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Abstract

In the context of varieties of representations of arbitrary quivers, possibly carrying loops,
we define a generalization of Lusztig Lagrangian subvarieties. From the combinatorial
study of their irreducible components arises a structure richer than the usual Kashiwara
crystals. Along with the geometric study of Nakajima quiver varieties, in the same
context, this yields a notion of generalized crystals, coming with a tensor product.
As an application, we define the semicanonical basis of the Hopf algebra generalizing
quantum groups, which was already equipped with a canonical basis. The irreducible
components of the Nakajima varieties provide the family of highest weight crystals
associated to dominant weights, as in the classical case.

Introduction

Lusztig defined in [Lus91] Lagrangian subvarieties of the cotangent stack to the moduli stack of
representations of a quiver associated to any Kac–Moody algebra. The proof of the Lagrangian
character of these varieties was obtained via the study of some natural stratifications of each
irreducible component, and then proceeding by induction. The particular combinatorial structure
thus attached to the set of irreducible components made it possible for Kashiwara and Saito
in [KS97] to relate this variety to the usual quantum group associated to Kac–Moody algebras,
via the notion of crystals. This later led Lusztig in [Lus00] to define a semicanonical basis of this
quantum group, indexed by the irreducible components of these Lagrangian varieties.

There is more and more evidence of the relevance of the study of quivers with loops. A
particular class of such quivers are the comet-shaped quivers, which have recently been used by
Hausel et al. in their study of the topology of character varieties, where the number of loops
at the central vertex is the genus of the considered curve (see [HR08, HLR13]). We can also
see quivers with loops appearing in a work of Nakajima relating quiver varieties with branching
(see [Nak09]), as in the work of Maulik and Okounkov about quantum cohomology (see [MO12]).

Kang et al. generalized these varieties in the framework of generalized Kac–Moody algebras
in [KKS09], using quivers with loops. In this case, one has to impose a somewhat unnatural
restriction on the regularity of the maps associated to the loops.

In this article we define a generalization of such Lagrangian varieties in the case of arbitrary
quivers, possibly carrying loops. As opposed to the Lagrangian varieties constructed by Lusztig,
which consisted in nilpotent representations, we have to consider here slightly more general
representations. That this is necessary is already clear from the Jordan quiver case. Note that
our Lagrangian variety is strictly larger than the one considered in [KKS09] and has many more
irreducible components. Our proof of the Lagrangian character is also based on induction, but
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with nontrivial first steps, consisting in the study of quivers with one vertex but possible loops.
From our proof emerges a new combinatorial structure on the set of irreducible components,
which is more general than the usual crystals, in that there are now more operators associated
to a vertex with loops; see Proposition 1.11.

In a second section we study Nakajima varieties, still in the context of arbitrary quivers.
We construct Lagrangian subvarieties, and generalize the notion of a tensor product of their
irreducible components, introduced by Nakajima in [Nak01]. The geometric statements obtained
in the two first sections give the intuition of the way crystals and their tensor product should be
generalized, which is done in a third section. The algebraic definition and study of the crystal
B(∞) enable us to define a semicanonical basis for the positive part of the generalized quantum
group U+ defined in [Boz15], where it is already equipped with a canonical basis, built via the
theory of Lusztig perverse sheaves associated to quivers with loops. We finally use our study of
Nakajima quiver varieties to produce a geometric realization of the generalized crystals B(λ).

1. Lusztig quiver varieties

Let Q be a quiver, defined by a set of vertices I and a set of oriented edges Ω = {h : s(h) → t(h)}.
We denote by h̄ : t(h) → s(h) the opposite arrow of h ∈ Ω, and Q̄ the quiver (I,H = Ω t Ω̄),
where Ω̄ = {h̄ | h ∈ Ω}: each arrow is replaced by a pair of arrows, one in each direction, and
we set ε(h) = 1 if h ∈ Ω, ε(h) = −1 if h ∈ Ω̄. Note that the definition of h̄ still makes sense if
h ∈ Ω̄. We denote by Ω(i) the set of loops of Ω at i, and call i imaginary if ωi = |Ω(i)| > 1,
real otherwise. Denote by I im (respectively, Ire) the set of imaginary vertices (respectively, real
vertices). Finally, set H(i) = Ω(i) t Ω̄(i).

We work over the field of complex numbers C.
For any pair of I-graded C-vector spaces V = (Vi)i∈I and V ′ = (V ′i )i∈I , we set

Ē(V, V ′) =
⊕

h∈H
Hom(Vs(h), V

′
t(h)).

For any dimension vector ν = (νi)i∈I , we fix an I-graded C-vector space Vν of dimension ν, and
put Ēν = Ē(Vν , Vν). The space Ēν = Ē(Vν , Vν) is endowed with a symplectic form

ων(x, x′) =
∑

h∈H
Tr(ε(h)xhx

′
h̄),

which is preserved by the natural action of Gν =
∏
i∈I GLνi(C) on Ēν . The associated moment

map µν : Ēν → gν =
⊕

i∈I End(Vν)i is given by

µν(x) =
∑

h∈H
ε(h)xh̄xh.

Here we have identified g∗ν with gν via the trace pairing.

Definition 1.1. An element x ∈ Ēν is said to be seminilpotent if there exists an I-graded flag
W = (W0 = Vν ⊃ · · · ⊃ Wr = {0}) of Vν such that for all k the vector space Wk/Wk+1 is
concentrated on one vertex and

xh(W•) ⊆W•+1 if h ∈ Ω,

xh(W•) ⊆W• if h ∈ Ω̄.

We put Λ(ν) = {x ∈ µ−1
ν (0) | x seminilpotent}.
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Lemma 1.1. The variety Λ(ν) is isotropic.

Proof. We use the following general fact (see e.g. [KS94, § 8.3]).

Proposition 1.2. Let X be a smooth algebraic variety, Y a projective variety and Z a smooth
closed algebraic subvariety of X × Y . Consider the Lagrangian subvariety Λ = T ∗Z(X × Y ) of
T ∗(X × Y ). Then the image of the projection q : Λ ∩ (T ∗X × T ∗Y Y ) → T ∗X is isotropic.

We apply this result to X =
⊕

h∈Ω End(Vνs(h) , Vνt(h)), Y the I-graded flag variety of Vν and

Z = {(x,W) ∈ X × Y | x(W•) ⊆W•+1}.

In this case, we get

T ∗X = Ēν ,

T ∗Y = {(W, ξ) ∈ Y × gν | ξ(W•) ⊆W•+1},

Λ =



(x,W, ξ)

∣∣∣∣∣∣

ξ =
∑

h∈H
ε(h)xh̄xh

∀h ∈ Ω, xh(W•) ⊆W•+1 and xh̄(W•) ⊆W•



 ,

Im q =

{
x ∈ Ēν

∣∣∣∣∣
µν(x) = 0 and there exists W ∈ Y such that

∀h ∈ Ω, xh(W•) ⊆W•+1 and xh̄(W•) ⊆W•

}

and hence Λ(ν) ⊆ Im q, which proves the lemma. 2

1.1 The case of the Jordan quiver
This case is very well known. For ν ∈ N, we have

Λ(ν) = {(x, y) ∈ (EndCν)2 | x nilpotent and [x, y] = 0} =
⋃

λ

T ∗Oλ(EndCν),

where Oλ is the nilpotent orbit associated to the partition λ of ν (we write |λ| = ν). Therefore,
Λ(ν) is a Lagrangian subvariety of (EndCν)2, and its irreducible components are the closures of
the conormal bundles to the nilpotent orbits.

1.2 The case of the quiver with one vertex and g > 2 loops
For ν ∈ N, Λ(ν) is the subvariety of (EndCν)2g with elements (xi, yi)16i6g such that:

. there exists a flag W of Cν such that xi(W•) ⊆W•+1 and yi(W•) ⊆W•;

.
∑

16i6g[xi, yi] = 0.

We will denote by Cν the set of compositions of ν, i.e. tuples c = (c1, . . . , cr) of N>0 such
that

|c| =
∑

16k6r
ck = ν.

We will also often forget the index 1 6 i 6 g in the rest of this section, which is dedicated to
the proof of the following theorem.

Theorem 1.2. The subvariety Λ(ν) ⊆ (EndCν)2g is Lagrangian, its irreducible components
being parametrized by Cν .
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Notation 1.3. For (xi, yi) ∈ Λ(ν), we define W0(xi, yi) = Cν ; then by induction Wk+1(xi, yi) is the
smallest subspace of Cν containing

∑
xi(Wk(xi, yi)) and stable by (xi, yi). By seminilpotency,

we can define r to be the first power such that Wr(xi, yi) = {0}. Although r depends on (xi, yi),
we do not write it explicitly.

Let c(xi, yi) denote the composition associated to the flag W•(xi, yi):

ck(xi, yi) = dim
Wk−1(xi, yi)

Wk(xi, yi)
.

For every c ∈ Cν , we define a locally closed subvariety

Λ(c) =

{
(xi, yi) ∈ Λ(ν)

∣∣∣∣ dim
W•−1(xi, yi)

W•(xi, yi)
= c

}
⊆ Λ(ν).

Then, if δ = (δ1, . . . , δr−1) ∈ Nr−1, let Λ(c)δ ⊆ Λ(c) be the locally closed subvariety defined by

dim

( ⋂

16i6g
ker{ξ 7→ y

(k)
i ξ − ξy(k+1)

i }
)

= δk,

where

y
(k)
i ∈ End

(
Wk−1(xi, yi)

Wk(xi, yi)

)

is induced by yi and

ξ ∈ Hom

(
Wk(xi, yi)

Wk+1(xi, yi)
,
Wk−1(xi, yi)

Wk(xi, yi)

)
.

Set l = c1; then

Λ̌(c)δ =



(xi, yi,X, β, γ)

∣∣∣∣∣∣

(xi, yi) ∈ Λ(c)δ,
W1(xi, yi)⊕ X = Cν ,
β : W1(xi, yi)

∼
→ Cν−l and γ : X

∼
→ Cl





and

πc,δ

∣∣∣∣
Λ̌(c)δ → Λ(c−)δ− × (EndCl)g
(xi, yi,X, β, γ) 7→ (β∗(xi, yi)W1 , γ∗(yi)X)

,

where c− = (c2, . . . , cr) and δ− = (δ2, . . . , δr−1). Finally, let (Λ(c−)δ− × (EndCl)g)c,δ denote the
image of πc,δ.

Proposition 1.4. The morphism πc,δ is smooth over its image, with connected fibers of
dimension ν2 + (2g − 1)l(ν − l) + δ1 whenever Λ(c)δ 6= ∅.

Proof. Let (xi, yi, zi) ∈ (Λ(c−)δ− × (EndCl)g)c,δ. Let W and X be two supplementary subspaces
of Cν such that dimX = l, together with two isomorphisms

β : W
∼
→ Cν−l and γ : X

∼
→ Cl.

We identify xi, yi and zi with β∗(xi, yi) and γ∗zi, and define an element (Xi, Yi) in the fiber of
(xi, yi, zi) by setting

(Xi, Yi)W = (xi, yi),

(Xi, Yi)X = (0, zi),

(Xi, Yi)
|W
|X = (ui, vi) ∈ Hom(X,W)2g.
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Then

µν(Xi, Yi) = 0⇔ φ(ui, vi) =

g∑

i=1

(xivi + uizi − yiui) = 0

and, for ξ ∈ Hom(W,X),

∀(ui, vi), Tr(ξφ(ui, vi)) = 0⇔
{
∀i,∀ui, Tr(ξ(uizi − yiui)) = 0,

∀i,∀vi, Tr(ξxivi) = 0,

⇔
{
∀i,∀ui, Tr((ziξ − ξyi)ui) = 0,

∀i,∀vi, Tr(ξxivi) = 0,

⇔
{
∀i, ziξ = ξyi,

∀i, ξxi = 0,

⇔
{
W1(xi, yi) ⊆ ker ξ,

∀i, ziξ
(1) = ξ(1)y

(1)
i ,

where ξ(1) denotes the map W/W1(xi, yi) → X induced by ξ. Since (xi, yi, zi) is in the image of
πc,δ, the image of φ is of codimension δ1, and thus its kernel is of dimension (2g− 1)l(ν− l) + δ1.

Moreover, if we denote by u
(1)
i the map X → W/W1(xi, yi) induced by ui, W1(Xi, Yi) = W

if and only if the space spanned by the action of (y
(1)
i )i on

∑
i Imu

(1)
i is W/W1(xi, yi). This

condition defines an open subset of kerφ.
We end the proof by noticing that the set of elements (W,X, β, γ) is isomorphic to GLν(C).

2

Proposition 1.5. The variety Λ(c)0 is not empty.

Proof. Fix W of dimension c and define x1 such that

x1(W•) ⊆W•+1,

x1
|Wk/Wk+1

|Wk−1/Wk
6= 0.

We define inductively an element y1 stabilizing W such that:

. the action of y1
(k+1) on Im(x1

|Wk/Wk+1

|Wk−1/Wk
) spans Wk/Wk+1;

. Spec y1
(k) ∩ Spec y1

(k+1) = ∅.

We finally set x2 = −x1, y2 = y1 and xi = yi = 0 for i > 2. This yields an element (xi, yi) in
Λ(c)0. 2

Corollary 1.6. For any c ∈ Cν , Λ(c)0 is irreducible of dimension gν2.

Proof. We argue by induction on r. If c = (ν), we have Λ(c)0 = Λ(c) = (EndCν)g, which is
irreducible of dimension gν2. For the induction step, Propositions 1.4 and 1.5 assure us that
Λ̌(c)0 is irreducible of dimension

ν2 + (2g − 1)l(ν − l) + dim(Λ(c−)0 × (EndCl)g)c,0 = ν2 + (2g − 1)l(ν − l) + g(ν − l)2 + gl2,

since (Λ(c−)0 × (EndCl)g)c,0 is a nonempty subvariety of Λ(c−)0 × (EndCl)g, irreducible of
dimension g(ν − l)2 + gl2 by our induction hypothesis. Moreover,

Λ̌(c)0 → Λ(c)0
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being a principal bundle with fibers of dimension ν2 − l(ν − l), we get that Λ(c)0 is irreducible
of dimension

ν2 + (2g − 1)l(ν − l) + g(ν − l)2 + gl2 − ν2 + l(ν − l) = gν2. 2

Lemma 1.7. Let V and W be two vector spaces, and k > 0. For any (u, v) ∈ EndV × EndW ,
we set

C(u, v) = {x ∈ Hom(V,W ) | xu = vx},
(EndV × EndW )k = {(u, v) ∈ EndV × EndW | dimC(u, v) = k}.

Then we have

codim(EndV × EndW )k > k.

Proof. The restriction of an endomorphism a to a generalized eigenspace associated to an
eigenvalue η will be denoted by aη = η id + ãη. As usual, the nilpotent orbit associated to a
partition ξ will be denoted by Oξ. We have

codim(EndV × EndW )k

= codim

{
(u, v)

∣∣∣∣
∑

α,β

dimC(uα, vβ) = k

}

= codim

{
(u, v)

∣∣∣∣
∑

α∈Specu∩Spec v

dimC(uα, vα) = k

}

= codim

{
(u, v)

∣∣∣∣
∑

α

dimC(ũα, ṽα) = k

}

= codim



(u, v)

∣∣∣∣∣∣

(ũα, ṽα) ∈ Oλα × Oµα∑

α

∑

j

(λ′α)j(µ
′
α)j = k



 .

Thus,

codim(EndV × EndW )k > k
⇔
∑

α

(codimOλα + codimOµα − 1) >
∑

α

∑

j

(λ′α)j(µ
′
α)j

⇔
∑

α

(∑

j

(λ′α)2
j +

∑

j

(µ′α)2
j − 1

)
>
∑

α

∑

j

(λ′α)j(µ
′
α)j ,

which is clear. 2

Proposition 1.8. If δ 6= 0, we have dim Λ(c)δ < gν2.

Proof. It is enough to show that if δ1 > 0, we have

dim(Λ(c−)δ− × (EndCl)g)c,δ + δ1 < dim(Λ(c−)0 × (EndCl)g).

This is a consequence of the previous lemma (recall that g > 2). Indeed, if we set

((EndV )g × (EndW )g)k = {(ui, vi) | dim∩iC(ui, vi) = k},
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we have

((EndV )g × (EndW )g)k ⊆
g∏

i=1

(EndV × EndW )ki

for some ki > k, and thus

codim((EndV )g × (EndW )g)k >
∑

i

codim(EndV × EndW )ki >
∑

i

ki > gk > k. 2

The following proposition concludes the proof of Theorem 1.2.

Proposition 1.9. Every irreducible component of Λ(c) is of dimension larger than or equal to

gν2.

Proof. We first prove the result for the following variety:

Λ̃(c) = {((xi, yi),W) ∈ Λ(ν)× Yc | xi(W•) ⊆W•+1 and yi(W•) ⊆W•},

where Yc denotes the variety of flags of Cν of dimension c. We use the following notation,
analogous to Lemma 1.1:

X = {(xi)16i6g ∈ (EndCν)g},
Z = {((xi)16i6g,W) | xi(W•) ⊆W•+1} ⊆ X × Yc.

We get

T ∗X = {(xi, yi)16i6g ∈ (EndCν)2g},
T ∗Yc = {(W,K) ∈ Yc × EndCν | K(W•) ⊆W•+1}

and

T ∗Z(X × Yc) =





((xi, yi),F,K)

∣∣∣∣∣∣∣

∑

16i6g
[xi, yi] = K,

xi(W•) ⊆W•+1 and yi(W•) ⊆W•




,

which is a pure Lagrangian subvariety of T ∗(X × Yc), of dimension gν2 + dimYc. Since T ∗Yc is

irreducible of dimension 2 dimYc, the irreducible components of the fibers of T ∗Z(X×Yc) → T ∗Yc
are of dimension larger than or equal to gν2 − dimYc. We denote by Λ̃W the fiber above (W, 0),

and by P the stabilizer of W in Gν . Since Gν and P are irreducible, we get that the components

of

Λ̃(c) = Gν×P Λ̃W

are of dimension larger than or equal to dimYc + (gν2 − dimYc) = gν2.

We extend this result to Λ(c), noticing that

Λ(c) ↪→ Λ̃(c)
(xi, yi) 7→ (xi, yi,W•(xi, yi))

defines an open embedding. 2
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1.3 The general case
Denote by ai,j the number of edges of Ω such that s(h) = i and t(h) = j, and denote by

C = (2δi,j − ai,j − aj,i)

the Cartan matrix of Q. For every ν, β ∈ NI and j ∈ I, we put

〈ν, β〉 =
∑

i∈I
νiβi,

ej = (δi,j)i∈I .

Definition 1.3. For every subset i ∈ I and every x ∈ Λ(ν), we denote by Ii(x) the subspace of
Vν spanned by the action of x on

⊕
j 6=i Vj . Then, for l > 0, we set

Λ(ν)i,l = {x ∈ Λ(ν) | codim Ii(x) = lei}.

Remark 1.10. By the definition of seminilpotency, we have

Λ(ν) =
⋃

i∈I,l>1

Λ(ν)i,l.

Indeed, if x ∈ Λ(ν), there exists an I-graded flag (W0 ⊃ · · · ⊃ Wr) such that (x,W) satisfies
Definition 1.1. Therefore, there exist i ∈ I and l > 0 such that W0/W1 ' Vlei , and thus x ∈⋃
k>l Λ(ν)i,k.

Proposition 1.11. There exist a variety Λ̌(ν)i,l and a diagram

Λ̌(ν)i,l
qi,l

zz

pi,l

((
Λ(ν)i,l Λ(ν − lei)i,0 × Λ(lei)

such that pi,l and qi,l are smooth with connected fibers, inducing a bijection

Irr Λ(ν)i,l
∼
→ Irr Λ(ν − lei)i,0 × Irr Λ(lei).

Proof. In this proof we will denote by I(V, V ′) the set of I-graded isomorphisms between two
I-graded spaces V and V ′ of the same I-graded dimension. We set

Λ̌(ν)i,l =



(x,X, β, γ)

∣∣∣∣∣∣

x ∈ Λ(ν)i,l,

X I-graded and Ii(x)⊕ X = Vν ,

β ∈ I(Ii(x), Vν−lei) and γ ∈ I(X, Vlei)



 ,

and

pi,l

∣∣∣∣
Λ̌(ν)i,l → Λ(ν − lei)i,0 × Λ(lei)

(x,X, β, γ) 7→ (β∗(xIi(x)), γ∗(xX)).

We study the fibers of pi,l: take y ∈ Λ(ν − lei)i,0 and z ∈ Λ(lei) and consider I and X, two
supplementary I-graded subspaces of Vν , such that dimX = lei, together with two isomorphisms

β ∈ I(I, Vν−lei) and γ ∈ I(X, Vlei).
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We identify y and z with β∗y and γ∗z, and we define a preimage x by setting x
|I
|I = y, x

|X
|X = z

and x
|I
|X = η ∈ Ē(X, I). In order to get µν(x) = 0, η must satisfy the following relation:

φ(η) =
∑

h∈H:s(h)=i

ε(h)(yh̄ηh + ηh̄zh) = 0.

We need to show that φ is surjective to conclude the proof. Consider ξ ∈ Hom(Ii,Xi) such that
Tr(φ(η)ξ) = 0 for every η. For every edge h such that s(h) = i 6= j = t(h) and every ηh, we have

0 = Tr(yh̄ηhξ)

= Tr(ξyh̄ηh).

Hence, ξyh̄ = 0, and Im yh̄ ⊆ ker ξ. Now consider a loop h ∈ H(i). For every ηh, we have

0 = Tr((ηhzh̄ − yh̄ηh)ξ)

= Tr(ηh(zh̄ξ − ξyh̄)).

Hence, ξyh̄ = zh̄ξ and therefore ker ξ is stable by yh̄. As codim Ii(y) = 0, we get ξ = 0, which

finishes the proof. 2

We can now state the following theorem, which answers a question asked in [Li].

Theorem 1.4. The subvariety Λ(ν) of Ēν is Lagrangian.

Proof. Since this subvariety is isotropic by Lemma 1.1, we just have to show that the irreducible

components of Λ(ν) are of dimension 〈ν, (1 − C/2)ν〉. We proceed by induction on |ν| = ∑
i νi,

the first step corresponding to the one-vertex quiver case which has already been treated: we

have seen that Λ(lei) is of dimension 〈lei, (1− C/2)lei〉.
Next consider C ∈ Irr Λ(ν) for some ν. By Remark 1.10, there exist i ∈ I and l > 1 such that

C∩Λ(ν)i,l is dense in C. Let Č = (C1, C2) be the couple of irreducible components corresponding

to C via the bijection obtained in Proposition 1.11:

Irr Λ(ν)i,l
∼
→ Irr Λ(ν − lei)i,0 × Irr Λ(lei).

We also know by the proof of Proposition 1.11 that the fibers of pi,l are of dimension

〈ν, ν〉+ 〈ν − lei, (1− C)lei〉.

Since qi,l is a principal bundle with fibers of dimension 〈ν, ν〉 − 〈lei, ν − lei〉, we get

dimC = dim Č + 〈ν − lei, (2− C)lei〉.

But Λ(ν − lei)i,0 is open in Λ(ν − lei), so we can use our induction hypothesis and the first step

to write

dim Č = 〈ν − lei, (1− C/2)(ν − lei)〉+ 〈lei, (1− C/2)lei〉

and thus obtain

dimC = 〈ν, (1− C/2)ν〉. 2
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1.4 Constructible functions
Following [Lus00], we denote by M(ν) the Q-vector space of constructible functions Λ(ν) → Q,
which are constant on any Gν-orbit. Put M =

⊕
ν>0 M(ν), which is a graded algebra once

equipped with the product ∗ defined in [Lus00, § 2.1].
For Z ∈ Irr Λ(ν) and f ∈M(ν), we put ρZ(f) = c if Z ∩ f−1(c) is an open dense subset of Z.
If i ∈ I im and (l) denotes the trivial composition or partition of l, we denote by 1i,l the

characteristic function of the associated irreducible component Zi,(l) ∈ Irr Λ(lei) (the component

of elements x such that xh = 0 for any loop h ∈ Ω(i)). If i /∈ I im, we just denote by 1i the function
mapping to 1 the only point in Λ(ei).

We have 1i,l ∈ M(lei) for i ∈ I im and 1i ∈ M(ei) for i /∈ I im. We denote by M◦ ⊆ M the
subalgebra generated by these functions.

Lemma 1.12. Suppose that Q has one vertex ◦ and g > 1 loop(s). For every Z ∈ Irr Λ(ν), there
exists f ∈M◦(ν) such that ρZ(f) = 1 and ρZ′(f) = 0 for Z ′ 6= Z.

Proof. We denote by Zc the irreducible component associated to the partition (respectively,
composition) c of ν if g = 1 (respectively, g > 2). By convention, if g = 1, Zc will denote the
component associated to the orbit Oc defined by

x ∈ Oc ⇔ dim kerxi =
∑

16k6i
ck.

If g > 2, we remark that by trace duality, we can assume that Zc is the closure of Λ̌c defined
by

(xi, yi)16i6g ∈ Λ̌c ⇔ dim Ki =
∑

16k6i
ck,

where we define by induction K0 = {0}, then Kj+1 as the biggest subspace of ∩ix−1
i (Kj) stable

by (xi, yi). From now on, c = (c1, . . . , cr) will denote indistinctly a partition or a composition
depending on the value of g. We define an order by

c � c′ if and only if for any i > 1 we have
∑

16k6i
ck 6

∑

16k6i
c′k.

Therefore, setting 1̃c = 1cr ∗ · · · ∗ 1c1 , where 1l = 1◦,l, we get

x ∈ Zc, 1̃c′(x) 6= 0 ⇒ c′ � c.

For c = (ν), we have 1̃c = 1ν , which is the characteristic function of Zc, and we put 1c = 1̃c in
this case. Then, by induction,

1c = 1̃c −
∑

c′≺c
ρZc′ (1̃c)1c′

has the expected property. 2

Notation 1.13. . From now on, if c corresponds to an irreducible component of Λ(|c|ei), we
will denote by 1i,c the function corresponding to 1c in the previous proof.

. For Z ∈ Irr Λ(ν)i,l, we denote by εi(Z) ∈ Irr Λ(lei) the composition of the second projection
with the bijection obtained in Proposition 1.11. Note that |εi(Z)| = l.
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Proposition 1.14. For every Z ∈ Irr Λ(ν), there exists f ∈ M◦(ν) such that ρZ(f) = 1 and
ρZ′(f) = 0 if Z ′ 6= Z.

Proof. We proceed as in [Lus00, Lemma 2.4], by induction on |ν|. The first step consists in
Lemma 1.12. Then consider Z ∈ Irr Λ(ν). There exist i ∈ I and l > 0 such that Z ∩ Λ(ν)i,l is
dense in Z.

We now proceed by descending induction on l. There is nothing to say if l > νi.
Otherwise, let (Z ′, Zc) ∈ Irr Λ(ν− lei)i,0× Irr Λ(lei) be the pair of components corresponding

to Z. By the induction hypothesis on ν, there exists g ∈ M◦(ν − lei) such that ρZ′(g) = 1 and
ρY (g) = 0 if Z ′ 6= Y ∈ Irr Λ(ν − lei).

Then we set f̃ = 1i,c ∗ g ∈M◦(ν), and get:
• ρZ(f̃) = 1;
• ρZ′(f̃) = 0 if Z ′ ∈ Irr Λ(ν)\Z satisfies |εi(Z ′)| = l;
• f̃(x) = 0 if x ∈ Λ(ν)i,<l, so that ρZ′(f̃) = 0 if |εi(Z ′)| < l.

If |εi(Z ′)| > l, we use the induction hypothesis on l: there exists fZ′ ∈M◦(ν) such that ρZ′(fZ′) =
1 and ρZ′′(fZ′) = 0 if Z ′′ ∈ Irr Λ(ν)\Z ′. We end the proof by setting

f = f̃ −
∑

Z′:|εi(Z′)|>l
ρZ′(f̃)fZ′ . 2

2. Nakajima quiver varieties

Fix an I-graded vector space W of dimension λ = (λi)i∈I . For any dimension vector ν = (νi)i∈I ,
we still fix an I-graded C-vector space Vν = ((Vν)i = Vνiei)i∈I of dimension ν. We will denote by
(x, f, g) = ((xh)h∈H , (fi)i∈I , (gi)i∈I) the elements of the following space:

E(V, λ) = Ē(V, V )⊕
⊕

i∈I
Hom(Vi,Wi)

⊕

i∈I
Hom(Wi, Vi)

defined for any I-graded space V , and put Eν,λ = E(Vν , λ) for any dimension vector ν. This
space is endowed with a symplectic form

ων,λ((x, f, g), (x′, f ′, g′)) =
∑

h∈H
Tr(ε(h)xhx

′
h̄) +

∑

i∈I
Tr(gif

′
i − g′ifi),

which is preserved by the natural action of Gν =
∏
i∈I GLνi(C) on Eν,λ. The associated moment

map µν,λ : Eν,λ → gν =
⊕

i∈I End(Vν)i is given by

µν,λ(x, f, g) =

(
gifi +

∑

h∈H:s(h)=i

ε(h)xh̄xh

)

i∈I
.

Here we have identified g∗ν with gν via the trace pairing. Put

M◦(ν, λ) = µ−1
ν,λ(0).

Definition 2.1. Set χ : Gν → C∗, (gi)i∈I 7→
∏
i∈I det−1 gi. We denote by

M◦(ν, λ) = M◦(ν, λ)//Gν

M(ν, λ) = M◦(ν, λ)/χGν

the geometric and symplectic quotients (with respect to χ).
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Proposition 2.1. An element (x, f, g) ∈ M◦(ν, λ) is stable with respect to χ if and only if the

only x-stable subspace of ker f is {0}. Set

M(ν, λ) = {(x, f, g) ∈ M◦(ν, λ) | (x, f, g) stable};

then M(ν, λ) = M(ν, λ)//Gν .

2.1 A crystal-type structure

Definition 2.2. An element (x, f, g) ∈ Eν,λ is said to be seminilpotent if x ∈ Ēν is, according

to Definition 1.1. We put

L◦(ν, λ) = {(x, f, 0) ∈ M◦(ν, λ) | x seminilpotent} ⊆ M◦(ν, λ)

and define L(ν, λ) ⊆ M(ν, λ) in the same way. Finally, set

L◦(ν, λ) = L◦(ν, λ)//Gν ,

L(ν, λ) = L◦(ν, λ)/χGν = L(ν, λ)//Gν .

We will simply denote by (x, f) the elements of L◦(ν, λ).

There is an alternative definition of L(ν, λ). Define a C∗-action on M(ν, λ) by

t � [x, f, g] = [t(1+ε)/2x, f, tg].

When the only oriented cycles of Q are the potential loops, we have

L(ν, λ) =
{

[x, f, g] | ∃ lim
t→∞

t � [x, f, g]
}
.

By the same arguments as in [Nak94, Theorem 5.8], we have the following result.

Proposition 2.2. The subvariety L(ν, λ) ⊂M(ν, λ) is Lagrangian.

When Q has cycles, this is a consequence of §§ 2.1 and 2.2.

Definition 2.3. For every subset i ∈ I and every (x, f, g) ∈ M◦(ν, λ), we denote by Ii(x, f, g)

the subspace of Vν spanned by the action of x⊕ g on (
⊕

j 6=iVj)⊕Wi. Then, for l > 0, we set

M◦(ν, λ)i,l = {x ∈ M◦(ν, λ) | codim Ii(x, f, g) = lei}.

We define M(ν, λ)i,l, L◦(ν, λ)i,l and L(ν, λ)i,l in the same way. The quantity codim Ii(x, f, g) being

stable on Gν-orbits, the notation M◦(ν, λ)i,l, M(ν, λ)i,l, L◦(ν, λ)i,l and L(ν, λ)i,l also make sense.

Remark 2.3. – As in Remark 1.10, we have

L◦(ν, λ) =
⊔

i∈I,l>1

L◦(ν, λ)i,l.

– Note that L◦(lei, 0) = Λ(lei).
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Proposition 2.4. There exist a variety M̌◦(ν, λ)i,l and a diagram

M̌◦(ν, λ)i,l
qi,l

ww

pi,l

**
M◦(ν, λ)i,l M◦(ν − lei, λ)i,0 ×M◦(lei, 0)

(2.5)

such that pi,l and qi,l are smooth with connected fibers, inducing a bijection

IrrM◦(ν, λ)i,l
∼
→ IrrM◦(ν − lei, λ)i,0 × IrrM◦(lei, 0).

Proof. In this proof we will denote by I(V, V ′) the set of I-graded isomorphisms between two
I-graded spaces V and V ′ of the same I-graded dimension. We set

M̌◦(ν, λ)i,l =





(x, f, g,X, β, γ)

∣∣∣∣∣∣∣∣

(x, f, g) ∈ M◦(ν, λ)i,l
X I-graded and Ii(x, f, g)⊕ X = Vν
β ∈ I(Ii(x, f, g), Vν−lei)
γ ∈ I(X, Vlei)





and

pi,l

∣∣∣∣
M̌◦(ν, λ)i,l → M◦(ν − lei, λ)i,0 ×M◦(lei, 0)

(x, f, g,X, β, γ) 7→ (β∗(xf, g)Ii(x,f,g), γ∗(x, f, g)X).

We study the fibers of pi,l: take (x, f, g) ∈ M◦(ν − lei, λ)i,0 and (z, 0, 0) ∈ M◦(lei, 0) and consider
I and X, two supplementary I-graded subspaces of Vν , such that dimX = lei, together with two
isomorphisms

β ∈ I(I, Vν−lei) and γ ∈ I(X, Vlei).

We identify (x, f, g) and z with β∗(x, f, g) and γ∗z, and we define a preimage (X,F,G) by setting

(X,F,G)
|I⊕W
|I⊕W = (x, f, g), X

|X
|X = z and

(X,F )
|I⊕W
|X = (η, θ) ∈ Ē(X, I)⊕Hom(Xi,Wi).

In order to get µν,λ(X,F,G) = 0, (η, θ) must satisfy the following relation:

ψ(η, θ) =
∑

h∈H:s(h)=i

ε(h)(xh̄ηh + ηh̄zh) + giθi = 0.

We need to show that ψ is surjective to conclude the proof. Consider ξ ∈ Hom(Ii,Xi) such that
Tr(ψ(η, θ)ξ) = 0 for every (η, θ). Then we have for every edge h ∈H such that s(h) = i 6= j = t(h)
and for every ηh,

0 = Tr(xh̄ηhξ)

= Tr(ηhξxh̄).

Hence, ξxh̄ = 0 and Imxh̄ ⊆ ker ξ. We also have Tr(giθiξ) = 0 for every θi, so we similarly get
Im gi ⊆ ker ξ. Now consider a loop h ∈ H at i. We have for every ηh

0 = Tr((xh̄ηh − ηhzh̄)ξ)

= Tr(ηh(ξxh̄ − zh̄ξ))

and hence ξxh̄ = zh̄ξ and therefore ker ξ is stable by xh̄. Since (x, f, g) ∈ M◦(ν− lei, λ)i,0, we get
ξ = 0, which finishes the proof. 2
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Corollary 2.6. We also have a bijection

l◦(ν, λ)i,l : Irr L◦(ν, λ)i,l
∼
→ Irr L◦(ν − lei, λ)i,0 × Irr L◦(lei, 0).

Proof. The image of a seminilpotent element by pi,l is a pair of seminilpotent elements, and the
fiber of pi,l over a pair of seminilpotent elements consists in seminilpotent elements. 2

2.2 Extension to the stable locus
We will often use the following well-known fact.

Lemma 2.7. Consider y ∈ End I and z ∈ EndX such that Spec y ∩ Spec z = ∅. If C[y] · v = I
and C[z] · v′ = X for some v ∈ I and v′ ∈ X, then C[y ⊕ z] · v ⊕ v′ = I⊕ X.

Notation 2.8. Let i be imaginary and put Ω(i) = {b1, . . . , bωi}. For every (x, f) ∈ L◦(ν, λ), we
set σi(x) = x∗

b̄1
, where ∗ stands for the duality

EndV → EndV ∗ = End(Hom(V,C))

u 7→ u∗ = [φ 7→ φ ◦ u]

for every C-vector space V .

Lemma 2.9. For every C ∈ Irr Λ(lei), there exists x ∈ C such that

∃ψ ∈ V ∗lei ,C[σi(x)] · ψ = V ∗lei .

Proof. It is a consequence of §§ 1.1 and 1.2. If ωi = 1 and λ is a partition of l, denote by µ the
conjugate partition of λ. Let x ∈ Oλ be defined in a base

e = (e1,1, . . . , e1,µ1 , . . . , er,1, . . . , er,µr)

by

x∗b1 =




Jµ1 0 0

0

0

0 0 Jµr




and x∗b̄1 =




t1Iµ1 + Jµ1 0 0

0

0

0 0 trIµr + Jµr




where the ti are all distinct and nonzero, and

Jp =




0 1 0 0

0 0

1

0 0 0



.

It is enough to consider ψ with nonzero coordinates relatively to (e1,µ1 , . . . , er,µr) to get C[σi(x)] ·
ψ = V ∗lei . If ωi > 2, we use the proof of Proposition 1.5: in any irreducible component we can define
x such that there exists v such that C[xb̄1 ] · v = Vlei (xb̄i corresponds to yi in the aforementioned
proof, xbi to xi). We get the result by duality. 2

Remark 2.10. Note that the case ωi = 1 is very well known, since it corresponds to the case of
the Hilbert scheme of points in the plane.
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Definition 2.4. Set
L(λ) :=

⋃

ν

L(ν, λ) ⊆
⋃

ν

L◦(ν, λ) =: L◦(λ)

and define B(λ) as the smallest subset of Irr L◦(λ) containing the only element of Irr L◦(0, λ),
and stable by l◦(ν, λ)−1

i,l (−, Irr Λ(lei)) for ν, i, l such that:

. 〈ei, λ− Cν〉 > −l if i ∈ Ire;

. λi +
∑

h∈Hi νt(h) > 0 if i ∈ I im,

where Hi = {h ∈ H | i = s(h) 6= t(h)}.

Lemma 2.11. For every i ∈ I im, we write Ω(i) = {bi,1, . . . , bi,ωi}. For every C ∈ B(λ), there exists
(x, f) ∈ C such that





(x, f) stable

∀i ∈ I im,∃φi ∈W ∗i ⊕
(⊕

h∈Hi
V ∗νt(h)

)
,C[σi(x)] · Σi(x, f)(φi) = V ∗νi

(2.12)

where Σi(x, f) = f∗i +
∑

h∈Hi x
∗
h.

Proof. We proceed by induction on ν, with the first step consisting in the case of C ∈ B(λ) ∩
Irr L◦(lei, λ) for some l > 0. If i /∈ I im, we have l 6 λi by definition of B(λ) and hence we can
find (x, f) ∈ C such that (2.12) holds, since it is equivalent here to f injective. If i ∈ I im, we
have λi > 0 by definition of B(λ), and we can use Lemma 2.9.

Now consider C ∈ B(λ)∩ Irr L◦(ν, λ)i,l for some ν and l > 0, and set (C1, C2) = l◦(ν, λ)i,l(C).
First assume that i /∈ I im. Thanks to the induction hypothesis, we can pick ((x, f), z) ∈ C1×C2

such that (x, f) satisfies (2.12). Following the notation used in the proof of Proposition 2.4, we
build an element of C satisfying (2.12) by choosing (η, θ) such that θ +

∑
h∈Hi ηh is injective

with values in a supplementary of Im(fi +
∑

h∈Hi xh) in Wi⊕ ker(
∑

h∈Hi xh̄): it is possible since
l + 〈ei, λ− Cν〉 > 0 by definition of B(λ).

If i ∈ I im, take (x, f) ∈ C1 satisfying (2.12) and z ∈ C2 such that

{
Specxb̄i,1 ∩ Spec zb̄i,1 = ∅

∃ψ ∈ V ∗lei ,C[σi(z)] · ψ = V ∗lei ,

which is possible thanks to Lemma 2.9. Still following the notation of the proof of Proposition 2.4,
we build an element of C mapped to ((x, f), z) by considering (η, θ) such that

(
θ∗ +

∑

h∈Hi
η∗h

)
(φi) = ψ,

where φi ∈ W ∗i ⊕ (
⊕

h∈HiV
∗
νt(h)

) satisfies C[σi(x)] · Σi(x, f)(φi) = I∗ (we use the induction

hypothesis), which is possible even if I = {0} since we have W ∗i ⊕ (
⊕

h∈HiV
∗
νt(h)

) 6= {0} by

definition of B(λ). Put ηbi,j = ηb̄i,j = 0 for every j > 2, so that

ψi(η, θ) = 0⇔ xb̄i,1ηbi,1 − ηbi,1zb̄i,1 =
∑

h∈Hi
ε(h)(xh̄ηh + ηh̄zh).

Hence, we can choose ηbi,1 in order to satisfy the right-hand-side equation, since

Specxb̄i,1 ∩ Spec zb̄i,1 = ∅⇒ (ηbi,1 7→ xb̄i,1ηbi,1 − ηbi,1zb̄i,1) invertible.
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Thanks to Lemma 2.7, (X,F ) ∈ C satisfies

C[σi(X)] · Σi(X,F )(φi) = V ∗νi .

We finally have to check the stability of (X,F ) to conclude the proof. Consider S ⊆ kerF stable

by X. We have S ∩ I = {0} by stability of (x, f); thus, S ' Si and we see S as a subspace of

kerF ∩ (
⋂
h∈Hi kerXh). But then S∗ is stable by σi(X) and contains ImF ∗+

∑
h∈Hi ImX∗h, and

thus φi. Hence, S∗ = Vνi and S = {0}. 2

Proposition 2.13. We have B(λ) = Irr L(λ).

Proof. Thanks to Lemma 2.11, we have B(λ) ⊆ Irr L(λ). Consider Z ∈ Irr L(ν, λ)i,l\B(λ) for some

l > 0. We know (cf. [Nak98, Corollary 4.6]) that if i ∈ Ire, we necessarily have l+ 〈ei, ν−Cλ〉 > 0

and, thus, by definition of B(λ),

l◦(ν, λ)i,l(Z) ∈ (Irr L(ν − lei, λ)\B(λ))× Irr Λ(lei).

If i ∈ I im, Z ∈ Irr L(ν, λ)i,l necessarily implies λi +
∑

h∈Hi νt(h) > 0, and we get to the same

conclusion. By descending induction on ν, we obtain that the only irreducible component of

L(0, λ) does not belong to B(λ), which is absurd. 2

Corollary 2.14. Take i ∈ I im and assume that Irr L(ν, λ)i,l ⊆ B(λ). We have the following

commutative diagram.

Irr L(ν, λ)i,l ∼
l(ν,λ)i,l //

∼
��

Irr L(ν − lei, λ)i,0 × Irr Λ(lei)

∼
��

IrrL(ν, λ)i,l ∼
l(ν,λ)i,l // IrrL(ν − lei, λ)i,0 × Irr Λ(lei)

(2.15)

Proof. By definition of stability, the action of Gν on L(ν, λ) is free. 2

2.3 Tensor product on IrrL

2.3.1 Another Lagrangian subvariety. Embed W in a (λ+ λ′)-dimensional I-graded vector

space, and fix a supplementary subspace W ′ of W . We still denote by I(X,Y ) the set of I-graded

isomorphisms between two I-graded spaces X and Y .

For every v ∈ NI , denote by Z◦(v) ⊆ M◦(v, λ + λ′) elements (x, f, g) such that there exists

an I-graded subspace V of Vv satisfying:

(i) x(V ) ⊆ V ;

(ii) f(V ) ⊆W ;

(iii) g(W ⊕W ′) ⊆ V ;

(iv) g(W ) = {0}
and denote by V (x, f, g) the larger x-stable subspace of f−1(W ) containing Im g. We will then

denote by Z̃◦(v) ⊂ Z◦(v) the subvariety of elements (x, f, g) such that

(x, f)
|V×W
|V×V and (x, f)

|(Vv/V )×(W⊕W ′/W )
|(Vv/V )×(Vv/V ) are seminilpotents,
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where we have written V instead of V (x, f, g). We get a stratification of Z̃◦(v) by setting, for
any ν, ν ′ such that ν + ν ′ = v,

Z̃◦(ν, ν ′) = {(x, f, g) ∈ Z̃◦(ν + ν ′) | dimV (x, f, g) = ν}.
Define the following incidence variety:

Ž◦(ν, ν ′) =



(x, f, g, V ′, β)

∣∣∣∣∣∣

(x, f, g) ∈ Z̃◦(ν, ν ′),
V (x, f, g)⊕ V ′ = Vν+ν′ ,

β ∈ I(V (x, f, g), Vν)× I(V ′, Vν′)



 .

By definition of V (x, f, g) (again denoted by V hereunder), we have

(x, f, g) ∈ Z◦(v)⇒ (x, f)
|(Vv/V )×(W⊕W ′/W )
|(Vv/V )×(Vv/V ) stable

and hence the following application is well defined:

T◦

∣∣∣∣∣
Ž◦(ν, ν ′) → L◦(ν, λ)× L(ν ′, λ′)

(x, f, g, V ′, β) 7→ β∗
(

(x, f)
|V×W
|V×V , (x, f)

|V ′×(W⊕W ′/W )
|V ′×V ′

)
.

Proposition 2.16. The map T◦ is smooth with connected fibers.

Proof. Let (x, f) and (x′, f ′) be elements of L◦(ν, λ) and L(ν ′, λ′) and take I-graded spaces V
and V ′ of dimensions ν and ν ′. Define (X,F,G, V ′, β) in the fiber T−1

◦ ((x, f), (x′, f ′)) by:

(i) β ∈ I(V, Vν)× I(V ′, Vν′);
(ii) G = 0⊕ τ , where

ν ∈
⊕

i∈I
Hom(W ′i , Vi);

(iii) X = β∗x⊕ (β∗x′ + η) : V ⊕ V ′ → V ⊕ V ′, where

η ∈
⊕

h∈H
Hom(V ′s(h), Vt(h));

(iv) F = β∗f ⊕ (β∗f ′ + θ) : V ⊕ V ′ → W ⊕W ′, where

θ ∈
⊕

i∈I
Hom(V ′i ,Wi)

such that µν+ν′,λ+λ′(X,F,G) = 0.

Lemma 2.17. This equation is linear in the variables (τ, η, θ), and the associated linear map is
surjective.

Proof. We first identify x, x′ and f ′ with β∗x, β∗x′ and β∗f ′. Then the linear map ζ = (ζi) we
are interested in is given by

ζi(τ, η, θ) = τif
′
i +

∑

h∈H:s(h)=i

ε(h̄)(xh̄ηh + ηh̄x
′
h).

Take L ∈⊕i∈I Hom(Vi, V
′
i ) such that for every (τ, η, θ),

∑

i∈I
Tr(ζ(τ, η, θ)Li) = 0.
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Then, for every edge h such that s(h) = i, t(h) = j, we have for every ηh,

Tr(xh̄ηhLi)− Tr(ηhx
′
h̄Lj) = 0.

But
Tr(ηhLixh̄)− Tr(ηhx

′
h̄Lj) = Tr(ηhLixh̄ − ηhx′h̄Lj) = Tr(ηh(Lixh̄ − x′h̄Lj)).

Hence, Lixh̄ = x′
h̄
Lj , and thus ImL is stable by x′. Moreover,

∀i,∀τi, Tr(τif
′
iLi) = 0⇒ ∀i, f ′iLi = 0⇒ ImL ⊂ ker f ′

and hence the lemma comes from the stability of (x′, f ′). 2

We have to check that V = V (X,F,G). It is easy to see that V ⊂ V (X,F,G). Moreover,

F−1(W ) = {v + v′ ∈ V ⊕ V ′ | f(v) + θ(v′) + f ′(v′) ∈W} = V ⊕ ker f ′

and hence, if Y is an X-stable subspace of F−1(W ), Y/V is an x′-stable subspace of ker f ′. Since
(x′, f ′) is stable, we have Y ⊂ V , and thus V = V (X,F,G).

We have proved that the fiber T−1
◦ ((x, f), (x′, f ′)) is isomorphic to

Gν+ν′ × C〈λ
′,ν〉+(ν′,ν)+〈ν′,λ〉−〈ν′,ν〉

and thus is connected. 2

Lemma 2.18. Consider (x, f, g) ∈ Z̃◦(ν, ν ′) and V = V (x, f, g). Then

(x, f, g) stable ⇔ (x, f)
|V×W
|V×V stable

and we denote by Z̃(ν, ν ′) the subvariety of stable points of Z̃◦(ν, ν ′), and

Z̃(ν, ν ′) = Z̃(ν, ν ′)//Gν+ν′ .

Proof. The equivalence is a consequence of the following facts:
– the restriction of a stable point is stable;
– the extension of a stable point by a stable point is stable;

– the point (x, f)
|(Vν+ν′/V )×(W⊕W ′/W )

|(Vν+ν′/V )×(Vν+ν′/V ) is stable. 2

Theorem 2.5. We have the following bijection:

IrrL(ν, λ)× IrrL(ν, λ′)
⊗
∼ // Irr Z̃(ν, ν ′).

Proof. Define Ž(ν, ν ′) as the variety of stable points of Ž◦(ν, ν ′). We have the following diagram:

Ž(ν, ν ′) T //

��

L(ν, λ)× L(ν ′, λ′)

��
Z̃(ν, ν ′) T // L(ν, λ)× L(ν ′, λ′)

where the rightmost vertical map is just the free quotient by Gν ×Gν′ . The leftmost map being
a principal bundle with fibers isomorphic to

Gν ×Gν′ ×GrassIν,ν′(ν + ν ′)×Gν+ν′ ,

we get our bijection thanks to Proposition 2.16 and Lemma 2.18. 2
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Again, there is an alternative definition for Z̃(ν, ν ′), given in [Nak01]. Denote by ∗ the C∗-
action on M(v, λ + λ′) induced by the one-parameter subgroup C∗ → GL(W ⊕ W ′), t 7→
t idW ⊕ idW ′ . We have

M(v, λ+ λ′)C
∗ '

⊔

ν+ν′=v

M(ν, λ)×M(ν ′, λ′)

and

Z̃(ν, ν ′) =
{

[x, f, g] ∈M(v, λ+ λ′) | lim
t→0

t ∗ [x, f, g] ∈ L(ν, λ)× L(ν ′, λ′)
}
.

Hence, we also have, as in [Nak01, Proposition 3.15], the following result.

Proposition 2.19. The subvariety Z̃(ν, ν ′) ⊂M(ν + ν ′, λ+ λ′) is Lagrangian.

The results of § 2.2 lead to the following result, completing [Nak01, Proposition 4.3], which
deals with the case ωi = 0.

Proposition 2.20. Consider i such that ωi > 0 and l > 0. If

λi + λ′i +
∑

h∈Hi
vt(h) > 0,

we have a bijection

Irr Z̃(v)i,l
∼
→ Irr Z̃(v − lei)i,0 × Irr Λ(lei).

2.3.2 Comparison of two crystal-type structures.

Notation 2.21. For every X ∈ Irr Z̃(v)i,l, we will denote by εi(X) ∈ Irr Λ(lei) the composition
of the second projection with the bijection obtained in Proposition 2.20, so that |εi(X)| = l.
Note that if (X,X ′) ∈ IrrL(ν, λ) × IrrL(ν ′, λ′), the quantity εi(X ⊗X ′) makes sense thanks to
Theorem 2.5 and Proposition 2.20.

We will write Ω(i) = {bi,j}16j6ωi for i imaginary, or Ω(i) = {bj}16j6ωi if it is not ambiguous.

Lemma 2.22. Let i be an imaginary vertex and assume that
∑

h∈Hi nt(h) > 0. For every C ∈
IrrL(ν, λ), there exist (x, f) ∈ C, v ∈ Im

∑
h∈Hi xh̄ such that

C[xb̄1 ] · v = Ii(x, f).

Proof. We proceed by induction on νi, the first step being trivial. For the inductive step, we
can immediately conclude the proof if C ∈ IrrL(ν, λ)i,l for l > 0. Otherwise, C ∈ IrrL(ν, λ)i,0,
but C ∈ IrrL(ν, λ)j,l for some j ∈ I and l > 0. There exists a minimal chain (jk, lk, Ck)16k6s of
elements of I × N>0 × IrrL(−, λ) such that:

– (j1, l1, C1) = (j, l, C);
– Ck+1 = pr1l(ν − l1j1 − · · · − lkjk, λ)jk,lk(Ck), where pr1 is the first projection;
– js = i.

We necessarily have js−1 adjacent to i and, by the induction hypothesis, the proposition is
satisfied by Cs, and thus by Cs−1. But then, thanks to Lemmas 2.7 and 2.9, the proposition is
also satisfied by Cs−2 for a generic choice of ηh̄ (using the notation of the proof of Lemma 2.11,
where i is replaced by js−1). Hence, it is also satisfied by C = C1. 2
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Proposition 2.23. Let i be an imaginary vertex and consider (X,X ′) ∈ IrrL(ν, λ)×IrrL(ν ′, λ′).
Assume that |εi(X ′)| < ν ′i or 0 < λ′i. Then we have

εi(X ⊗X ′) = εi(X
′).

Proof. Put (Y,C) = l(n,m)i,l(X), where l = |εi(X)|. Take ((x, f), (x′, f ′)) ∈ X × X ′. Consider
the equation ζi = 0 used in the proof of Lemma 2.17:

τif
′
i +

∑

h∈H:s(h)=i

ε(h̄)(xh̄ηh + ηh̄x
′
h) = 0.

Note that ηbj = ηj , xbj = xj and xb̄j = x̄j (and the same with x′); take ηb̄j = 0, so that our
equation becomes

τif
′
i +

∑

h∈Hi
ηh̄x

′
h =

∑

16j6ωi
(x̄jηj − ηj x̄′j)

= x̄1η1 − η1x̄
′
1

if we also set ηj = 0 for j > 2 (if any). Then we set

x′ = f ′i +
⊕

h∈Hi
x′h : Vν′i → W ′i ⊕

⊕

h∈Hi
Vν′

t(h)
,

η̄ = τi +
∑

h∈Hi
ε(h̄)ηh̄ : W ′i ⊕

⊕

h∈Hi
Vν′

t(h)
→ Vνi ,

x̄ =
∑

h∈Hi
ε(h̄)xh̄ :

⊕

h∈Hi
Vνt(h) → Vνi ,

η =
⊕

h∈Hi
ηh : Vν′i →

⊕

h∈Hi
Vνt(h)

and our equation finally becomes

η̄x′ + ηx̄ = x̄1η1 − η1x̄
′
1.

Consider the open subvariety of X ×X ′, where:

(i) there exists v ∈ Vνi such that its image v̄ ∈ Vνi/Ii(x, f) satisfies

C[x̄1|Vνi/Ii(x,f)] · v̄ = Vνi/Ii(x, f);

(ii) x̄′1, x̄1|Ii(x,f) and x̄1|Cni/Ii(x,f) have disjoint spectra;

(iii) there exist v and v′ such that w =
∑

h∈Hi xh̄(v) and w′ =
∑

h∈Hi x
′
h̄
(v′) satisfy

C[x̄1 ⊕ x̄′1] ·w ⊕w′ = Ii(x, f)⊕ Ii(x
′, f ′),

which is nonempty, thanks to Lemmas 2.9, 2.22 and 2.7. Take:
– η̄ = τi and v ∈ Im τi if λ′i > 0;
– η̄ such that η̄(v′) = v if ν ′i > |εi(X ′)| (possible since v′ 6= 0).

From Lemma 2.7, we get (with the notation used in the proof of Proposition 2.16)

C[Xb̄1
] · Im

(∑

h∈Hi
Xh̄

)
= Vνi ⊕ Ii(x

′, f ′).

2018

https://doi.org/10.1112/S0010437X1600751X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1600751X


Quivers with loops and generalized crystals

We have to check that we can choose η such that the equations ζt(h) = 0 are satisfied for every
h ∈ Hi (if λ′i > 0 and η̄ = τi, just take η = 0). It suffices to set ηhx

′
h̄
(v′t(h)) = −xhηh̄(v′t(h))

(possible since ν ′i > |εi(X ′)| and since we may assume that v′t(h) = 0 if x′
h̄
(v′t(h)) = 0) and to set

η and η̄ equal to zero on supplementaries of Cw′ and Cv′, respectively. We can finally choose η1

such that η̄x′ + ηx̄ = x̄1η1 − η1x̄
′
1 (possible since Spec x̄′1 ∩ Spec x̄1 = ∅). Since

codim Ii(x, f) > |εi(X ′)|

for every (x, f) ∈ X ⊗X ′, the subvariety of X ⊗X ′ defined by

codim Ii(x, f) = |εi(X ′)|

is open, and we have shown it is nonempty; hence, the theorem is proved. 2

Proposition 2.24. Assume that λ′i = 0, |εi(X ′)| = ν ′i and
∑

h∈Hi ν
′
t(h) > 0. Then we still have

εi(X ⊗X ′) = εi(X
′).

Proof. Thanks to the previous proof, the result is clear if there exists an imaginary vertex j
adjacent to i: the choice of xb̄j,1 and x′

b̄j,1
with disjoint spectra enables to use ηbj,1 for ζj = 0 to

be satisfied (with the usual notation Ω(j) = {bj,1, . . . , bj,ωj}).
Assume that every neighbour of i is real. Following the previous proof, assume that η̄ = ηh̄

is of rank 1 for some h : i → j. We have to check that ζj = 0 can be satisfied. It is clear if
f ′j 6= 0: just choose τj such that τjf

′
j = −ε(h)xhηh̄ and ηp = 0 = ηp̄ if p ∈ Hj\{h̄}, so that ζj = 0

is satisfied. Otherwise, there necessarily exists an edge q : j → k 6= i such that x′q 6= 0 (if not,
V ′ν′i
⊕ V ′ν′j ⊆ ker f ′ would be x′-stable, which is not possible for every vertex j adjacent to i since

∑
h∈Hi ν

′
t(h) > 0). Hence, it is possible to choose ηq̄ so that ε(q̄)ηq̄x

′
q = −ε(h)xhηh̄ and ηp = 0 = ηp̄

if p ∈ Hj\{h̄, q}, and thus get ζj = 0 satisfied. 2

We have proved the following result.

Theorem 2.6. Let i be an imaginary vertex and consider (X,X ′) ∈ IrrL(ν, λ) × IrrL(ν ′, λ′).
We have

εi(X ⊗X ′) =

{
εi(X

′) if λ′i +
∑

h∈Hi ν
′
t(h) > 0,

εi(X) otherwise.

3. Generalized crystals

Let (−,−) denote the symmetric Euler form on ZI: (i, j) is equal to the opposite of the number
of edges of Ω between i and j for i 6= j ∈ I, and (i, i) = 2 − 2ωi. We will still denote by Ire

(respectively, I im) the set of real (respectively, imaginary) vertices, and by I iso ⊆ I im the set
of isotropic vertices: vertices i such that (i, i) = 0, i.e. such that ωi = 1. We also set I∞ =
(Ire × {1}) ∪ (I im × N>1), and (ι, j) = l(i, j) if ι = (i, l) ∈ I∞ and j ∈ I.

3.1 A generalized quantum group
We recall some of the definitions and results discussed in [Boz15, § 2].

Definition 3.1. Let F denote the Q(v)-algebra generated by (Eι)ι∈I∞ , naturally NI-graded by
deg(Ei,l) = li for (i, l) ∈ I∞. We put F[A] = {x ∈ F | |x| ∈ A} for any A ⊆ NI, where we denote
by |x| the degree of an element x.
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For ν =
∑
νii ∈ ZI, we set:

. ht(ν) =
∑
νi its height;

. vν =
∏
vνii if vi = v(i,i)/2.

We endow F⊗ F with the following multiplication:

(a⊗ b)(c⊗ d) = v(|b|,|c|)(ac)⊗ (bd)

and equip F with a comultiplication δ defined by

δ(Ei,l) =
∑

t+t′=l

vtt
′

i Ei,t ⊗ Ei,t′ ,

where (i, l) ∈ I∞ and Ei,0 = 1.

Proposition 3.1. For any family (νι)ι∈I∞ , we can endow F with a bilinear form {−,−} such
that:

. {x, y} = 0 if |x| 6= |y|;

. {Eι, Eι} = νι for all ι ∈ I∞;

. {ab, c} = {a⊗ b, δ(c)} for all a, b, c ∈ F.

Notation 3.2. Take i ∈ I im and c a composition or a partition. We put Ei,c =
∏
j Ei,cj and

νi,c =
∏
j νi,cj . If i is real, we will often use the index i instead of i, 1.

Proposition 3.3. Consider (ι, j) ∈ I∞ × Ire. The element

∑

t+t′=−(ι,j)+1

(−1)tE
(t)
j EιE

(t′)
j (3.4)

belongs to the radical of {−,−}.

Definition 3.2. We denote by Ũ+ the quotient of F by the ideal spanned by the elements (3.4)
and the commutators [Ei,l, Ei,k] for every isotropic vertex i, so that {−,−} is still defined on
Ũ+. We denote by U+ the quotient of Ũ+ by the radical of {−,−}.

Definition 3.3. Let Û be the quotient of the algebra generated by K±i , Eι, Fι (i ∈ I and ι ∈ I∞)
subject to the following relations:

KiKj = KjKi,

KiK
−
i = 1,

KjEι = v(j,ι)EιKj ,

KjFι = v−(j,ι)FιKj ,∑

t+t′=−(ι,j)+1

(−1)tE
(t)
j EιE

(t′)
j = 0 (j ∈ Ire),

∑

t+t′=−(ι,j)+1

(−1)tF
(t)
j FιF

(t′)
j = 0 (j ∈ Ire),

[Ei,l, Ej,k] = 0 if (i, j) = 0,

[Fi,l, Fj,k] = 0 if (i, j) = 0,
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[Ei,l, Ei,k] = 0 (i ∈ I iso),

[Fi,l, Fi,k] = 0 (i ∈ I iso).

We extend the graduation by |Ki| = 0 and |Fι| = −|Eι|, and we set Kν =
∏
iK

νi
i for every

ν ∈ ZI.
We endow Û with a comultiplication ∆ defined by

∆(Ki) = Ki ⊗Ki,

∆(Ei,l) =
∑

t+t′=l

vtt
′

i Ei,tKt′i ⊗ Ei,t′ ,

∆(Fi,l) =
∑

t+t′=l

v−tt
′

i Fi,t ⊗K−tiFi,t′ .

We extend {−,−} to the subalgebra Û>0 ⊆ Û spanned by (K±i )i∈I and (Eι)ι∈I∞ by setting
{xKi, yKj} = {x, y}v(i,j) for x, y ∈ Ũ+.

We use the Drinfeld double process to define Ũ as the quotient of Û by the relations
∑
{a(1), b(2)}ω(b(1))a(2) =

∑
{a(2), b(1)}a(1)ω(b(2)) (3.5)

for any a, b ∈ Ũ>0, where ω is the unique involutive automorphism of Û mapping Eι to Fι and
Ki to K−i, and where we use the Sweedler notation, for example ∆(a) =

∑
a(1) ⊗ a(2).

Setting x− = ω(x) for x ∈ Ũ , we define {−,−} on the subalgebra Ũ− ⊆ Ũ spanned by
(Fι)ι∈I∞ by setting {x, y} = {x−, y−} for any x, y ∈ Ũ−. We will denote by U− (respectively, U)
the quotient of Ũ− (respectively, Ũ) by the radical of {−,−} restricted to Ũ− (respectively,
restricted to Ũ− × Ũ+).

Proposition 3.6. Assume that

{Eι, Eι} ∈ 1 + v−1NJv−1K.

for every ι ∈ I∞. Then we have Ũ− ' U−.

Notation 3.7. We denote by Ci,l the set of compositions c (respectively, partitions) such that
|c| = l if (i, i) < 0 (respectively, (i, i) = 0), and Ci =

⊔
l>0 Ci,l. If i is real, we just put Ci,l = {l}.

Denote by u 7→ ū the involutive Q-morphism of U stabilizing Eι, Fι, and mapping Ki to K−i
and v to v−1.

Proposition 3.8. For any imaginary vertex i and any l > 1, there exists a unique element
ai,l ∈ U+[li] such that, if we set bi,l = a−i,l, we get:

(i) Q(v)〈Ei,l | l > 1〉 = Q(v)〈ai,l | l > 1〉 and Q(v)〈Fi,l | l > 1〉 = Q(v)〈bi,l | l > 1〉 as algebras;

(ii) {ai,l, z} = {bi,l, z−} = 0 for any z ∈ Q(v)〈Ei,k | k < l〉;
(iii) ai,l − Ei,l ∈ Q(v)〈Ei,k | k < l〉 and bi,l − Fi,l ∈ Q(v)〈Fi,k | k < l〉;
(iv) āi,l = ai,l and b̄i,l = bi,l;

(v) δ(ai,l) = ai,l ⊗ 1 + 1⊗ ai,l and δ(bi,l) = bi,l ⊗ 1 + 1⊗ bi,l.

Notation 3.9. Consider i ∈ I im and c ∈ Ci,l. We set τi,l = {ai,l, ai,l}, ai,c =
∏
j ai,cj and τi,c =∏

j τi,cj . Notice that {ai,c | c ∈ Ci,l} is a basis of U+[li].
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Definition 3.4. We denote by δi,c, δ
i,c : U+

→ U+ the linear maps defined by

δ(x) =
∑

c∈Ci,l
δi,c(x)⊗ ai,c + obd,

δ(x) =
∑

c∈Ci,l
ai,c ⊗ δi,c(x) + obd,

where ‘obd’ stands for terms of bidegree not in NI × Ni in the former equality, Ni × NI in the
latter one.

3.2 Kashiwara operators
Proposition 3.10. Let i be an imaginary vertex, l > 0, c = (c1, . . . , cr) ∈ Ci and (y, z) ∈ (U+)2.
We have the following identities:

(i) δi,l(yz) = δi,l(y)z + vl(i,|y|)yδi,l(z);

(ii) [ai,l, z
−] = τi,l{δi,l(z)−K−li −Kliδ

i,l(z)−};
(iii) δi,l(ai,c) =

∑
k:ck=l v

2lck−1

i ai,c\ck ,

where c0 = 0 and c\ck = (c1, . . . , ĉk, . . . , cr); the notation ĉk meaning that ck is removed from c.

Proof. The first equality comes from the definition of δi,l, the second from the primitive character
of ai,l and the formula (3.5) with a = ai,l and b = z−. The third comes from the definition of δi,l
and the primitive character of the ai,h. 2

Definition 3.5. Define e′i,l : U− → U− by e′i,l(z
−) = δi,l(z)− for any z ∈ U+.

Proposition 3.11. Set

Ki =
⋂

l>0

ker e′i,l

for any i ∈ I im. We have the following decomposition:

U− =
⊕

c∈Ci
bi,cKi.

Proof. Let us first prove the existence. Consider u ∈ U−, and assume first that u is of the following
form: u = mbi,cm

′ for some c ∈ Ci and some m,m′ ∈ Ki. We proceed by induction on |c|. If
|c| = 0, we have mm′ ∈ Ki thanks to Proposition 3.10(1). Otherwise, set [y, z]◦ = v−(|y|,|z|)yz−zy
for any y, z ∈ U+. Thanks to Proposition 3.10(1), and since δi,l(ai,k) = δl,k, we have for any
y ∈ ⋂l>0 ker δi,l and any k > 0

δi,l([y, ai,k]
◦) = v−k(i,|y|)δi,l(yai,k)− δi,l(ai,ky)

= v−k(i,|y|)vl(i,|y|)yδi,l(ai,k)− δi,l(ai,k)y
= δl,kv

(l−k)(i,|y|)y − δl,ky
= 0.

Hence, the following equality:

u = vc1(|m|,i)[m, bi,c1 ]◦bi,c\c1m
′ + v−c1(|m|,i)bi,c1mbi,c\c1m

′
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along with the induction hypothesis allow us to conclude the proof, since |c\c1| < |c| and since⊕
c∈Ci bi,cKi is stable by left multiplication by bi,c1 .
Then we prove the existence of the decomposition for a general u ∈ U−, using induction on

−|u|. If u 6= 1, we can write

u =
∑

ι∈I∞
bιuι

for some finitely many nonzero uι ∈ U−. Thanks to our induction hypothesis, we have

u =
∑

ι∈I∞,c∈Ci
bιbi,czι,c

for some finitely many nonzero zι,c ∈ Ki. Then

u =
∑

l>0,c∈Ci
bi,(l,c)z(i,l),c +

∑

ι∈I∞\({i}×N>0)
c∈Ci

bιbi,czι,c

and we have the result since bιbi,czι,c is of the form mbi,cm
′ for some m,m′ ∈ Ki. Indeed, it

is straightforward from the definitions that δi,l(aj,h) = 0 for any l, h > 0 if j 6= i. Note that if
i /∈ I iso, the composition (l, c) is the composition c′, where c′1 = l and c′k = ck−1 if k > 2, but if
i ∈ I iso, (l, c) stands for the partition c ∪ l.

To prove the unicity of the decomposition, consider a minimal nontrivial relation of
dependence

0 =
∑

c∈Ci
ai,czc,

where zc ∈ K−i . We have to consider separately the cases i ∈ I iso and i /∈ I iso. First, consider
i /∈ I iso. Consider r maximal such that there exists c = (c1, . . . , cr) such that zc 6= 0. Using
Proposition 3.10(1) and applying repeatedly Proposition 3.10(3), we see that for any c′ ∈ Src
(with the convention (σc)k = cσ(k)),

0 = δi,c
′
(∑

c′′∈Ci
ai,c′′zc′′

)

=
∑

c′′∈Ci
δi,c
′
(ai,c′′)zc′′

=
∑

c′′∈Src
δi,c
′
(ai,c′′)zc′′

=
∑

c′′∈Src
Pc′,c′′(vi)zc′′ ,

where Pc′,c′′(v) ∈ Z[v]. The third equality is true by maximality of r. Since (zc′′)c′′∈Src 6= 0, we
have to prove that

∆(v) = det(Pc′,c′′(v))c′,c′′∈Src 6= 0 ∈ Z[v]

to end our proof in the case (i, i) < 0 (since then we have vi 6= 1). But, for any c′ = (c′1, . . . , c
′
r)

∈ Src, one has, using Proposition 3.10(3),

Pc′,c′′(0) 6= 0⇔ c′′ = (c′r, . . . , c
′
1).

Hence, ∆(0) 6= 0, and in particular ∆ 6= 0.
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We finally have to prove the uniqueness in the case (i, i) = 0. Write a relation of dependence
of minimal degree:

0 =
∑

λ∈Ci
ai,λzλ,

where zλ ∈ K−i . For any λ and l > 0, set ml(λ) = |{s : λs = l}|, and denote by λ\l the partition
obtained by removing one of the λs = l when ml(λ) > 1. Hence, ml(λ\l) = ml(λ)− 1. We have,
thanks to Proposition 3.10(1,3),

δi,l
(∑

λ∈Ci
ai,λzλ

)
=
∑

λ∈Ci
ml(λ)ai,λ\lzλ

=
∑

µ∈Ci
ai,µ, {(ml(µ) + 1)zµ∪l}

which contradicts the minimality of the first relation. Note that the proof is easier in this case
because we are dealing with partitions and hence the quantity µ ∪ l is ‘uniquely defined’. 2

The following definition generalizes the Kashiwara operators (see e.g. [KS97, Lemma 2.3.1]).

Definition 3.6. If i is imaginary and z =
∑

c∈Ci bi,czc ∈ U−, set

ẽi,l(z) =





∑

c:c1=l

bi,c\c1zc if i /∈ I iso,

∑

λ∈Ci

√
ml(λ)

l
bi,λ\lzλ if i ∈ I iso,

f̃i,l(z) =





∑

c∈Ci
bi,(l,c)zc if i /∈ I iso,

∑

λ∈Ci

√
l

ml(λ) + 1
bi,λ∪ lzλ if i ∈ I iso,

where ml(λ) = |{s : λs = l}|.

Remark 3.12. Note that the fact that vi = 1 for isotropic vertices makes this case somehow
degenerate. The use of partitions instead of compositions, or the presence of square roots in the
above definition, are consequences of this particularity. The importance of these square roots will
become clear in the proofs of Lemmas 3.33 and 3.34. Note that we need to consider an extension
of Q for these square roots to be defined.

3.3 Definition of generalized crystals
Denote by P the lattice ZI , still endowed with the pairing 〈−,−〉 defined by 〈ei, ej〉 = δi,j , where
ei = (δi,j)j∈I for every i ∈ I. We will also denote αi instead of Cei, where C = ((i, j))i,j∈I still
denotes the Cartan matrix associated to Q.

Definition 3.7. We call Q-crystal a set B together with maps

wt : B → P,

εi : B → Ci t {−∞},
φi : B → N t {±∞},
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ẽi, f̃i : B → B t {0} i ∈ Ire,

ẽi,l, f̃i,l : B → B t {0} i ∈ I im, l > 0

such that for every b, b′ ∈ B,

(A1) 〈ei,wt(b)〉 > 0 if i ∈ I im;

(A2) wt(ẽi,lb) = wt(b) + lαi if ẽi,lb 6= 0;

(A3) wt(f̃i,lb) = wt(b)− lαi if f̃i,lb 6= 0;

(A4) f̃i,lb = b′ ⇔ b = ẽi,lb
′;

(A5) if ẽi,lb 6= 0, εi(ẽi,lb) =




εi(b)− l if i ∈ Ire,

εi(b)\l if i ∈ I im\I iso and l = εi(b)1,

εi(b)\l if i ∈ I iso;

(A6) if f̃i,lb 6= 0, εi(f̃i,lb) =

{
εi(b) + l if i ∈ Ire,

(l, εi(b)) if i ∈ I im;

(A7) φi(b) =




εi(b) + 〈ei,wt(b)〉 if i ∈ Ire,

+∞ if i ∈ I im and 〈ei,wt(b)〉 > 0,

0 otherwise,

where, for i ∈ Ire, we write ẽi,1, f̃i,1 instead of ẽi, f̃i and ẽi,l, f̃i,l instead of ẽli,1, f̃
l
i,1. Also, as earlier,

(l, εi(b)) stands for the partition εi(b) ∪ l if i ∈ I iso.

Remark 3.13. – We will use the following notation: wti = 〈ei,wt〉.
– Note that this definition of φi already appears in [JKK05]. Also note that since we will only

be interested in normal crystals (see Definition 3.9), we require |εi| and φi to be nonnegative,
except if εi = −∞, in which case we set |εi| = −∞.

– Set ẽi,c = ẽi,c1 . . . ẽi,cr and f̃i,c = f̃i,c1 . . . f̃i,cr for every c = (c1, . . . , cr). Set c̄ = (cr, . . . , c1)
if ωi > 2, c̄ = c if ωi 6 1. We have

f̃i,cb = b′ ⇔ b = ẽi,c̄b
′.

Example 3.14. For every vertex i, we define a crystal Bi by endowing Ci with the following maps:

wt(c) = −|c|αi,
εi(c) = c,

εj(c) = −∞ if j 6= i,

ẽi,l(c) =





c− l if i ∈ Ire and c > l,
c\l if i ∈ I im\I iso and l = εi(b)1,

c\l if i ∈ I iso,

0 otherwise,

f̃i,l(c) =

{
c + l if i ∈ Ire,

(l, c) if i ∈ I im.

We will denote by (0)i the trivial element of Ci.

Definition 3.8. A morphism of crystals B1 → B2 is a map B1 t {0}→ B2 t {0} mapping 0
to 0, preserving the weight, εi, and commuting with the respective actions of the ẽι, f̃ι on B1

and B2.
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Definition 3.9. A crystal B is said to be normal if for every b ∈ B and i ∈ I, we have

εi(b) = max{c̄ | ẽi,c(b) 6= 0},
φi(b) = max{|c| | f̃i,c(b) 6= 0}.

Definition 3.10. The tensor product B⊗B′ = {b⊗ b′ | b ∈ B, b′ ∈ B′} of two crystals is defined
by:

(i) wt(b⊗ b′) = wt(b) + wt(b′);
(ii) if i ∈ Ire, εi(b⊗ b′) = max{εi(b′), εi(b)− wti(b

′)};

(iii) if i ∈ I im, εi(b⊗ b′) =

{
εi(b
′) if φi(b) > |εi(b′)|,

εi(b) if φi(b) < |εi(b′)|;
(iv) if i ∈ Ire, φi(b⊗ b′) = max{φi(b′) + wti(b), φi(b)};

(v) if i ∈ I im, φi(b⊗ b′) =

{
φi(b

′) if φi(b) > |εi(b′)|,
φi(b) if φi(b) < |εi(b′)|;

(vi) for every ι = (i, l) ∈ I∞, ẽι(b⊗ b′) =

{
b⊗ ẽι(b′) if φi(b

′) > |εi(b)|,
ẽι(b)⊗ b′ if φi(b

′) < |εi(b)|;

(vii) for every ι = (i, l) ∈ I∞, f̃ι(b⊗ b′) =

{
b⊗ f̃ι(b′) if φi(b

′) > |εi(b)|,
f̃ι(b)⊗ b′ if φi(b

′) 6 |εi(b)|.

Remark 3.15. Note that when i is imaginary, the condition φi(b
′) > |εi(b)| is equivalent to

φi(b
′) = +∞ or [φi(b

′) = 0 and εi(b) = −∞],

and φi(b
′) = |εi(b)| is equivalent to φi(b

′) = 0 = |εi(b)|.

Proposition 3.16. B⊗B′ is a crystal if B′ is normal.

Proof. Note that the result is already known if I im = ∅ and hence we just have to check the
axioms of Definition 3.7 that concern imaginary vertices. Axioms (A1), (A2), (A3) and (A7) are
clearly satisfied.

To prove that (A4) is satisfied, we first consider b and b′ such that ẽi,l(b ⊗ b′) 6= 0. If
φi(b

′) > |εi(b)|, we have ẽi,l(b ⊗ b′) = b ⊗ ẽi,l(b′). The crystal B′ being normal, φi(ẽi,l(b
′)) > 0

since f̃i,lẽi,l(b
′) = b′ 6= 0. But i is imaginary, so by definition φi(ẽi,l(b

′)) ∈ {0,+∞}, and we get
φi(ẽi,l(b

′)) = +∞. Also by definition, |εi(b)| < +∞ and hence we get

f̃i,l(b⊗ ẽi,lb′) = b⊗ f̃i,lẽi,lb′ = b⊗ b′.

If φi(b
′) < |εi(b)|, we have ẽi,l(b ⊗ b′) = ẽi,l(b) ⊗ b′, where |εi(ẽi,l(b))| = |εi(b)| − l is necessarily

nonnegative by definition of εi. Also, φi(b
′) cannot be equal to +∞ and hence is 0, and

f̃i,l(ẽi,l(b)⊗ b′) = f̃i,l(ẽi,l(b))⊗ b′ = b⊗ b′.

Assume now that f̃i,l(b⊗ b′) 6= 0. If φi(b
′) > |εi(b)|, we get f̃i,l(b⊗ b′) = b⊗ f̃i,lb′. If εi(b) = −∞,

we have φi(f̃i,lb
′) > εi(b). Otherwise, we necessarily have φi(b

′) = +∞. But

wti(f̃i,l(b
′)) = wti(b

′)− l〈ei, αi〉 > wti(b
′)

since 〈ei, αi〉 6 0 for every i ∈ I im. Hence, φi(f̃i,l(b
′)) = +∞, and

ẽi,l(b⊗ f̃i,lb′) = b⊗ ẽi,lf̃i,lb′ = b⊗ b′.
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If φi(b
′) 6 |εi(b)|, then f̃i,l(b⊗ b′) = f̃i,l(b)⊗ b′, where

|εi(f̃i,l(b))| = |εi(b)|+ l > |εi(b)| > φi(b′)

and hence
ẽi,l(f̃i,l(b)⊗ b′) = ẽi,l(f̃i,l(b))⊗ b′ = b⊗ b′.

From the definitions and the proof of (A4) above, it is easy to check that

εi(ẽi,l(b⊗ b′)) =

{
εi(ẽi,lb

′) if εi(b⊗ b′) = εi(b
′),

εi(ẽi,lb) if εi(b⊗ b′) = εi(b)

and hence (A5) is satisfied by B⊗B′ since it is by B and B′. For the same reasons, (A6) is satisfied,
except if φi(b

′) = |εi(b)|, which can only happen if both are equal to 0 (we still consider i ∈ I im).
But then ẽi,l(b

′) = 0, so there is nothing to prove. Otherwise, we would have f̃i,lẽi,lb
′ = b′ 6= 0

and hence φi(ẽi,lb
′) = +∞ by normality. But then

wti(b
′) = wti(ẽi,l(b

′))− l〈ei, αi〉 > wti(ẽi,l(b
′)) > 0

would imply φi(b
′) = +∞, which contradicts the assumption. 2

3.4 The crystal B(∞)
3.4.1 Algebraic definition. Let A ⊂ Q(v−1) be the subring consisting of rational functions

without pole at v−1 = 0, and L(∞) be the sub-A-module of U− generated by the elements
f̃ι1 . . . f̃ιs .1, where ιk ∈ I∞ and the operators f̃ι are those defined in Definition 3.6 together with
the original ones for ι = i ∈ Ire. Define the following set:

B(∞) = {f̃ι1 . . . f̃ιs · 1 | ιk ∈ I∞} ⊂
L(∞)

v−1L(∞)
.

The following theorem will be proved in § 3.6.

Theorem 3.11. The Kashiwara operators are still defined on B(∞), which is a crystal once
equipped with the following maps:

wt(b) =
∑

i∈I
νiαi if |b| = ν ∈ −NI,

εi(b) = max{c̄ | ẽi,c(b) 6= 0}.

We have the following characterization, analogous to [KS97, Proposition 3.2.3].

Proposition 3.17. Let B be a crystal, and b0 ∈ B with weight 0, such that:

(i) wt(B) ⊂ −∑i∈I Nαi;
(ii) the only element of B with weight 0 is b0;

(iii) εi(b0) = 0 for every i ∈ I;

(iv) there exists an embedding Ψi : B → Bi ⊗B for every i ∈ I;

(v) for every b 6= b0, there exists i ∈ I such that Ψi(b) = c⊗ b′ for some b′ ∈ B and c ∈ Ci\{(0)i};
(vi) for every i, the crystal B′i = πiΨi(B) is normal, where πi is the second projection Bi⊗B → B.

Then B ' B(∞).
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Remark 3.18. The crystal structure we consider on B′i is the following: if b′ ∈ B′i, we set ẽι(b
′) = 0

(respectively, f̃ι(b
′) = 0) if, with respect to the structure of B, ẽι(b

′) ∈ B\B′i (respectively,
f̃ι(b

′) ∈ B\B′i).

Proof. First note that we necessarily have Ψi(b0) = (0)i ⊗ b0, thanks to (1). Let us show that
for any b ∈ B\{b0} there exists ι ∈ I∞ such that ẽι(b) 6= 0. Consider i ∈ I such that Ψi(b) =
c ⊗ b′ for some b′ ∈ B and nontrivial c ∈ Ci, and assume that i is imaginary since the result is
already known from [KS97, Proposition 3.2.3] when i is real. If b′ = b0, since φi(b0) = 0, we have
ẽi,c1(b) = c\c1 ⊗ b0 6= 0. Otherwise, by induction on the weight, we can assume that there exists
ι ∈ I∞ such that ẽι(b

′) 6= 0. If ι = (j, 1) for some real vertex j, we get ẽι(b) 6= 0. If ι = (j, l) for
some imaginary vertex j, we have to prove that φj(b

′) = +∞ to get to the same result. But we
have b′ = f̃j,lẽj,lb

′ 6= 0 and hence φj(ẽj,l(b
′)) 6= 0 by normality of B′j . Since (j, j) 6 0, we have

wtj(b
′) = wtj(ẽj,l(b

′))− l〈ej , αj〉 > wtj(ẽj,l(b
′)) > 0;

hence, φj(b
′) = +∞, and

Ψi(ẽj,l(b)) = ẽj,l(c⊗ b′) = c⊗ ẽj,l(b′) 6= 0,

which proves that ẽj,l(b) 6= 0.

Hence, any element can be written b = f̃ι1 . . . f̃ι1(b0) for some ιk ∈ I∞. The end of the proof
is analogous to the one given in [KS97]; one just has to replace I by I∞ (which is countably
infinite). 2

3.4.2 Geometric realization.

Notation 3.19. From Proposition 1.11, we have the following bijections:

Irr Λ(ν)i,l ∼
ki,l // Irr Λ(ν − lei)i,0 × Ci,l,

where ν ∈ P+ = NI , i ∈ I, l > 0. Set, for c ∈ Ci,l,

Irr Λi,l =
⊔

ν∈P+

Irr Λ(ν)i,l,

Irr Λ(ν)i,c = l−1
i,l (Irr Λ(ν − lei)i,0 × {c}),

Irr Λi,c =
⊔

ν∈P+

Irr Λ(ν)i,c,

Irr Λ =
⊔

ν∈P+

Irr Λ(ν)

and denote by ẽi,c and f̃i,c the inverse bijections

ẽi,c : Irr Λi,c
//
Irr Λi,0 : f̃i,coo

induced by ki,l. Then, for every l > 0, we define

ẽi,l =
⊔

c∈Ci
f̃i,c\lẽi,c : Irr Λ → Irr Λ t {0},

f̃i,l = f̃i,(l) t
(⊔

c∈Ci
f̃i,(l,c)ẽi,c

)
: Irr Λ → Irr Λ t {0},

where f̃i,c\l = 0 if ωi > 2 and l 6= c1, or if ωi = 1 and ml(c) = 0.

2028

https://doi.org/10.1112/S0010437X1600751X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1600751X


Quivers with loops and generalized crystals

It is obvious from the definitions that we have the following result.

Proposition 3.20. The set Irr Λ is a crystal with respect to wt : Z ∈ Irr Λ(ν) 7→ −Cν, εi the
composition of

⊔
l>0 ki,l and the second projection, and ẽi,l, f̃i,l the maps defined above.

The duality Λ → Λ, x 7→ x∗ induces a bijection ∗ : Irr Λ → Irr Λ, Z 7→ Z∗ preserving the
grading. Following [KS97], we note that

ε∗i = ∗εi∗,
ẽ∗i,l = ∗ẽi,l∗,
f̃∗i,l = ∗f̃i,l ∗ .

Note that ε∗i (Z) is the dimension of the largest subspace of
⋂
h∈Hi kerxh stable by (xh)h∈Hi , for

a generic element x ∈ Z. We will denote ẽ∗max
i (Z) instead of ẽi,c(Z) when c = ε∗i (Z). We have

the following result, corresponding to [KS97, 5.3.1] when i is real.

Proposition 3.21. Consider Z ∈ Irr Λ(ν) such that ε∗i (Z) = c 6= 0 for some imaginary vertex i,
and set Z̄ = ẽ∗i,c(Z). Assume that wti(Z̄) > 0. We have:

(i) εi(Z) = εi(Z̄);

(ii)

{
ε∗i (ẽι(Z)) = ε∗i (Z)

ẽ∗max
i (ẽι(Z)) = ẽι(Z̄)

for every ι ∈ I∞.

Proof. The proof is actually simpler than in the real case. Indeed, in the proof of Proposition 1.11,
consider y ∈ Z̄∗ and z ∈ c∗ (we abusively identify Irr Λ(le) with Ci,l). We want

0 =
∑

h∈Hi
yh̄ηh +

∑

h∈Ω(i)

[(yh̄ηh − ηhzh̄) + (yhηh̄ − ηh̄zh)].

Note that
0 < wti(Z̄) =

∑

h∈Hi
νt(h) − (i, i)(νi − |c|)⇔ 0 <

∑

h∈Hi
νt(h)

since (i, i) 6 0, and since it is impossible to have
∑

h∈Hi νt(h) = 0 and νi − |c| > 0. Hence, there
exists h0 ∈ Hi such that νh0 > 0. We have Spec(zh̄1)∩ Spec(yh̄1) = ∅ for a generic choice of y, z,
where h1 ∈ Ω(i). But then the map

ηh1 7→ yh̄1ηh1 − ηh1zh̄1
is invertible, and we can generically choose ηh0 so that

dimC〈z∗h | h ∈ Hi〉 · Im η∗h0 = |c|.

This proves that ε∗i (Z
∗) = ε∗i (Z̄

∗) and hence (1). The second statement directly follows from the
proof of (1). 2

Theorem 3.12. We have Irr Λ ' B(∞).

Proof. Set Ψi(Z) = ε∗i (Z) ⊗ ẽ∗max
i (Z), which is clearly injective. By Proposition 3.21 and

the definition of our generalized crystals, Ψi is a morphism. Note that we have Ψ(ẽi,l(Z)) =
ẽi,l(ε

∗
i (Z)) ⊗ Z̄ if wti(Z̄) = 0. By Remark 1.10 (or its dual analog), the condition (5) of

Proposition 3.17 is satisfied. The condition (6) is satisfied because it is clear that f̃i,l(Z̄) /∈ B′i if
φi(Z̄) = 0. Hence, we get the result. 2
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3.4.3 Semicanonical basis. The following proposition is proved in [Boz15].

Proposition 3.22. There exists a surjective morphism Φ : U+
v=1 → M◦ defined by

{
Ei,a 7→ 1i,l if i ∈ I im,

Ei 7→ 1i if i ∈ Ire.

Thanks to Theorem 3.12, we now have the following result.

Theorem 3.13. The morphism Φ is an isomorphism: U+
v=1

∼
→ M◦.

Proof. The family (fZ)Z∈Irr Λ is clearly free, so we have

|Irr Λ(ν)| 6 dimM◦(ν) 6 dimU+
v=1[ν],

the latter inequality being true thanks to Proposition 3.22. From Theorem 3.12, we have
|Irr Λ(ν)| = dimU+

v=1[ν]; hence, (fZ)Z∈Irr Λ is a basis of M◦, and Φ is an isomorphism. 2

Definition 3.14. The semicanonical basis of U+
v=1 is the pullback of (fZ)Z∈Irr Λ.

3.5 The crystals B(λ)
3.5.1 Algebraic definition. We will use the fundamental weights (Λi)i∈I defined by (i,Λj) =

δi,j for every i, j ∈ I. Note that the isomorphism P
∼
→
∑

ZΛi, ei 7→ Λi maps αi to i. We use
this isomorphism to identify

∑
ZΛi with P and

∑
NΛi with P+. We call dominant the elements

λ ∈ P+, which are the ones satisfying (i, λ) > 0 for every i ∈ I.

Definition 3.15. We denote by O the category of U -modules satisfying:

(i) M =
⊕

µ∈P Mµ, where Mµ = {m ∈M | ∀i,Kim = v(µ,i)m};
(ii) for any m ∈M , there exists p > 0 such that xm = 0 as soon as x ∈ U+[ν] and ht(ν) > p.

For any λ ∈ P , we define a Verma module

M(λ) =
U∑

ι∈I∞ UEι +
∑

i∈I U
(
Ki − v(i,λ)

) ∈ O

and the following simple quotient:

πλ : U � V (λ) =
M(λ)

M(λ)−
∈ O,

where M(λ)− is the sum of all strict submodules of M(λ). We will denote by vλ ∈ V (λ)λ the
image of 1 ∈ U .

Remark 3.23. Note that thanks to Proposition 3.10(2), we have a triangular decomposition, and
thus M(λ) = U−vλ.

We have the following proposition, generalizing the case i ∈ Ire.

Proposition 3.24. Assume that (i, λ) > 0 for some imaginary vertex i. Then we have the
following decomposition:

V (λ) =
⊕

c∈Ci
bi,cKi,

where Ki =
⋂
l>0 kerEi,l.
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Proof. Let us first prove the existence. Consider v ∈ V (λ), and assume first that v is of the
following form: v = ubi,cz for some c ∈ Ci, u ∈ U− satisfying [ai,l, u] = 0 for every l, and z ∈ Ki.
We proceed by induction on |c|. First note that if (i, |u|) = 0, since i is imaginary, one necessarily
has

supp|u| ⊆ {j ∈ I | (i, j) = 0}.
Hence, [u, bi,l] = 0 for any l (whether i is isotropic or not) and we get the result by induction.
Otherwise, (i, |u|) > 0, and we set

l = c1,

[u, bi,l]
◦ = ubi,l −R(v)bi,lu for some R ∈ Q(v),

z′ = bi,c\c1z ∈ V (λ)µ.

For any k > 0, we have

[ai,k, [u, bi,l]
◦]z′ = δl,kτi,l{u(K−li −Kli)−R(v)(K−li −Kli)u}z′ [cf. Definition 3.10(2)]

= δl,kτi,lu{(v−l(i,µ) − vl(i,µ))−R(v)(v−l(i,|u|+µ) − vl(i,|u|+µ))}z′
= 0

if

R(v) =
v−l(i,µ) − vl(i,µ)

v−l(i,|u|+µ) − vl(i,|u|+µ)
,

which is possible since

(i, |u|+ µ) = (i, λ) + (i, |u|) + (i, µ− λ) > (i, λ) + (i, µ− λ) > 0.

We have used that since i is imaginary, we have

µ− λ ∈ −NI ⇒ (i, µ− λ) > 0.

Hence, the following equality:

v = [u, bi,l]
◦bi,c\c1z +R(v)bi,lubi,c\c1z

along with the induction hypothesis allow us to conclude the proof since |c\c1| < |c| and since⊕
c∈Ci bi,cKi is stable by left multiplication by bi,l.
Then we prove the existence of the decomposition for a general v ∈ V (λ)µ, using induction

on
∑

(λi − µi). If v 6= vλ, thanks to Remark 3.23, we can write

v =
∑

ι∈I∞
bιvι

for some finitely many nonzero vι ∈ V (λ). Thanks to our induction hypothesis, we have

v =
∑

ι∈I∞,c∈Ci
bιbi,czι,c

for some finitely many nonzero zι,c ∈ Ki. Then

v =
∑

l>0,c∈Ci
bi,(l,c)z(i,l),c +

∑

ι∈I∞\({i}×N>0)
c∈Ci

bιbi,czι,c

and we have the result since bιbi,czι,c is of the form ubi,cz already treated. Indeed, thanks to
Proposition 3.10(2), [ai,l, bj,k] = 0 for any l, k > 0 if j 6= i.
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To prove the unicity of the decomposition, consider a minimal nontrivial relation of
dependence:

0 =
∑

c∈Ci
bi,czc,

where zc ∈ V (λ)µ+|c|i ∩Ki. We have to consider separately the cases i ∈ I iso and i /∈ I iso. First,
consider i /∈ I iso. Consider r maximal such that there exists c = (c1, . . . , cr) such that zc 6= 0.
Set, for any k ∈ J1, rK,

c<k = (c1, . . . , ck−1),

c>k = (ck+1, . . . , cr)

with the convention c<1 = ∅ = c>r. Then, if l > 0, we get the following from Proposition 3.10(2),
where by convention bi,∅ = 1:

[ai,l, bi,c] = τi,l
∑

k:ck=l

bi,c<k(K−li −Kli)bi,c>k

= τi,l
∑

k:ck=l

bi,c\ck(v
2l|c>k|
i K−li − v−2l|c>k|

i Kli).

Then, since zc ∈ Ki,

ai,lbi,czc = τi,l
∑

k:ck=l

bi,c\ck(v
2l|c>k|
i K−li − v−2l|c>k|

i Kli)zc

= τi,l
∑

k:ck=l

bi,c\ck(v−l(i,µ+|c6k|i) − vl(i,µ+|c6k|i))zc,

where c6k = (c<k, ck). We see that for any c′ ∈ Src (with the convention (σc)k = cσ(k)), since r
is maximal, we have

0 = ai,c′
∑

c′′∈Ci
bi,c′′zc′′ = ai,c′

∑

c′′∈Src
bi,c′′zc′′ = τi,c

∑

c′′∈Src
Pc′,c′′(v)zc′′ ,

where Pc′,c′′(v) ∈ Z[v, v−1]. Since (zc′′)c′′∈Src 6= 0, we have to prove that

∆(v) = det(Pc′,c′′(v))c′,c′′∈Src 6= 0 ∈ Z[v, v−1]

to end our proof in the case (i, i) < 0. Note that λ− (µ+ |c|i) ∈ NI; hence, since i is imaginary,

(i, µ+ |c|i) = (i, λ) + (i, µ+ |c|i− λ) > 0.

Then, for any c′ ∈ Src, one has

max
c′′∈Src

{deg(Pc′,c′′)} = deg(Pc′,c̄′) =
∑

16k6r
ck(i, µ+ cki) = m,

which is only reached for c′′ = c̄′. However, this is not true if m = 0, which can only happen if our
initial relation of dependence is of the form bi,lzl = 0, with (i, µ+ li) = 0. But, if (i, µ+ li) = 0,
the module generated by bi,lzl is a nontrivial strict submodule of V (λ) since, for every k > 0 and
j 6= i,

ai,kbi,lzl = 0

aj,kbi,lzl = bi,laj,kzl.

Hence, the relation of dependence bi,lzl = 0 is actually trivial by definition of V (λ).
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Otherwise, the application Src → Src, c′ 7→ c̄′ being a permutation, the degree of ∆ is
|Src|m > 0, and in particular ∆ 6= 0.

We finally have to prove the uniqueness in the case (i, i) = 0. Write a relation of dependence
of minimal degree:

0 =
∑

ν∈Ci
bi,νzν ,

where zν ∈ V (λ)µ+|ν|i ∩Ki. For any l > 0, we have, thanks to Proposition 3.10(2),

ai,l
∑

ν∈Ci
bi,νzν =

∑

ν∈Ci
ml(ν)τi,l(v

−l(i,µ) − vl(i,µ))bi,ν\lzν

= τi,l(v
−l(i,µ) − vl(i,µ))

∑

ν′∈Ci
bi,ν′{(ml(ν

′) + 1)zν′∪l},

which contradicts the minimality of the first relation. Note that we can assume that l(i, µ) 6= 0:
otherwise, we would again have an initial trivial relation of dependence (more precisely, for every
ν we would have bi,νzν = 0 ∈ V (λ)). 2

This proposition allows us to define Kashiwara operators ẽι, f̃ι on each V (λ), exactly as in
Definition 3.6.

Definition 3.16. If i is imaginary and v =
∑

c∈Ci bi,czc ∈ V (λ), set

ẽi,l(v) =





∑

c:c1=l

bi,c\c1zc if i /∈ I iso,

∑

ν∈Ci

√
ml(ν)

l
bi,ν\lzν if i ∈ I iso,

f̃i,l(v) =





∑

c∈Ci
bi,(l,c)zc if i /∈ I iso,

∑

ν∈Ci

√
l

ml(ν) + 1
bi,ν∪lzν if i ∈ I iso.

The following result will be proved in § 3.6.

Theorem 3.17. Assume that λ is dominant. The Kashiwara operators, along with the maps

wt(m) = µ if m ∈ V (λ)µ,

εi(m) = max{c̄ | ẽi,c(m) 6= 0},

induce a structure of crystal on

B(λ) = {f̃ι1 . . . f̃ιsvλ | ιk ∈ I∞} ⊂
L(λ)

v−1L(λ)
,

where

L(λ) =
∑

ι1,...,ιs

Af̃ι1 . . . f̃ιsvλ.
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Remark 3.25. These crystals are normal: consider m ∈ V (λ)µ and i imaginary (again, the case
of real vertices is already known). We have already seen that we necessarily have (i, µ) > 0 since
λ is dominant. If (i, µ) = 0 for some imaginary vertex i, then aιbi,lm = bi,laιm for any ι ∈ I∞
(use Proposition 3.10(2) if ι = (i, l)). Hence, for any l > 0, the submodule of V (λ) spanned by
bi,lm is a strict submodule, and we get f̃i,lm = 0.

Otherwise, (i, µ) > 0 and, for every µ′ ∈ −NI, since (i, i) 6 0, we get

(i, µ+ µ′) = (i, µ) + (i, µ′) > (i, µ) > 0;

hence, max{|c| | bi,cm 6= 0} = +∞.

3.5.2 Geometric realization.

Notation 3.26. Consider λ dominant. We have the following bijections:

IrrL(ν, λ)i,l ∼
li,l // IrrL(ν − lei, λ)i,0 × Ci,l;

each time the left-hand side is nonempty (cf. Proposition 2.13). Set, for c ∈ Ci,l,

IrrL(λ)i,l =
⊔

ν∈P+

IrrL(ν, λ)i,l,

IrrL(ν, λ)i,c = l−1
i,l (IrrL(ν − lei, λ)i,0 × {c}),

IrrL(λ)i,c =
⊔

ν∈P+

IrrL(ν, λ)i,c,

IrrL(λ) =
⊔

ν∈P+

IrrL(ν, λ)

and denote by ẽi,c and f̃i,c the inverse bijections

ẽi,c : IrrL(λ)i,c
//
IrrL(λ)i,0 : f̃i,coo

induced by li,l. Then, for every l > 0, we define

ẽi,l =
⊔

c∈Ci
f̃i,c\c1 ẽi,c : IrrL(λ) → IrrL(λ) t {0},

f̃i,l = f̃i,(l) t
(⊔

c∈Ci
f̃i,(l,c)ẽi,c

)
: IrrL(λ) → IrrL(λ) t {0}

with the same conventions as in Notation 3.19.

The following result is a direct consequence of Proposition 2.13.

Proposition 3.27. The set IrrL(λ) is a crystal with respect to

wt : b ∈ IrrL(ν, λ) 7→ λ− Cν,

εi the composition of
⊔
l>0 li,l and the second projection, and ẽi,l, f̃i,l the maps defined above.

Remark 3.28. Thanks to Proposition 2.13 and the classical case, we have, for every i ∈ I,

φi(b) = max{|c| ∈ N | f̃i,c(b) 6= 0}.

2034

https://doi.org/10.1112/S0010437X1600751X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1600751X


Quivers with loops and generalized crystals

Indeed, for b ∈ IrrL(ν, λ), it is impossible to have νi > 0 and λi +
∑

h∈Hi νt(h) = 0; hence,

λi +
∑

h∈Hi
νt(h) > 0⇔ 〈ei, λ− Cν〉 > 0,

and IrrL(λ) is normal.

In an analogous way, one can equip Irr Z̃ with a structure of crystal, thanks to
Proposition 2.20, and get the following result.

Theorem 3.18. The crystal structure on Irr Z̃ coincides with that of the tensor product
IrrL(λ)⊗ IrrL(λ′).

Proof. This is a direct consequence of Theorem 2.6 along with the proofs of Propositions 2.23
and 2.24. 2

We will see in § 3.6 how the previous theorem leads to the following result.

Theorem 3.19. If λ is dominant, we have the following isomorphism of crystals: B(λ)' IrrL(λ).

3.6 Grand-loop argument
To prove Theorems 3.11, 3.17 and 3.19, one has to generalize Kashiwara’s grand-loop argument
to our framework (see [Kas91]).

Instead of giving the whole grand-loop argument, we give a few lemmas that yield its
generalization.

Notation 3.29. When working with a A-lattice L, we will write m ≡m′ instead of m = m′+v−1L

for any m,m′ ∈ L.

The following result is about the tensor product.

Lemma 3.30. Consider two dominant weights λ and λ′, and (m,m′) ∈ L(λ)×L(λ′)µ′ . Then, for
every imaginary vertex i and l > 0, we have

bi,l(m⊗m′) ≡
{
m⊗ bi,lm′ if wti(m

′) > 0,

bi,lm⊗m′ otherwise.

Remark 3.31. Note that since εi(m) 6= −∞ in this situation, this is exactly Definition 3.10(7).

Proof. We have already seen that when i ∈ I im, since µ′ − λ′ ∈ −NI, we have

(i, µ′) = (i, λ′) + (i, µ′ − λ′) > 0.

We have also already seen that thanks to Proposition 3.10(2), if (i, µ′) = 0, then aιbi,lm
′ = bi,laιm

′

for every ι ∈ I∞. Hence, bi,lm
′ = 0 since the module spanned by bi,lm

′ is a strict submodule of
V (λ′). Hence,

bi,l(m⊗m′) = bi,lm⊗K−lim′ +m⊗ bi,lm′

= v−l(i,µ
′)bi,lm⊗m′ +m⊗ bi,lm′

≡
{
m⊗ bi,lm′ if wti(m

′) > 0

bi,lm⊗m′ otherwise.
2
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Lemma 3.32. Consider i ∈ I im and l > 0. We have τi,l ≡ 1/l if i ∈ I iso, τi,l ≡ 1 otherwise.

Proof. First note that for any i ∈ I im and l > 0, {Ei,l, Ei,l} ≡ 1 is required by Proposition 3.6.
Assume moreover that

{Ei,l, Ei,l} =
∏

16k6l

1

1− v−k ,

which is consistent with [Boz15, Theorem 1]. Then, when i ∈ I iso, we have an isomorphism
from the ring of symmetric functions Λ = Z[xk, k > 1] to Z[Ei,l, l > 1] mapping the elementary
symmetric functions el to v−l/2Ei,l and such that the pushforward of {−,−} is the Hall–
Littlewood scalar product (still denoted by {−,−}). Asking for ai,l to be primitive and to satisfy
Ei,l − ai,l ∈ Q(v)[Ei,k, k < l] means that the power sum symmetric functions pl are mapped to
v−l/2(−1)l−1lai,l. Since the Hall–Littlewood scalar product satisfies {pl, pl} = (lv−l/(1− v−l)),
we get

τi,l = {ai,l, ai,l} =
vl

l2
lv−l

1− v−l =
1/l

1− v−l ≡ 1/l,

as expected.
If i /∈ I iso, let us prove that ai,l ≡ Ei,l by induction on l. Write

ai,l − Ei,l =
∑

c∈Ci,l\{(l)}
αcai,c

for some αc ∈ Q(v). By Proposition 3.8, for every c′ ∈ Ci,l\{(l)}, we have

∑

c∈Ci,l\{(l)}
αc{ai,c, ai,c′} = −{Ei,l, ai,c′}

= −{δ(Ei,l), ai,c′1 ⊗ ai,c′\c′1}
= −vc

′
1|c′\c′1|
i {Ei,c′1 , ai,c′1}{Ei,|c′\c′1|, ai,c′\c′1}

= −v
∑

c′kc
′
k+1

i

∏
{Ei,c′k , ai,c′k}

= −v
∑

c′kc
′
k+1

i

∏
τi,c′k

≡ 0

by the induction hypothesis and since (i, i) < 0. We have also used that τi,k = {Ei,k, ai,k} since
{ai,k, ai,k − Ei,k} = 0. Also, note that

det({ai,c, ai,c′})c,c′∈Ci,l\{(l)} ≡ 1

since

{ai,c, ai,c′} =
{
ai,c1 ⊗ ai,c\c1 ,

∏
(ai,c′k ⊗ 1 + 1⊗ ai,c′k)

}

=
∑

k:c′k=c1

v
c′k−1c

′
k

i τi,c1{ai,c\c1 , ai,c′\c′k}

≡ δc1,c′1{ai,c\c1 , ai,c′\c′k}
≡ · · · ≡ δc,c′ .

Hence, we get αc ≡ 0, which implies that τi,l = {ai,l, Ei,l} ≡ {Ei,l, Ei,l} ≡ 1. 2
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The following lemma deals with the behaviour of the generalized Kashiwara operators
regarding our Hopf bilinear form {−,−}.

Lemma 3.33. For any u, v ∈ U− and (i, l) ∈ I∞, {f̃i,lu, v} ≡ {u, ẽi,lv}.

Proof. We can assume that v = bi,cz for some z ∈ Ki. If i ∈ I im is not isotropic,

{f̃i,lu, v} = {bi,lu, v}
= {bi,l ⊗ u, δ(bi,cz)}
= τi,l{u, δi,l(bi,cz)}
= τi,l{u, δi,l(bi,c)z} [cf. Definition 3.10(1)]

≡ {u, δi,l(bi,c)z} [cf. Lemma 3.32]

=
∑

k:ck=l

v
lck−1

i {u, bi,c\ckz} [cf. Definition 3.10(3)]

≡ {u, bi,c\c1z}
= {u, ẽi,lv}.

This computation also proves the case i ∈ Ire, l = 1, which is already known. If i is isotropic,
v = bi,νz and u = bi,ν′z

′,

{f̃i,lu, v} =

√
l

ml(ν ′) + 1
{bi,lu, v}

=

√
l

ml(ν ′) + 1
{bi,l ⊗ u, δ(bi,νz)}

=

√
l

ml(ν ′) + 1
τi,l{u, δi,l(bi,νz)}

=

√
l

ml(ν ′) + 1
τi,l{u, δi,l(bi,ν)z}

=

√
l

ml(ν ′) + 1
τi,lml(ν){u, bi,ν\lz}.

We see by induction that {f̃i,lu, v} = {u, ẽi,lv} = 0 if ν 6= ν ′ ∪ l. Otherwise, we get, thanks to
Lemma 3.32,

{f̃i,lu, v} ≡
√
ml(ν)

l
{u, bi,ν\lz} = {u, ẽi,lv}. 2

In order to get an analogous result regarding the lattices L(λ), first note that there exists
for each λ ∈ P+ a unique symmetric bilinear form (−,−) on V (λ) satisfying

(Kiu, u
′) = (u,Kiu

′),

(bi,lu, u
′) = −(u,K−liai,lu

′) if i ∈ I im,

(biu, u
′) =

v

v−1 − v (u,K−iaiu′) if i ∈ Ire,

(vλ, vλ) = 1

for every u, u′ ∈ V (λ) and (i, l) ∈ I∞. Then we have the following result.
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Lemma 3.34. For every u, v ∈ L(λ) and (i, l) ∈ I∞, (f̃i,lu, v) ≡ (u, ẽi,lv).

Proof. Assume that v = bi,cz for some nontrivial c and some z ∈ Ki ∩ V (λ)µ. Note that we have
already seen that (i, µ) > 0, and that bi,lz = 0 if (i, µ) = 0. Hence, we assume that (i, µ) > 0,
otherwise there is nothing to prove. If ωi > 2, we have

(f̃i,lu, v) = (bi,lu, v)

= −(u,K−liai,lv)

= −(u,K−liai,lbi,cz)

= −
(
u,K−liτi,l

∑

k:ck=l

(v
−2l|c<k|
i K−li − v2l|c<k|

i Kli)bi,c\ckz

)
[cf. proof of Proposition 3.24]

≡ −
(
u,
∑

k:ck=l

(v
−2l|c<k|
i K−2li − v2l|c<k|

i )bi,c\ckz

)
[cf. Lemma 3.32]

= −
(
u,
∑

k:ck=l

(v
−2l|c<k|
i v−2l(i,µ−|c\ck|i) − v2l|c<k|

i )bi,c\ckz

)

= −
(
u,
∑

k:ck=l

(v
2l|c<k|+4l|c>k|
i v−2l(i,µ) − v2l|c<k|

i )bi,c\ckz

)

≡ (u, bi,c\c1z)

= (u, ẽi,lv).

Thanks to the proof of Proposition 3.24 and Lemma 3.32, the same can be proved if ωi = 1.
To that end, consider v = bi,νz and u = bi,ν′z for some partitions ν, ν ′ and elements z, z′ ∈ Ki,
assuming again that z ∈ V (λ)µ. We have

(f̃i,lu, v) =

√
l

ml(ν ′) + 1
(bi,lu, v)

= −
√

l

ml(ν ′) + 1
(u,K−liai,lv)

= −
√

l

ml(ν ′) + 1
(u,K−liai,lbi,νz)

= −
√

l

ml(ν ′) + 1
(u,K−liτi,lml(ν)(K−li −Kli)bi,ν\lz) [cf. proof of Proposition 3.24]

≡ −
√

l

ml(ν ′) + 1

(
u,
ml(ν)

l
(K−2li − 1)bi,ν\lz

)
[cf. Lemma 3.32]

= −
√

l

ml(ν ′) + 1

(
u,
ml(ν)

l
(v−2l(i,µ) − 1)bi,ν\lz

)

≡
√

l

ml(ν ′) + 1

ml(ν)

l
(u, bi,ν\lz).

Iterating this computation, we see that (f̃i,lu, v) = (u, ẽi,lv) = 0 if ν ′ ∪ l 6= ν. Otherwise, we get

(f̃i,lu, v) ≡
√
ml(ν)

l
(u, bi,ν\lz) = (u, ẽi,lv).
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The case i ∈ Ire is already known, but we reproduce the proof adapted to our conventions. The
following can be proved by induction:

[Ei, F
(n)
i ] = τi(v

−n+1K−i − vn−1Ki)F
(n−1)
i .

Then note that if u = fmi u0 and u′ = fni u
′
0, where u0, u

′
0 ∈ Ki, it is easy to prove that

(f̃iu, u
′) = (F

(m+1)
i u0, F

(n)
i u′0) = 0

if m+ 1 6= n. If n = m+ 1 and u′ ∈ V (λ)µ, we get

(f̃iu, u
′) =

1

[m+ 1]
(Fiu, F

(n)
i u′0)

=
1

[n]

(
u,

v

v−1 − vK−iEiF
(n)
i u′0

)

=
1

[n]

(
u,

v

v−1 − vK−iτi(v
−n+1K−i − vn−1Ki)F

(n−1)
i u′0

)

≡ 1

[n]

(
u,

v

v−1 − vK−i(v
−n+1K−i − vn−1Ki)F

(n−1)
i u′0

)

=
1

[n]

(
u,

v

v−1 − v (v−n+1v−2(i,µ+i) − vn−1)F
(n−1)
i u′0

)

=

(
u,
v−n+2v−2(i,µ+i) − vn

v−n − vn F
(n−1)
i u′0

)

=

(
u,

1− v−2n+2v−2(i,µ+i)

1− v−n F
(n−1)
i u′0

)

≡ (u, F
(n−1)
i u′0)

= (u, ẽiu
′).

We have assumed that (i, µ+ i) > 0, since otherwise we would have u′ = 0. 2

The previous lemmas make it possible to reproduce step by step the original Kashiwara’s
grand-loop argument (see [Kas91, § 4]).

We also want to prove Theorem 3.19, using the same kind of argument as in [Nak01,
Corollary 4.7]. To that end, the characterization of the crystals B(λ) given by Joseph in [Jos95,
§ 6.4.21] has to be generalized. We first need two definitions.

Definition 3.20. A crystal B is said to be of highest weight λ if:

(i) there exists bλ ∈ B with weight λ such that ẽιbλ = 0 for every ι ∈ I∞;

(ii) any element of B can be written f̃ι1 . . . f̃ιrbλ for some ιk ∈ I∞.

Definition 3.21. Consider a family {Bλ | λ ∈ P+} of highest weight normal crystals Bλ of
highest weight λ, with elements bλ ∈ Bλ satisfying the properties of the above definition. It is
called closed if the subcrystal of Bλ ⊗ Bµ generated by bλ ⊗ bµ (i.e. obtained after successive
applications of the operators ẽι and f̃ι) is isomorphic to Bλ+µ.

Our previous lemmas, along with the definitions and properties given in the previous sections,
make it possible to generalize the proof of [Jos95, § 6.4.21] and we get the following result.

Proposition 3.35. The only closed family of highest weight normal crystals is {B(λ) | λ ∈ P+}.
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Then it is easy to see that {IrrL(λ) | λ ∈ P+} is a closed family of highest weight normal

crystals: thanks to Proposition 2.20, Remark 2.3 adapted to Z̃ and Theorem 2.6, the arguments
given in [Nak01] can be reproduced and we get Theorem 3.19. Alternatively (but similarly), the
original proof given by Saito in [Sai02] can also be generalized to our framework.
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