A-l)-; x) by (24)

= QgQmK~~U3-l)", • • •, (A-/)"; x)

if t —1 = 1, using (24), again,
or

= Q,A+.xQmKr+~{<j-i)\ •••, ( A - . 1 ) ' ; *)

if i > 2, using (26), then (24).

These last two expressions coincide if Ax is defined as the identity operator.
Then successive application of these reduction formulae results in

(27) KT(V, im, j», •••,<", A"; x) = Q.A^Q.A^ • • • Q/tAx_KK'(l'; x);

where, from (23),
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[9] Serial dependence of a Markov process 307

x) = [ ( - 1 ) ' | 1 <?<»>(*; *,,•••, s,)"|

(28) substituting for Q<3>) from (11)

= j ?G(x, QdFWtf) by (10)

for the stationary state.
Therefore any product moment of the Markov process may be deter-

mined as

M'fcv im in • • • iff Xv\ FCVgVm • • • V \

wi th t h e prev ious conven t ion regard ing a, {1, • • • ,y,

(29) = KT(V, (i+l)m, (j+l)\ •••, (X+l)'; oo)

assuming the stationary state

= QgA(QmA}_t • • • QMAx_Kjed<f>(i) from (27) and (28).

If <f>i(x, f) is known explicitly, then the number of steps involved in
applying (29) depends on r, the order of the moment, but not on the "lags"
i,j, • •', K,X.

Some special cases arise when the "exponents" g, m, • • •, v all equal 1.
For example, if r = 3, then for 0 < j < k, (29) reduces to

(30) M(0, j , k) = jjj WMX, S)deG{S, v)dvC(k-j; ,)

where C(k—j;rj) is obtainable from (18). If / = 1, then

M(0, 1, k) = jj £ydsG(£, r,)dnC(k-l; r,).

If / = k, then

M(0, *«) = M(0, *, k) = jjj kfdxhQ, i)

The last expression may be regarded as a special case of (30), if rjd<f>(r]) is
formally substituted for the undefined quantity dC(O;rj).
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4. Waiting time in the M/M/l queue

The waiting times Vt (t = 1,2, • • •) of successive customers in an
M/Mjl queue, with traffic intensity p, form a Markov process with transition
function

G{x, u) = 0 for * < 0

= J(x—u) for x 22 0

where

r f for £ ^ 0
( = [1/(1+p)>* for | < 0.

The stationary distribution is

4>{x) = l-pe-a-i»x for x > 0(32) r\ I r
= 0 for x < 0.

Some results for this process are as follows.
From (6), setting F<0! (x) = (j>(x) for the stationary state, are obtained:

x, y) = 0 for x < 0 or for y < 0

(33) = I^pe-f1-'»a:— ^ *̂  C*-* for 0 <: x < y
1+p

oil—a)
= i_pc-a-/»»_ ^ 11 e-»+p» for 0 ^ y < a;.

(x, y, z) = 1 -

( 3 4 )

for a; < y < z.

Expressions of similar form are obtainable for the other orders of x, y, z.
This calculation may be continued to Flv) for p > 2, but the expressions

become complicated. The moments of the joint distributions are, however,
more readily obtained using equations (16), (18), and (19) for bivariate
moments, and equation (29) for moments of higher order. For the M/M/l
queue, elementary but somewhat lengthy calculations show that
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(35) 4>i(x> f) = H(x—i) where H(•) is Heaviside's unit function

<t>2(x, () = G(x. S)

for 0 < f < x

P
e

i— X~ p

L(I+P)3

for 0 < x < | .

(36) C{l;x) = ^- - [ ^ - -(1-p)]

xe~

Now, for the Af/M/1 queue, (19) gives

M(0, £) == r xdC(k;x)
Jo-

= lim I xdC(k; x).
b-*ooJ 0—

Therefore, integrating by parts

M(0, k) = lim [bC(k; b)~ ("Cft; x)dx]

(37) = lim {b[C(k; b)-C(k; oo)J+ f»[C(k; ao)-C(k; x)]dx}

= J~[C(*. oo)-C(k;x)]dx.
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The correlation coefficient of lag k for the time series {Vt} is then

R k ^

Hence, using (36) and (37), after some reduction,

(39) = Sp/2+OQfl) for p <C 1

= l-(l-p)*+O((l-P)*) for 0 < 1-p < 1.

Similarly

(40)
= l_2(l-p)«+O((l-p)») for 0 < l - P « l

R, = 21f+O(p) for P <l
(41)

= 1-3(1-/>)«-O((l-P)») for 0 < 1-P« 1.

For a near-saturated queue (p close to 1) these results illustrate the slow
decay of Rk from 1 as k increases. They also put in question the usefulness
of a Monte Carlo investigation of a queue in this range, as is sometimes
undertaken to estimate properties of the stationary distribution, unless
the sample size is extremely large. It is conjectured (but remains unproved)
that

(42) Rk = l - f t ( l -p) a +0(( l -p)3) for k = 4, 5, • • •.

5. Queue with periodic input

In Lindley's queue model [2], successive waiting times wT are given by
wx = 0 and

wr+1 = wr+ur if wr+ur > 0
(43)

= 0 if wr+ur ^ 0;
where

ur = service interval of rth customer

— time interval between fth and (r+l)th arrival;

and the uT are assumed to be independently and identically distributed.
Suppose now that the uT remain independent, but that their distributions

Tr(x) = Pr(ur ^ z)

are no longer identical. From (43), if
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Fr(x) = Pr{wr ^ x),
then

(44) Fr+1(x) = j ^ s x TT{ur)dFr(x-ur),

so that

5i x, u2 :£ x);

and generally, by induction,

(45) FT+l{x) = Pr(«H +ur^x,u2-\ +ur ^ * , • • • , «r g x).

If, in particular, the ur are identically distributed, then (45) is unaltered
by renumbering the »r, soas to replace u, by ur+1_, for 1 ^ s ^ r. Thus

(46) FT+l(x) — Pr(w^ +Mr ^ x, %+ • • • +ur_1 ^Lx, • • • .u^^x).

From (46), Lindley [2] deduces the existence of a stationary waiting time
distribution when, and only when, B(u) < 0.

Lindley's argument can, however, be extended to certain cases when the
ur are not identically distributed, and in particular to a queue with "periodic
input". Suppose that the ur are independent, but that, for a fixed integer
"period" m > 1,

where the distributions Jt(x), for * = 0, 1, • • •, m— 1, are not identical.
This represents, e.g., the case where every wth customer has the same
service-time distribution, but the distributions for consecutive customers
differ. Or if, instead, wr denotes the storage level for a reservoir, and ur

denotes (inflow — required outflow) during the rth period of time, then (47)
means that the distribution of (inflow — required outflow) is a periodic func-
tion of discrete time r, representing perhaps a seasonal effect. For this model,
neither Lindley's theorem, nor the results of Loynes [3], who assumes that
the {ur} form a strictly stationary sequence, are applicable.

From (44) and (47)

j^Gfix, u)dFjm+i(u)

where
Gt(x, u) = 0 for x < 0

= Jt(x—u) for x ^ 0.
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Since this is a special case of the Markov process (3), equation (6) for the
joint distribution applies. Applying (6) repeatedly,

where
V»,(|) = PrK-m+1 ^ I);

and
/;m z ' ( a ; 2 * 3 - - - a ; + 1 ; l )
(49)

and Gm(a;, w) = G0(a;, «). (Denote also Jm(x) =J0(z).)
Given (47), the process cannot possess a stationary state in the ordinary

sense. However, from (48), if %(l) tends to a stationary state y (f) as / ->• oo,
then the joint distribution (48) of m consecutive waiting times tends to a
joint stationary distribution, since it depends on j only through y>t($).

The following proof shows that if

(50) 6="jj(<0,
o

where b( is the expectation of the distribution Ji(x), then yy(£) tends to a
stationary distribution as / -> oo. The probability (45), with r = jm, depends
on the distribution of the «,, but not on their ordering. It is therefore un-
altered by the relabelling

(51) M, = * W i - (s = 1, 2, • • •, jm),

provided that the same distributions are retained, i.e. that vlm+t has the
distribution /m+1_«(x) for i = 0, 1, • • •, m—1; k = 0, 1, 2, • • •. Then

where £ ; denotes the joint event

K ^ «, *>1+»2 ^ a;, • • •, r ^
For ft = 0, 1, 2, • • • consider (vkm+1, vtm+2, ••-, vkm+m) as a point in an
7»-space Sk, in which a probability measure is defined by the product of the
distributions Jm+i-i(x), for i = 1, 2, • • •, m. Then in the product space
SoXSiXSzX • • •, the sequence of events {Ei\j= 1, 2, 3, • • •} is contracting,
and tends as / -*• oo to the limit event

E = {Z, ^ « : s = 1, 2, 3, • • •}

where Z, = i/x+i^-f • • • -\-vt.
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Now the probability measure is the same in each subspace Sk; so, by a
property of probability measures,

(52) lim y>,(x) = lim Pr{£3} = Pr{£}

exists. Denote this limit by y>(x).
If y)(x) is an "honest" probability distribution, i.e. if ip(x) -+1 as

x -*• oo, then ipt(x) tends to a stationary state, and consequently, so does the
joint distribution (48). This is established, given (50), by the following argu-
ment. For each integer * in {1,2, • • •, m}, Zkm+i equals the sum of m partial
sums Rk, (s = 1, 2, • • •, m), where Rk, is the sum of those vr in Zkm+i which
are distributed as J,(x). The number of terms in Rk, is k (if s > i) or
k-\-1 (if s ^ i). Since the vr are independent, the strong law of large numbers
shows that RkJk -> ba, with probability 1, as k -> oo. Therefore, with prob-
ability 1,

(53) | RJ(k) -* 2 K = b as k -* oo,
«=i >-i

where b is negative, by hypothesis (50). Choose any d in 0 < 6 < 1. Then
since b is negative, there is an integer k0 such that, for all k > k0 and all i in
{1.2, • • - , » } ,

(54) P r K + • • • +vkm+i ^ 0} > 1 -Id.

Now, considering the joint distribution of vlt vit • • •, vt, where t = kQm,
there exists a positive x for which

(55) P r ^ g x, Vi+Vz ̂  x, • • •, vt-\ \-vt ^ x} > l-\8.

So, combining (53) and (54),

PrfoH \-vr ^ x for all r ^ 1} > l-d, for x = x(d).

Since also y>(x) ^ 1, and 8 is arbitrary, this shows that

(56) lim y>(x) = l.

In terms of the queue model, (50) does not preclude some bt from being
positive; i.e. the queue may be "over-saturated" for some values of i, but
provided that it is sufficiently "under-saturated" for other values of i so
that (50) holds, then the stationary joint distribution of m consecutive
waiting times wT still exists.

It can also be shown that y>(x), and therefore also the joint stationary
distribution, does not depend on the waiting time of the first customer.
If wx = y > 0, instead of zcx = 0 as previously assumed, then a calculation
similar to the proof of (45) shows that
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Pr{wr+1 ^ x\wx = y)
(57)

= Pr{«! -f
If r = /w, and the variables are relabelled as in (51), then

Fim+i(x\y) = P r K ^ *. ̂ 1+^ ^ *,•••, »iH h^™-i
^ ar, wH f-v/m ^ »-y}

therefore

Fim+l(x\0) ^ ^^(asly) ^ Fy^.i(*|0)-Pr{»1+ • • • +vim > x-y).

Since, for b < 0, the last term on the right tends to zero as j -> oo, by (53),

(58) lim Fjm+1(x\y) = lim Fim+1(*|0) = W{x),
S-*oo i-* oo

which proves the stated result.
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