
J. Fluid Mech. (2022), vol. 942, A57, doi:10.1017/jfm.2022.406

Flow-induced coupled vibrations of an elastically
mounted cylinder and a detached flexible plate

Charu Mittal1 and Atul Sharma1,†
1Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai,
Maharashtra 400076, India

(Received 19 July 2021; revised 3 April 2022; accepted 30 April 2022)

A fluid multi-structure interaction (FMSI) study on flow-induced coupled vibrations of an
elastically mounted cylinder and a detached flexible plate is carried out numerically at a
constant Re = 100. The effect of a non-dimensional gap G∗ between the two structures,
and reduced velocity U∗

c , on the proximity-induced coupled flow physics and vibration
characteristics of the system is presented. The FMSI system shows a two-state response:
state 1 at larger gaps G∗ � 1, and state 2 at smaller gaps G∗ � 0.5. At larger U∗

c , the plate
encounters an oscillating wake flow in state 1, while it encounters onset of gap flow in
state 2. Each state relates to distinct vibration characteristics of both the structures, with the
cylinder showing a vortex-induced vibration response in state 1 and a galloping response
in state 2. The amplitude response of the cylinder is governed by gap flow dynamics while
that of the plate is governed by the cylinder–plate vortex-interaction dynamics. In addition
to the constructive and destructive vortex interactions reported earlier, a partial vortex
interaction is observed here. The vortex interactions in the near wake lead to distinct
vortex-shedding patterns – 2S, C(2S), 2P and a novel C(2P) – in the far wake. Separate
regime maps are presented for the various types of cylinder–plate vortex interactions and
vortex-shedding patterns, correlated with the amplitude, frequency and phase difference
of the coupled vibrations of the cylinder and plate. The vortex dynamics shows a strong
correlation with the quantitative vibration parameters, indicating the strongly coupled
multi-physics characteristics of the present FMSI system.

Key words: flow-structure interactions, vortex interactions, vortex shedding

1. Introduction

Fluid multi-structure interaction (FMSI) is an interaction of more than one movable and/or
deformable structure with an external or internal fluid flow. The FMSI phenomenon is
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observed more commonly in the case of external flows, and involves a multi-physics
coupling between the fluid dynamics and the structural mechanics. External flow across
a body, encountered widely in nature as well as engineering applications, has been
mostly studied with a canonical cylindrical structure in free-stream flow. Such a flow
is often unsteady, and the associated unsteady forces lead to flow-induced vibrations
(FIV). As compared to the FIV of a single structure, FMSI involves flow-induced coupled
vibrations (FICV) if the spacing between the structures is small enough – called more
precisely proximity-based FICV here. FIV/FICV are usually considered an undesirable
phenomenon, where the vibrations may lead to the failure of the structure, such as that of
the Tacoma Narrows Bridge. However, more recently, they are being utilized effectively
for energy harvesting (Allen & Smits 2001; Bernitsas et al. 2008; Villarreal & Vortex
Bladeless SL 2018).

FIV/FICV based energy harvesting is categorized into four techniques (Rostami &
Armandei 2017; Wang et al. 2020): (i) flutter (Bae et al. 2014), (ii) galloping (Barrero-Gil,
Alonso & Sanz-Andres 2010), (iii) vortex-induced vibration (VIV) (Bernitsas et al. 2008),
and (iv) wake galloping/buffeting (Jung & Lee 2011). Flutter and galloping are divergent
systems, where the structure oscillates with a high amplitude as the incoming fluid
velocity increases. Both of these are usually low-frequency phenomena, which occur at
a high cut-in speed. Unlike these divergent systems, high-amplitude VIV occurs over an
intermediate range of fluid velocities. VIV results in regular structural vibrations, which
are caused by a periodic vortex-shedding-based asymmetric pressure distribution. Wake
galloping/buffeting occurs due to the unsteadiness in the incoming flow, which may be
caused by the proximity interference of another structure or by the turbulence in the
incoming flow. Although each of these techniques has its own set of advantages, the
relatively low cut-in speed and the non-divergent nature of VIV and wake galloping make
them favourable for energy harvesting at low fluid velocities, and they are of interest
to the present work. A concise literature survey for the two techniques is presented
here. The two techniques are associated with non-dimensional parameters: Re as the
flow parameter; structural parameters M∗

c , ζ and U∗
c for VIV of an elastically mounted

cylinder, and M∗
p , νs and Kb for wake galloping of a flexible plate; and G∗, L∗ and

t∗ as the geometrical parameters. These non-dimensional parameters are presented in
table 1.

VIV is discussed extensively in the review works by Sarpkaya (2004), Bearman (2011)
and Williamson & Govardhan (2004), and in books by Blevins (1990) and Païdoussis,
Price & De Langre (2010). It is studied most extensively for an elastically mounted (with a
spring and a damper) circular cylinder, the response of which is governed by the Reynolds
number Re, mass ratio M∗

c , damping ratio ζ , and reduced velocity U∗
c . The literature

survey is presented here only for the VIV response at low Re. The cylinder shows a
two-branch amplitude response with increasing U∗

c – initial branch and lower branch –
with the transition between the branches being hysteretic (Prasanth & Mittal 2008). The
branch transition is accompanied by a 180◦ jump in the phase difference φc, between the
lift coefficient CL(τ ) and the cylinder displacement Yc(τ ). This transition is not associated
with a drastic change in the vortex pattern; however, the vortex formation mode changes
from 2S (two single vortices being shed per cycle) to C(2S) (coalesced vortices of similar
signs, arranged in two distinct rows) and back to 2S mode with increasing U∗

c (Prasanth
& Mittal 2008). The high-amplitude region in VIV falls in the lock-in regime, where the
frequency f of the driving force locks on to the natural frequency of the structure ( fn), or
f ∗ = f /fn ≈ 1 for large M∗

c . However, for low mass ratio, f ∗ > 1 in the lock-in regime.
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FICV of a circular cylinder and a detached flexible plate

Symbol Description

Non-dimensional parameters
Re Reynolds number (u∞D/νf )

M∗ Mass ratio (m/md)

ζ Damping ratio (c/4πmfn)
U∗

c Reduced velocity (u∞/fnD)

Kb Non-dimensional bending stiffness (Et3/12ρf u2∞L3)

G∗ Non-dimensional gap between structures (G/D)

L∗ Non-dimensional plate length (L/D)

t∗ Non-dimensional plate thickness (t/D)

Dimensional parameters
u∞ Dimensional free-stream velocity
D Diameter of the cylinder
νf Kinematic viscosity of the fluid
νs Poisson’s ratio
E Young’s modulus of the plate
ρf Density of the fluid
ρs Density of the plate
L Dimensional length of the plate
G Dimensional gap between two structures
t Dimensional thickness of the plate
m Mass of the structure
md Mass of the fluid displaced
c Damping coefficient
fn Natural frequency

Table 1. Governing parameters for the present problem.

The maximum amplitude is limited to A∗
c � 0.6, with the appearance of a P+S

vortex-shedding pattern (Williamson & Govardhan 2004).
The effect of the damping ratio on VIV is fairly monotonic, i.e. A∗

c decreases
continuously with increasing ζ . The effect of the two parameters M∗

c and ζ was combined
in the work of Griffin, Skop & Ramberg (1975) as a single mass-damping parameter (M∗

c ζ )
or the Skop–Griffin parameter SG = 2π3St2st(M

∗
c ζ ), where Stst is the vortex-shedding

frequency of a stationary cylinder. The maximum amplitude attained in VIV was found
to collapse on a single curve when plotted against SG. A limiting case for the dependence
of VIV on the mass of the cylinder, and the properties of the elastic mounting, was carried
out by Shiels, Leonard & Roshko (2001). They reported the occurrence of large-amplitude
oscillations even for a massless cylinder without spring and damper. The nature of VIV is
also affected by the degrees of freedom of motion (Williamson & Jauvtis 2004), blockage
(Prasanth & Mittal 2008), etc.

The VIV of a single cylinder was extended to the VIV of tandem cylinders. For
VIV of a circular cylinder with a stationary upstream cylinder at Re = 2900 and
5900, Bokaian & Geoola (1984b) reported the occurrence of four kinds of dynamic
response: vortex-resonance (VIV), galloping, combined vortex-resonance and galloping,
and separated vortex-resonance and galloping. However, for the VIV of a cylinder with a
stationary downstream cylinder, only VIV and galloping response were observed (Bokaian
& Geoola 1984a). The type of dynamic response observed varied with the streamwise
and transverse gap between the cylinders, with the galloping response at smaller gaps,
and vortex resonance occurring at larger gaps. For the VIV of both the cylinders in
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tandem arrangement, at Re = 200, M∗
c = 2.55 and G∗ = 0.5, Borazjani & Sotiropoulos

(2009) reported a wider lock-in regime with higher amplitudes, as compared to that for an
isolated cylinder. The relative magnitude of amplitude of the upstream and downstream
cylinders was found to be governed by the gap flow dynamics, which refers to passage
of the shear layers of the upstream cylinder through the gap between the two cylinders.
The increased amplitude with larger synchronization region, for the downstream cylinder,
was also reported by Laneville & Brika (1999). The upstream cylinder, however, showed
an isolated-cylinder-like behaviour, possibly due to a large gap G∗ between the cylinders
(G∗ = 6−24). Other studies on tandem cylinders include the work of Zdravkovich
(1985), Zdravkovich & Medeiros (1991), Mittal & Kumar (2001) and Papaioannou et al.
(2008).

Besides tandem cylinders, several past studies are presented for a tandem cylinder–plate
configuration. Most of these studies are carried out for a rigid plate. In an attached
configuration, the splitter-plate leads to increase in recirculation length and base pressure,
accompanied by a decrease in drag coefficient (Apelt, West & Szewczyk 1973; Kwon
& Choi 1996). Apelt et al. (1973) reported that the length of the plate affects the flow
characteristics significantly. Short plates (L∗ < 1) lead to a narrower wake, with the vortex
formation past the trailing edge of the plate; and long plates lead to an irregular vortex
street, with the vortex formation commencing upstream of the trailing edge of the plate.
Complete suppression of vortex shedding is reported for very large plate length L, with
critical plate length L∗

c = 3 at Re = 100 (Kwon & Choi 1996) and L∗
c = 5 for Re = 160

(Kwon & Choi 1996) as well as Re = 104 (Roshko 1954).
For a detached rigid splitter-plate (L∗ = 24 and Re = 140−3600), Unal & Rockwell

(1988) reported two vortex-formation regimes: pre-vortex and post-vortex. The two
regimes correspond to extension of the recirculation region beyond and upstream of the
leading edge of the plate, respectively. Large drag suppression is observed in the pre-vortex
formation regime, while the drag force is close to an isolated cylinder in the post-vortex
regime (Hwang, Yang & Sun 2003). For the onset of suppression of the drag force, the
critical or minimum gap G∗

c between the two structures varies as: G∗
c = 2.7 for L∗ = 1

at Re = 100 and 160 (Hwang et al. 2003); G∗
c = 2.7, 5 and 4 for L∗ = 24 at Re = 142,

785 and 36 454, respectively (Unal & Rockwell 1988); and G∗
c = 3.35 for L∗ = 2.71 at

Re = 14 500 (Roshko 1954). Serson et al. (2014) studied the wake transition caused by
a splitter-plate for Re = 100, 350, G∗ = 0−3 and L∗ = 0.5, 1. They reported significant
decrease in the Strouhal number St at smaller G∗, which increased discontinuously with
increasing gap G∗. They found that the Strouhal number St was predicted accurately in the
post-vortex regime, and overestimated in the pre-vortex regime, with the two-dimensional
study as compared to the three-dimensional study. At smaller G∗, they reported that
the splitter-plate stabilizes the flow that delays its transition to three-dimensionality at
high Re.

For the FIV of a flexible cantilever beam-like plate attached to a stationary cylinder,
Lee & You (2013) studied the effect of the length L∗ (= 1, 2, 3) and the stiffness
Kb (≈ 0.29−1.73) of the flexible plate at Re = 100. They observed that the mode of
oscillation showed a strong dependence on L∗, while the amplitude of vibration of
the plate, A∗

p, was governed mainly by Kb. Moreover, they showed that the fluid force
distribution on the plate is highly non-uniform and varies with L∗. Sahu, Furquan & Mittal
(2019) studied the effect of the stiffness Kb (≈ 0.096−239.65) of the attached flexible
plate at Re = 150 and L∗ = 3.5. They found very low plate amplitude with first-mode
oscillations for Kb < 1.53, and a local peak for the condition where f ≈ fn1. The amplitude
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FICV of a circular cylinder and a detached flexible plate

increased significantly with complex modes of oscillation for Kb > 1.53, with f ≈ fn2. The
plate dynamics showed hysteretic jumps at mode transitions. Other studies for an attached
configuration include the work of Pfister & Marquet (2020) and Shukla, Govardhan &
Arakeri (2013).

For the flow past a stationary cylinder with a detached flexible splitter-plate, most of
the studies are experimental and for high Re. These include the work of Allen & Smits
(2001) on their set-up called the ‘energy-harvesting eel’, Techet, Allen & Smits (2002)
for the study of multiple eels, Shi, New & Liu (2013) for a low-aspect-ratio plate, and
Akaydin, Elvin & Andreopoulos (2010). There are very few studies at low Re. Wang, Zhai
& Zhang (2018) studied the FIV of a detached flexible plate behind a circular cylinder at
Re = 100 and 200. They investigated the response of the system at varying cylinder–plate
gaps (G∗ = 2−5), and plate stiffnesses (Kb = 0.045−2.88). They found that the plate
showed first-mode oscillation for smaller gaps G∗ � 3 at Re = 100, with the maximum
amplitude being governed by the lock-in phenomenon ( f ≈ fn1). For all the other cases, the
plate oscillations showed a combination of the first and second modes, with the maximum
amplitude reported at the minimum Kb.

A more complex study, for the FIV of a cylinder and an attached flexible plate, was
presented by Sahu et al. (2019) at a constant Re = 150. They studied the response of
the system over a varying range of values of Kb (= 0−5.85), M∗ (= 5, 10, 50) and ζ

(= 0, 0.001, 0.01). For low stiffness Kb of the attached plate, they found that the cylinder
showed a response similar to that of an isolated cylinder, whereas with stiffer plates, the
cylinder showed a three-regime response: VIV, steady and galloping. They also found that
increasing M∗ as well as ζ affected adversely the amplitude of oscillation of the cylinder
and the plate. Another study on a similar configuration was carried out by Liang et al.
(2018) for varying plate length (L∗ = 0−2.5) at high Re (= 7000−66 000). They reported
small-amplitude VIV response for L∗ � 1.1, and a large-amplitude galloping response for
longer plates.

The above literature survey shows that there are numerous studies on VIV of a rigid
cylinder and on FIV of a flexible plate behind a stationary cylinder; however, there are
only a few studies on VIV of an elastically mounted cylinder with an attached flexible
splitter-plate. A detached flexible splitter-plate could alter significantly the vibration
characteristics, as indicated in past studies on flow over tandem structures (Zdravkovich &
Medeiros 1991; Gopalkrishnan et al. 1994; Papaioannou et al. 2008), and no such study
is found in the literature. Thus the present FMSI study considers FICV of an elastically
mounted cylinder and a detached flexible splitter-plate in tandem arrangement. The rigid
cylinder is mounted with a spring and a damper system, and the flexible plate is fixed at the
leading edge and free at the trailing edge. The present FMSI system involves the FICV of
the two structures, caused due to the proximity–wake interference phenomenon (Borazjani
& Sotiropoulos 2009). The interference-effect-based FICV leads to passive control of the
FIV of the cylinder, which is of great interest in several engineering applications and can
be utilized for a needs-based engineering application.

The present study aims to address some fundamental questions. (i) What are the
types of proximity-induced vibration response modes of the cylinder under the effect
of the downstream flexible plate (as compared to the vortex resonance and galloping
responses reported in the literature for an elastically mounted cylinder with another
cylinder downstream)? (ii) What is the effect of the transversely vibrating cylinder on the
vibration response of the downstream flexible plate (as compared to the response reported
earlier for a flexible plate behind a stationary cylinder)? (iii) What is the role of flow in
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∂Y = 0

∂P
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∂X = 0

U = 1

V = 0

Figure 1. Computational set-up for flow-induced transverse vibration of an elastically mounted rigid cylinder
and a detached flexible cantilever plate.

between the vibrating cylinder and the plate, on the coupled vibration characteristics of the
two structures? (iv) What is the effect of the proximity interference on the cylinder–plate
vortex interaction and the resulting vortex-shedding patterns (as compared to the 2S and
C(2S) patterns reported for FIV of an isolated cylinder at low Re)?

2. Physical and computational set-up

The set-up for the present FMSI problem is shown in figure 1. The figure shows a
free-stream flow across two structures: an elastically mounted rigid cylinder and a flexible
cantilever plate. The cylinder is connected with a spring and a damper in parallel, while
the plate is fixed at the leading edge and free to deform at the trailing edge. The gap G
between the two structures is also shown in the figure. A periodic flow-based variation of
the lift coefficient leads to a periodic displacement, represented by Yc(τ ) for the cylinder
and Yp(τ ) for the trailing edge of the plate. These displacements, along with the amplitudes
A∗

c and A∗
p for the respective structures, are shown in the figure. The transverse oscillations

of the rigid cylinder are determined by a linear oscillator model, while the time-varying
shape and kinematics of the plate are determined by the structural equations that model
the fluid-dynamic force-based deformations.

Figure 1 also shows the computational domain and the non-dimensional boundary
conditions for the present numerical study, with the diameter D of the cylinder and
the free-stream velocity u∞ as the length and velocity scales, respectively. Like any
computational study for an external flow over a body, the length and height of the domain
for the present work are constrained by the fully developed and free-slip flow conditions at
the outlet and the transverse boundaries, respectively. After a domain size independence
study, a domain with length LT = 30D and height H = 20D is chosen, as shown in the
figure.
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FICV of a circular cylinder and a detached flexible plate

3. Mathematical, numerical and parametric details

3.1. Mathematical details
The present FMSI problem involves fluid two-structure interactions. The motion of the
first structure, the elastically mounted cylinder, is modelled using a linear oscillator
equation, and the deformation of the second structure, the flexible plate, is modelled
by considering a material that follows the Saint Venant–Kirchhoff model. The present
FMSI study is modelled mathematically using the unsteady Navier–Stokes equations, the
linear oscillator model, and structural equations to obtain the unsteady fluid flow, cylinder
displacement and plate deformations, respectively. The fluid–structure interface dynamics
are also governed by an interface boundary condition. The non-dimensional form of the
governing equations and the interface boundary conditions for the present FMSI problem
are given as follows.

3.1.1. Incompressible fluid flow: Navier–Stokes equations

Continuity equation: ∇ · U = 0.

Momentum equation:
∂U
∂τ

+ (U · ∇) U = −∇P + 1
Re

∇2U .

⎫⎬
⎭ (3.1)

Here, U = u/u∞ is the non-dimensional fluid velocity, P = p/ρf u2∞ is the non-dimensional
fluid pressure, and Re = u∞D/ν is the Reynolds number.

3.1.2. Elastically mounted cylinder displacement: linear oscillator model

d2Yc

dτ 2 + 4πζ

U∗
c

dYc

dτ
+

(
2π

U∗
c

)2

Yc = 2CL,c

πM∗
c

, (3.2)

where Yc is the non-dimensional transverse displacement of the cylinder, ζ is the damping
ratio, U∗

c is the reduced velocity, CL,c is the lift force for the cylinder, and M∗
c = 4m/πρf D2

is the mass ratio.

3.1.3. Flexible-plate deformation: structural dynamics equations

M∗
p

d2d∗

dτ 2 = ∇ · (
F ∗S∗) , F ∗ = I + ∇d∗T,

S∗ = E∗
(

2
2(1 + νs)

G∗
L − νs

(1 + νs)(1 − 2νs)
tr(G∗

L) I
)

,

E∗ = E/ρf u2
∞, G∗

L = 1
2

(
F ∗F ∗T − I

)
,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.3)

where M∗
p is the mass ratio of the plate, d∗ is the non-dimensional amplitude vector, F ∗ is

the deformation gradient tensor, S∗ is the non-dimensional second Piola–Kirchhoff stress
tensor, G∗

L is the Green–Lagrange strain tensor, E∗ is the non-dimensional stiffness, and
νs is Poisson’s ratio.
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3.1.4. Fluid-structure interface boundary conditions:
The velocity and the traction fields are continuous across the interface of the fluid and the
structure. The interfacial boundary condition for the cylinder is given as

dYc

dτ
= U f ,int · ĵ, (3.4)

where U f ,int is the fluid velocity at the interface. The interfacial boundary conditions for
the plate are given as

dd∗

dτ
= U f ,int and σ s,int · n̂ = σ f ,int · n̂, (3.5a,b)

where σ s,int and σ f ,int are the Cauchy stress tensor for the solid and the fluid, respectively.
Here, n̂ is a vector normal to the interface.

3.2. Numerical details
A level set function-based immersed interface method (LS-IIM), which was proposed in
our recent work (Thekkethil & Sharma 2019), is used for the present two-way coupled
FMSI problem. The LS-IIM involves a block-iterative partitioned approach based hybrid
Lagrangian–Eulerian method (Thekkethil & Sharma 2020). It uses a physical law and
discrete (independent of continuous) maths-based finite volume method (Sharma 2016) for
computational fluid dynamics (CFD), a geometrically non-linear Galerkin finite element
method (FEM) for computational structural dynamics (CSD), and an implicit coupling
between the CFD and CSD solvers. The LS-IIM uses a time-invariant non-uniform and
non body-fitted Cartesian grid for the finite volume method (FVM) based flow solver,
and a triangular mesh for the FEM based structural solver. A direct implementation
of the fluid–solid interface boundary conditions and an implicit coupling between the
solvers makes the present LS-IIM code computationally stable for large-deformation
fluid–structure interaction problems involving complex geometries. For the implicit
coupling, the interface variables are updated using Aitken’s acceleration-method-based
under-relaxation factor, after the solution of both the solvers. The updated variables are
used for the next iteration of both the solvers, until convergence of residuals for the
interface variables. Both the solvers are based on an implicit method, where a QUICK
scheme for the advection term, along with a central difference scheme for the diffusion
term, is used in the flow solver; and a generalized Newmark scheme for the time variation
(Zienkiewicz, Kelly & Bettess 1977) with a second-degree polynomial approximation is
used in the structural solver. An order-of-accuracy study of the LS-IIM was presented by
Thekkethil & Sharma (2019), where the present method is demonstrated to be second-order
accurate. The above details of the present structural solver are similar to that used recently
by Sahu et al. (2019) for the simulation of FIV of a cylinder with an attached flexible
splitter-plate.

In the present in-house solver, the fluid, solid and interface variables are first assigned
with values from the initial condition (for the first time step) or the previous time step
(for later time steps). Thereafter, the level set function φL is defined at each point
in the Cartesian grid, using the present position of the fluid–structure interface. Then
φL, along with the available flow field, is used to solve the flow solver. The obtained
velocity and pressure fields are post-processed to calculate the hydrodynamic forces
acting at the interface of each of the structures. Using these hydrodynamic forces as
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Figure 2. Validation study for free-stream flow past (a) an elastically mounted cylinder (at Re = 200, M∗
c =

1.27, ζ = 0.0034 and U∗
c = 3.49), and (b) a detached flexible plate behind a stationary cylinder (at Re = 200,

L∗ = 2, G∗ = 3, Kb = 0.15 and ρ∗ = 10): temporal variation of (a) cylinder displacement Yc and (b) plate-tip
displacement Yp, at the periodic state.

the boundary condition, the structural solver is used to obtain the deformation and
velocity of each structure. The deformations and velocities are used to update the interface
variables, employing Aitken’s acceleration-method-based under-relaxation factor. The
updated interface variables are used for the solution of the flow solver, followed by the
structural solver, until convergence of residuals. The detailed solution algorithm for the
present flow solver and structural solver, along with their implicit coupling, can be found
in the work of Thekkethil & Sharma (2019, 2020).

3.3. Code validation, grid independence and domain length independence studies
The present code was validated with several benchmark cases by Thekkethil & Sharma
(2019) and used in a series of fish-inspired biomimetic studies (Thekkethil, Sharma &
Agrawal 2018, 2020; Gupta et al. 2021). Further validations of the code are presented
in figure 2, with good agreement between the present and published results on periodic
variation of the displacements of the cylinder Yc (figure 2a) and plate-tip Yp (figure 2b).
Further, for the flow across a stationary cylinder with a detached flexible plate, excellent
agreement between the present and published instantaneous vorticity contours is presented
in our recent work (Mittal & Sharma 2021).

For the grid independence study, three different non-uniform Cartesian grids are
considered: 546 × 363, 654 × 438 and 820 × 548, with the finest uniform grid sizes as
0.015, 0.0125 and 0.01. These are used in a rectangular region, of size 6D × 4D, enclosing
the cylinder and plate (figure 3). For the respective grid sizes, coarsest uniform grid
sizes 0.3, 0.25 and 0.2 are used far away from the structures. Hyperbolic stretching is
used to generate a non-uniform grid, with a smooth transition between the coarse grid
and the fine grid. For the present problem, at G∗ = 0.1, U∗

c = 3.3 and Re = 100, the
amplitudes of vibrations are A∗

c = 0.5104, 0.5229, 0.5235 and A∗
p = 0.643, 0.6551, 0.6692

for the coarsest, intermediate and finest grid sizes, respectively. The differences between
the results of the coarsest and finest grids are 2.5 % for A∗

c , and 3.92 % for A∗
p. For

the respective amplitudes, the differences reduce substantially to 0.11 % and 2.1 % for
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20

0 30

y

x

Fine

Figure 3. Non-uniform Cartesian grid of size 654 × 438, used in the fluid domain for the present work. The
rectangular region, enclosing the cylinder and the plate, corresponds to a uniform fine grid size 0.0125.

the intermediate grid, with reference to the finest grid. Thus an intermediate grid size
654 × 438 is used in the present simulations.

A domain length independence study is carried out at G∗ = 0.5 and U∗
c = 5.5 for three

domain lengths, LT = 20D, 30D and 40D. For the temporal variation of the cylinder
displacement Yc(τ ), the maximum variation in Yc is found to reduce from 3.19 % for LT =
20D to 0.09 % for LT = 30D, as compared to LT = 40D. Thus the present simulations are
carried out for LT = 30D.

3.4. Parametric details
The scope of the present work is to study the effect of proximity of the two structures and
the stiffness of elastic-mounting of the cylinder on the FMSI characteristics of the system.
The respective effects are studied with the non-dimensional parameters as follows:

(i) non-dimensional gap G∗: 0.1, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5; and
(ii) reduced velocity U∗

c : 1, 2, 3.3, 4, 5, 5.6, 6.7, 7.7, 10, 12.5

at constant Re = 100, M∗
c = 1, ζ = 0.005, M∗

p = 100, Kb = 0.21, νs = 0.4, L∗ = 1 and
t∗ = 0.05. Note that the parameters associated with the cylinder and the plate are
demarcated by subscripts c and p, respectively. The above values of the gap G∗ are
chosen such that the plate lies within as well as outside the recirculation region behind
the cylinder. The other varying parameter U∗

c is a significant fluid–structure interaction
parameter for VIV of a cylinder (Williamson & Govardhan 2004), which relates the time
scales of the fluid and solid.

The effect of the above non-dimensional input parameters on the FMSI characteristics is
quantified in terms of non-dimensional output parameters: amplitude A∗, frequency ratio
f ∗, lift coefficient CL, phase difference φ between the temporal variation of displacement
Y and the lift force CL, and phase difference φc,p between the temporal variation of
displacement of the cylinder (Yc) and the tip of the plate (Yp). The output parameters
are given as

A∗ = A
D

, f ∗ = f
fn

, CL = FL
1
2ρf u2∞D

, (3.6a–c)
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FICV of a circular cylinder and a detached flexible plate

where A is the dimensional amplitude, f is the oscillation frequency, fn is the natural
frequency of vibration, and FL is the hydrodynamic lift force per unit length. Note that
the above parameters are considered separately for the cylinder (A∗

c , f ∗
c , CL,c and φc) and

plate (A∗
p, f ∗

p , CL,p and φp), where fc = fp for the present problem.

4. FICV characteristics: proximity-induced transition in the states of vibration
response of the cylinder and the plate

FIV characteristics of a structure are represented by the amplitude and frequency of
periodic vibrations. These parameters are associated closely with the relative phase of
the periodically varying lift coefficient CL(τ ) and the resulting transverse displacement
Y(τ ) of the driven structure, expressed in terms of phase difference φ between the two
parameters. Hence, in the present section, the coupled FIV characteristics of the cylinder
as well as the plate are presented in terms of the amplitude A∗, frequency ratio f ∗, and
phase difference φ. The phase difference is calculated using a fast Fourier transform. The
phase difference φp is defined as the phase difference between temporal variations of the
space-averaged (not local) lift coefficient CL,p of the plate and the displacement Yp of the
tip of the plate. Since the plate vibrates with the first mode, for all the cases considered
here, φp also corresponds to the phase of Yp at any point along the length of the plate.
Substantial variation in the vibration parameters for the present coupled FMSI system,
as compared to an isolated fluid–structure interaction system, indicates a strong coupling
between the FIV of the two structures.

Initially, FIV characteristics of a cylinder without the flexible plate (isolated system)
are presented in § 4.1 to establish the baseline response of the system. Thereafter, for
the present FMSI problem, proximity-induced two states of the amplitude response are
presented separately for the cylinder and the flexible plate in §§ 4.2 and 4.3, respectively.
Finally, for each of the two states of amplitude response, § 4.4 presents the amplitude A∗,
frequency ratio f ∗ and phase difference φ together for the cylinder and the plate, that
lead us to a comprehensive discussion on the coupled vibration characteristics of the two
structures in the present FMSI system. For the few cases of non-periodic motions (obtained
here for G∗ = 0.1 at U∗

c = 7.7−12.5 and for G∗ = 0.3 at U∗
c = 12.5), the maximum

amplitude is presented here, similar to that reported by Leontini, Thompson & Hourigan
(2006) for the VIV of an isolated cylinder. Also, for a few cases with multiple frequencies,
the dominant frequency is presented.

4.1. FIV characteristics of an elastically mounted cylinder
The FIV characteristics of an isolated circular cylinder are shown in figure 4, where a rapid
increase followed by a gradual decay trend is seen in figure 4(a) for the variation of the
amplitude A∗

c with increasing U∗
c . Similar to the work of Sahu et al. (2019) on FIV of a

circular cylinder at Re = 150, the amplitude response in figure 4(a) is categorized into two
branches: initial branch (IB) and lower branch (LB), enveloped by a desynchronization
(DS) region. This demarcation is in contrast to the three-branch (initial, upper and
lower) response observed at high Re for low M∗

c ζ (Williamson & Govardhan 2004). The
high-amplitude region in both of these response types is commonly marked as the lock-in
regime, where the vortex-shedding frequency synchronizes with the vibration frequency.
Since the basis to identify the lock-in regime is not defined uniquely in the past studies, the
slope of the amplitude curve in figure 4(a) is used here to demarcate the present lock-in
regime, shown by the shaded region. The figure shows clearly that the high-amplitude
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Figure 4. FIV characteristics of an isolated elastically mounted cylinder: variation of non-dimensional (a)
cylinder amplitude A∗

c , and (b) frequency ratio f ∗
c as well as phase difference φc (between periodic variation of

lift coefficient CL,c and cylinder displacement Yc), with increasing reduced velocity U∗
c , at Re = 100, M∗

c = 1
and ζ = 0.005. Panel (a) also shows the slope of variation of A∗

c versus U∗
c that leads to the identification of the

lock-in regime. Further, a demarcation of amplitude response into the initial and lower branches (IB and LB),
enveloped by the desynchronization (DS) region, is presented, similar to Sahu et al. (2019). In (b), the circle
symbol represents φc, while f ∗

c,v and f ∗
c,f are represented by diamond symbols.

lock-in regime is inscribed between the maximum positive/upward slope and the maximum
negative/downward slope of the amplitude curve.

As stated in a review paper by Sarpkaya (1995), the frequency f of the driving force
CL,c locks onto the natural frequency fn of the structure in the lock-in regime. In the
present case, the driving frequency f is always equal to the cylinder oscillation frequency
fc. Therefore, the frequency ratio f ∗, defined as the ratio of the oscillation frequency fc to
the natural frequency fn,c of the cylinder, is plotted with increasing reduced velocity U∗

c as
another FIV characteristic curve. At low mass ratio M∗

c , as in the present study, fn differs
significantly in vacuum and in a fluid. Hence both the natural frequency in vacuum fn,v ,
as well as in fluid fn,f , are considered for the variation of f ∗ as shown in figure 4(b). The
natural frequency in the fluid is evaluated, considering the added mass ma acting on the
cylinder. The relation between fn,f and fn,v is

fn,f = 1
2π

√
k

mc + ma

D
u∞

= fn,v × 1√
1 + 1

M∗
c

= fn,v√
2
. (4.1)

With increasing U∗
c , figure 4(b) shows that the trend of variation of f ∗ is similar in vacuum

as well as in fluid, closely resembling past studies (Leontini et al. 2006; Sahu et al. 2019). It
can be observed that both f ∗

f and f ∗
v fall below the frequency ratio f ∗

st = fst/fn of a stationary
cylinder at high U∗

c , indicating a smaller vortex-shedding frequency as compared to that
for a stationary cylinder. Within the extent of the present lock-in regime, from U∗

c = 3.3
to U∗

c = 7.7, the shaded region in figure 4(b) shows a variation of f ∗ from f ∗
f ≈ 0.82

(f ∗
v ≈ 0.58) to f ∗

f ≈ 1.42 ( f ∗
v ≈ 1). The extent of the lock-in region beyond f ∗

f ≈ 1 at
the present low mass ratio M∗

c was reported in several experimental studies on VIV of a
circular cylinder at high Re (Williamson & Govardhan 2004). However, such deviation
in the lock-in region from f ∗

f ≈ 1 has not been well addressed at the low Re considered
here. It is interesting to note that the extent of the reported high-amplitude upper branch
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(obtained at large Re) within f ∗
f ≈ 1 to f ∗

v ≈ 1 (Williamson & Govardhan 2004) agrees
closely with the extent of the present high-amplitude lock-in regime within f ∗

f = 0.82 to
f ∗
v = 1 at low Re (figure 4). Leontini et al. (2006) also reported the extent of the lock-in

regime up to f ∗
v ≈1 in their study on VIV of a cylinder at Re = 200. However, since they

considered a larger mass ratio M∗
c (10 as compared to 1 here), the large difference between

f ∗
f and f ∗

v shown in figure 4(b) was not evident in their study.
Figure 4(b) also shows the variation of the phase difference φc with increasing U∗

c . The
periodic motion of the cylinder and the lift force show an in-phase (φc ≈ 0◦) variation
up to an intermediate U∗

c , with a sharp in-phase to anti-phase (φc ≈ 180◦) transition with
increasing U∗

c , similar to that reported earlier (Williamson & Govardhan 2004; Prasanth
& Mittal 2008). It is interesting to note from figure 4(b) that the phase switch, from almost
0◦ to almost 180◦, occurs at the same intermediate U∗

c where f ∗
c,v ≈ 1.

4.2. Amplitude response of an elastically mounted cylinder with a flexible plate
downstream

The vibration characteristics of an isolated cylinder, presented in figure 4(a), indicate
that the cylinder shows a rapid increase followed by a gradual decay type of amplitude
response – a classic VIV curve. Introducing a flexible plate downstream to the cylinder
leads to a proximity-induced coupling between the vibration of the two structures. The
coupling becomes stronger with decreasing gaps G∗, leading to a proximity-induced
transition in the amplitude response from the classic VIV curve at larger G∗ to a
rapid-increase plateau variation at smaller G∗, as shown in figure 5(a).

For the classic VIV response at the larger gaps G∗ � 1.0, it is interesting to note from
figure 5(a) that the effect of the plate on the amplitude response of the cylinder is evident
mostly for the larger U∗

c , i.e. larger flexibility of the cylinder mounting. Thus, up to an
intermediate U∗

c � 4 that almost corresponds to the lower branch, it can be seen in the
figure that the peak amplitude A∗

c remains almost unchanged. For the desynchronization
region at the larger U∗

c , the figure shows that the asymptotic amplitude increases with
decreasing gap G∗. However, the reduction in the cylinder–plate gap to G∗ � 0.5 leads
to the transition from the VIV response to the aforementioned rapid-increase plateau
amplitude response, as shown in the figure. After the transitions at smaller gaps G∗ � 0.5,
it can be seen that the proximity-induced variation in the amplitude response is evident
over almost the entire range of U∗

c studied, with a slight reduction in A∗
c at smaller U∗

c ,
and substantial enhancement at larger U∗

c , as compared to that for an isolated cylinder.
Moreover, at the larger U∗

c , the figure shows that a smaller gap G∗ of the flexible plate
leads to a larger proximity-induced enhancement in the cylinder amplitude A∗

c .
The present FICV study on the tandem cylinder–plate configuration is similar to FIV

of the tandem cylinder–cylinder configuration. For VIV of an elastically mounted cylinder
with a closely spaced elastically mounted/fixed cylinder downstream, similar amplitude
responses were reported at smaller gaps G∗ (Bokaian & Geoola 1984a; Zdravkovich
& Medeiros 1991), and the present rapid-increase plateau response (figure 5a) was
termed ‘proximity-induced galloping’ in the work of Bokaian & Geoola (1984a). Using
this terminology for the present problem, figure 5(a) shows a transition from VIV to
galloping response with decreasing gaps G∗. This transition is correlated with the flow
characteristics within the gap between the transversely oscillating cylinder and the flexible
plate, discussed below in § 5. Although the two amplitude responses (VIV and galloping)
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Figure 5. Effect of the non-dimensional gap G∗ on the variation of (a) non-dimensional oscillation amplitude
A∗

c of the cylinder, and (b) its ratio with the amplitude A∗
c,np for the no-plate case, with increasing reduced

velocity U∗
c . Panel (a) also shows the representative schematic for the characteristic curves of the VIV response

at larger G∗, and the galloping response at smaller G∗. The respective amplitude responses are represented by
unfilled and filled symbols, and the dashed line represents A∗

c,np.

observed in the present tandem cylinder–plate configuration resemble that observed earlier
for the cylinder–cylinder configuration, the natures of the responses for the two systems are
significantly different. At large gaps G∗, figure 5(a) for the present tandem cylinder–plate
system shows that the magnitude and location of the peak amplitude A∗

c,max (at U∗
c = 4)

remain unaffected by the change in G∗. This behaviour is in contrast to the FIV of tandem
cylinders, where the A∗

c,max increases with decreasing G∗, and also shifts towards larger
U∗

c (Bokaian & Geoola 1984a; Papaioannou et al. 2008). However, the widening of the
high-amplitude region with decreasing gap G∗ is observed for both the tandem systems.
At smaller G∗, the cylinder in the present configuration shows increasing amplitude with
decreasing G∗, similar to that observed for the upstream cylinder in tandem cylinders
(Bokaian & Geoola 1984a). However, in the case of tandem cylinders, the galloping
phenomenon commences at a larger U∗

c with decreasing G∗ (Bokaian & Geoola 1984a),
as compared to almost same U∗

c = 2 for the onset of galloping in the present tandem
cylinder–plate configuration. Galloping instability was also reported by Sahu et al. (2019)
for VIV of a cylinder with an attached flexible splitter-plate at Re = 150. However, they
found a VIV–steady–galloping response for stiff plates (Kb = 4.76, ∞) and only a VIV
response for highly flexible plates (Kb = 1.75, 3.02). As compared to their study for
G∗ = 0, the present study for varying G∗ results in either VIV or galloping response of the
cylinder with the flexible plate of constant stiffness (Kb = 0.21).

The effect of the proximity-induced coupling is demonstrated more clearly in figure 5(b)
by the ratio of the amplitude A∗

c with plate and A∗
c,np without plate. The figure shows

that the plate causes a slight suppression in the amplitude of the cylinder for all gaps at
smaller U∗

c , whereas an increase in U∗
c leads to a rapid enhancement in A∗

c . The figure also
shows that the slope of the increasing amplitude ratio increases with decreasing gap G∗.
The maximum amplitude enhancement factor, close to 14, is obtained here at the smallest
G∗ = 0.1 and largest U∗

c = 12.5. This factor occurs at a much larger U∗
c for an attached

flexible plate (Sahu et al. 2019), as compared to the U∗
c in the present study with detached

flexible plate.
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Figure 6. Effect of the non-dimensional gap G∗ on the variation of (a) non-dimensional oscillation amplitude
A∗

p of the plate, and (b) its ratio with the amplitude A∗
p,st for the stationary upstream cylinder case, with

increasing reduced velocity U∗
c . Panel (a) also shows the characteristic curves for the valley–plateau response

at larger G∗, and the summit response at smaller G∗. The respective amplitude responses are represented by
unfilled and filled symbols, and the dashed line represents the amplitude response A∗

p,st.

4.3. Amplitude response of a cantilever-type flexible plate with an upstream elastically
mounted cylinder

Similar to the amplitude response A∗
c of the cylinder in figure 5(a), figure 6(a) shows

two distinct amplitude responses A∗
p of the plate that occur over the same range of gaps

G∗ as that for the cylinder. At larger gaps G∗ � 1.0, for which figure 5(a) shows the
VIV response, the plate amplitude A∗

p in figure 6(a) shows a rapid decrease followed
by a rapid increase behaviour, and finally an asymptotic variation with increasing U∗

c ,
i.e. a valley–plateau variation. The figure shows that at the larger G∗, the valley region
commences at a smaller amplitude A∗

p and becomes narrower with decreasing gaps up to
G∗ = 1.0. The A∗

p response transforms completely at the smaller gaps G∗ � 0.5, similar
to the A∗

c response (figure 5a), where figure 6(a) shows a rapid increase followed by a
gradual decay variation with increasing U∗

c , i.e. a summit curve. At smaller G∗ � 0.5,
it can be observed that the peak amplitude A∗

p,max increases and shifts towards smaller
U∗

c with decreasing G∗. Although A∗
p,max increases with decreasing G∗, the span of the

summit in figure 6(a) decreases and leads to a much smaller amplitude A∗
p at larger U∗

c . The
plate motion loses its periodic nature at G∗ = 0.1 for U∗

c � 7.7. Ignoring the non-periodic
region, the figure shows a smaller G∗-based transition of plate amplitude A∗

p response from
the valley–plateau curve to the summit curve. It is interesting to notice from figure 6(a)
that the transition in the amplitude A∗

p response of the plate occurs at the same G∗ (= 0.5)
as the amplitude A∗

c response of the cylinder transitions from VIV to galloping (figure 5a).
Overall, figure 6(a) shows larger values of A∗

p over the extremities of U∗
c (U∗

c � 2 and
U∗

c > 7) at the larger gaps G∗ � 1.0, and over an intermediate range of U∗
c (2–7) at the

smaller gaps G∗ � 0.5. These amplitude variations are governed by the plate’s position
with respect to the recirculating region behind the cylinder and also by the interaction
of the plate-tip vortex with the cylinder vortex, as presented below in § 6. Note that the
plate undergoes first-mode vibrations for the various cases considered in the present work.
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Higher modes are observed for a longer plate, presented in our recent work on FIV of a
flexible plate in the wake of a stationary cylinder (Mittal & Sharma 2021).

The effect of proximity interference on the plate amplitude is presented further in
figure 6(b) by the ratio of A∗

p to the plate amplitude A∗
p,st with a stationary upstream

cylinder. The figure shows that the plate amplitude ratio shows a kind of response similar
to that observed in figure 6(a) for A∗

p. At larger gaps, the valley region corresponds to
suppression in plate amplitude A∗

p due to the cylinder motion, while the plateau region
results in the plate amplitude A∗

p enhancement, which increases with decreasing G∗. At
smaller gaps (G∗ � 0.5), the upstream cylinder motion enhances the plate amplitude A∗

p
over the entire range of U∗

c , with the peak value at intermediate U∗
c (≈ 4−5), which

increases with decreasing G∗. The maximum plate amplitude enhancement factor, close to
11, is found at the smallest G∗ = 0.1 and an intermediate U∗

c = 4.

4.4. Two states of the FICV characteristics of the cylinder as well as the plate and the
associated flow regimes

With increasing U∗
c , the amplitude responses presented above in separate subsections for

the cylinder and the plate, show a proximity-induced transition at a smaller gap G∗ = 0.5,
presented schematically as insets in figures 5(a) and 6(a). Thus the present FMSI system
shows two gap-based states of the coupled FIV response: state 1 at the larger gaps G∗ �
1, and state 2 at the smaller gaps G∗ � 0.5, shown in figure 7. Figure 7(a) shows the
amplitude responses as the VIV curve for the cylinder and the valley–plateau response for
the plate in state 1, whereas for state 2, figure 7(b) shows the response for the respective
structures as the galloping variation and summit curve.

The two states of the coupled amplitude response are correlated with the ensuing
wake/gap flow in between the cylinder and the plate. In state 1, the proximity-based A∗

c
enhancement is observed only at the larger U∗

c (= 7.7−12.5) in figure 7(a). However, at
U∗

c > 7.7, the amplitude A∗
c (� 0.45) is less than the radius of the cylinder. This leads

to a blockage of the incidence of free-stream flow on the leading edge of the plate.
Thus the flexible plate is almost subjected to an oscillating wake flow in state 1, shown
schematically above figure 7(a). In state 2, a larger proximity-based A∗

c enhancement is
observed over a broad range of U∗

c (= 4−12.5) in figure 7(b), and the cylinder amplitude
A∗

c (� 0.65) is more than the radius of the cylinder. This leads to a vertical gap between
the two structures (shown schematically above figure 7b), and a direct exposure of the
plate to the free-stream flow for a certain time duration (when the cylinder displacement
is Y∗

c (τ ) > 0.5, i.e. greater than the radius of the cylinder). This results in the onset of gap
flow, as discussed in the next section. Hereafter, states 1 and 2 are referred to as oscillating
wake flow and onset of gap flow, respectively. Note that the onset of gap flow seems to
lead to the onset of the galloping response for the cylinder in state 2.

The effect of the two flow regimes – oscillating wake flow at larger G∗ in state 1 and
onset of gap flow at smaller G∗ in state 2 – on the amplitude response is discussed here
for decreasing G∗ or increasing proximity interference between the two structures. At
the larger values of U∗

c , figure 7 shows that the cylinder amplitude A∗
c increases with

decreasing G∗ for both flow regimes. The oscillating wake flow is associated with an
increase in the plate amplitude A∗

p in state 1, while the onset of gap flow is associated
with a decrease in A∗

p in state 2.
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Figure 7. Variation of the cylinder and the plate vibrational (a,b) amplitude (A∗
c and A∗

p), (c,d) frequency ratio
( f ∗

c and f ∗
p ), and (e, f ) phase difference (φc and φp), with increasing U∗

c , at (a,c,e) larger and (b,d, f ) smaller gaps
G∗. The vibration response is represented by solid lines for the cylinder and dashed lines for the plate, and the
dotted lines show the response of an isolated elastically mounted cylinder. The legend in (c) applies to (a,c,e),
and the legend in (d) applies to (b,d, f ). The schematics at the top of the figure show the proximity-induced two
states of the FICV characteristics.
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The effect of the proximity-based transition in the flow regime is also reflected in
the frequency response of the system, expressed in terms of frequency ratios: f ∗

c =
fc/fn,c for the cylinder, and f ∗

p = fp/fn,p for the plate. Note that the natural frequency
fn,c = 1/U∗

c of vibration of the cylinder varies with U∗
c . However, for first-mode vibrations

of a cantilever-beam-like flexible plate of constant structural and geometrical properties
considered here, fn,p = 0.5595

√
Kb/L∗t∗ρ∗ = 0.1147 is constant for the plate. For the

present FMSI system, the cylinder oscillation frequency fc always locks in with the
oscillation frequency fp of the plate at the periodic state. Hence the variation of f ∗

p
represents the variation of actual frequency of the cylinder–plate system since fn,p is
constant. For state 1, figure 7(c) shows that the frequency ratio f ∗

c of the cylinder shows a
variation similar to that of an isolated cylinder (figure 4b). However, a slight variation in
both f ∗

c and f ∗
p can be seen in state 1. As the plate is brought closer to the cylinder, the onset

of the gap flow probably leads to a transition in the frequency response f ∗
c of the cylinder

(figure 7d), from an increasing VIV trend of variation in state 1 to a plateau variation
in state 2. The oscillation frequency of the cylinder–plate system, represented by f ∗

p ,
decreases with decreasing gaps G∗ as seen in figures 7(c,d). This behaviour is in contrast
to the cylinder amplitude A∗

c , which increases with decreasing gaps (figure 7b). The onset
of gap flow observed in state 2 correlates with the galloping phenomenon (discussed in
§ 5.2), which is associated with lower oscillation frequency ( fc = fp) of the cylinder–plate
system. Low-frequency vibrations in the case of galloping are well reported in the literature
(Bokaian & Geoola 1984a; Sahu et al. 2019). The nearly constant f ∗

c observed in the case
of the galloping response in state 2 resembles that observed for the galloping region in
the past studies on VIV of tandem cylinders (Bokaian & Geoola 1984a) and on VIV of a
cylinder with an attached flexible plate (Sahu et al. 2019).

Similar to the amplitude and the frequency response, the phase difference φc (between
the temporal variation of transverse displacement Yc(τ ) and lift coefficient CL,c(τ ))
variation in state 1 (figure 7e) resembles that of an isolated cylinder. In this state,
figure 7(e) shows a sharp transition from in-phase (φc ≈ 0◦) to anti-phase variation
(φc ≈ 180◦) with increasing U∗

c . Such a phase jump for φc is not observed in figure 7( f )
at the smaller G∗. The absence of the jump-associated damping may be a reason for
almost no decay of A∗

c , and the corresponding galloping response at the larger U∗
c in

state 2, as discussed below. At smaller U∗
c , figures 7(e, f ) show a nearly anti-phase

φp ≈ 180◦ variation for the plate, in contrast to the nearly in-phase φc ≈ 0◦ variation for
the cylinder. Further, with increasing U∗

c , figure 7( f ) shows a transition from anti-phase
φp ≈ 180◦ to in-phase φp ≈ 0◦ variation for the plate. With increasing U∗

c , note from
figures 7(e, f ) that the trend of variation of φp is similar at both larger and smaller G∗,
in contrast to the dissimilar trend for the variation of φc. Also, at larger G∗, figure 7(e)
shows an opposite transition of the phase for the cylinder, as compared to that for the
plate.

For a larger gap G∗ = 2.5 and U∗
c = 12.5, figure 7(e) shows φp ≈ 110◦ for the phase

difference between the temporal variation of space-averaged lift coefficient CL,p and
displacement Yp of the tip of the plate, with first-mode vibrations for all the cases
considered here. Here, the phase difference between the local lift coefficient Clocal

L and
local plate displacement Ylocal

p (no figure shown here) is found to be almost in-phase near
the leading edge and anti-phase near the trailing edge of the plate. Further, for a smaller gap
G∗ = 0.3 and U∗

c = 7.7, figure 7( f ) shows φp ≈ 14◦, where an almost in-phase variation
of Clocal

L and Ylocal
p is found for various points on the plate.
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FICV of a circular cylinder and a detached flexible plate

5. Flow-regimes-based flow-induced damping mechanisms for the transition in the
FICV characteristics of the cylinder

The FICV characteristics of the cylinder show distinct amplitude responses in states 1
and 2, with VIV-type and galloping-type responses in the respective states (figures 4a,b).
As discussed above, this transition in the structural dynamics is caused by the transition
in the fluid dynamics behind the cylinder – oscillating wake flow in state 1 to the onset of
gap flow in state 2. In the present section, the two types of flow regimes and the associated
damping mechanisms, which lead to the transition in the cylinder structural dynamics
and the onset of galloping, are presented. The flow-induced damping mechanisms are
presented below in separate subsections for both flow regimes, with the help of temporal
variation of velocity vectors and vorticity as well as velocity contours.

5.1. Oscillating wake flow in state 1
For a representative case of G∗ = 2.5 and U∗

c = 12.5 in state 1, figures 8(c1–c5)
show a vertically oscillating wake flow behind the cylinder, where the non-dimensional
streamwise velocity upstream of the plate is less than 1 at all time instants. Due to the
larger gap between the two structures in state 1, figures 8(a1–a5) and 8(b1–b5) show that
the cylinder vortices are formed completely within the gap before they interact with the
plate. Figure 8(e) shows an anti-phase variation in the cylinder displacement Yc(τ ) and lift
coefficient CL,c(τ ).

For the cylinder at the topmost position, figures 8(a1,b1) show the formation of a
counter-clockwise (CCW) vortex on the rear surface of the cylinder. This CCW vortex
in the bottom half leads to a downward force, as seen by the negative value of CL,c
in figure 8(d). Furthermore, figures 8(a1–a5) correspond to a downward motion of the
cylinder, and an anti-phase upward motion is seen for the plate. The upward-moving
plate sweeps the surrounding fluid during the downward movement of the cylinder. The
void created below the plate causes a larger entrainment of the fluid, which results in
a stronger CCW vortex. The sweeping and the entrainment of the surrounding fluid
as well as the resulting larger CCW vortex are marked in figures 8(b2,b3). This flow
phenomenon indicates that the cylinder acquires a larger momentum along its motion from
the topmost to the mean position (figures 8a1–a3). However, as the cylinder drives past
the mean position, figure 8(d) shows a change in the direction of CL,c from downwards
to upwards due to the newly formed clockwise (CW) vortex on the rear surface of the
cylinder. As shown by the marked arrows on the cylinder for the CL,c in figures 8(b1–b5),
the flow-induced lift force always tries to bring the cylinder inwards (towards the mean
position) at any point in its oscillation. Thus the lift force is a restoring force that always
opposes the outward motion of the cylinder, i.e. the cylinder is subjected to flow-induced
positive damping.

The positive damping on the cylinder in state 1, due to the anti-phase variation of Yc
and CL,c, is similar to that reported earlier for FIV of an isolated cylinder (Williamson &
Govardhan 2004; Prasanth & Mittal 2008). The flow-induced damping and the small value
of CL,c at large U∗

c act as an amplitude-limiting mechanism (Blackburn & Karniadakis
1993) and result in the reduction in amplitude A∗

c at the larger U∗
c . However, the favourable

sweeping action of the plate aids the formation of stronger vortices behind the cylinder,
as compared to an isolated cylinder, which results in a relatively larger lift force and
a proximity-induced increase in the cylinder amplitude at larger U∗

c (figure 7a). This
favourable upward (downward) sweeping of fluid away during the downward (upward)
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Figure 8. Timewise variation of (a–d) flow structures; (e) structural displacement (Yc and Yp) as well as lift
coefficient CL,c of the cylinder; and ( f ) time-averaged V velocity profiles at various transverse Y locations
above the plate, within a half-cycle of periodic motion, corresponding to the cylinder motion from the topmost
to the bottommost position, at U∗

c = 12.5 and G∗ = 2.5 in state 1. Sub-panels (a1–a5), (b1–b5), (c1–c5)
and (d1–d5) show the velocity vectors coloured with the magnitude of resultant velocity, vorticity contours,
streamwise U velocity contours, and V velocity contours, respectively. The vertical arrow in (b1–b5) represents
the relative magnitude and direction of CL,c, and the line in (c1–c5) represents a line contour with U = 1. The
flow structures correspond to the time instants marked 1–5 in (e).

motion of the cylinder is brought about by an out-of-phase (φc,p � 90◦) motion of
the plate with respect to the cylinder motion. Further, a cylinder-oscillation-induced
upward and downward flow, near the leading edge of the plate, is shown by
instantaneous V velocity contours in figure 8(d) and time-averaged V velocity profiles in
figure 8( f ).

942 A57-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

40
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.406


FICV of a circular cylinder and a detached flexible plate

5.2. Onset of gap flow in state 2
For a representative case of G∗ = 0.3 and U∗

c = 7.7 in state 2, figures 9(a1–a5) and
9(d1–d5) show the formation of a cylinder-oscillation-induced upward/downward flow
closer to the cylinder, due to the creation of a vertical gap between the two structures
when the instantaneous cylinder amplitude is A∗

c > 0.5. The vertically oscillating flow is
shown more clearly by the time-averaged V velocity profile in figure 9( f ). With increasing
Y location, the figure shows that the peak of the V velocity profile decreases and shifts
downstream along with an increase in the width of the high-velocity region. Although
the vertically oscillating flow is also seen at larger G∗ in figure 8( f ), the maximum
V velocity is relatively far away from the cylinder, and its value is smaller compared
to that seen in figure 9( f ) for smaller G∗. Thus the vertically oscillating flow is close
to the cylinder and much stronger in state 2 as compared to state 1. The closer and
stronger vertically oscillating flow is associated with an increase in the magnitude of lift
force along with a transition from restoring to exciting force, as discussed below. Unlike
state 1, figures 9(b1–b5) show that the cylinder vortices are not formed completely in
state 2. Thus it can be seen that the plate interacts with a partially formed cylinder vortex,
leading to a smaller oscillation amplitude of the plate A∗

p, which decreases with decreasing
G∗ (� 0.5).

At the topmost position of the cylinder, figures 9(a1, b1) show that a CCW vortex starts
forming on the rear surface of the cylinder. The forming CCW cylinder vortex pairs with
the CW vortex at the leading edge of the plate. This cylinder–plate CCW–CW vortices
pairing results in a vertical gap-flow-based upward entrainment of the free-stream flow
in the wake behind the cylinder. As the cylinder moves from the topmost to the mean
position, figures 9(a1–a3) show that the gap-flow-based entrainment of the free-stream
flow reduces, along with a reduction in the upward lift force (refer to the vertical arrow in
figures 9b1–b3). However, when the cylinder crosses the mean position, the direction of the
gap-flow-based entrainment switches from upwards to downwards (figures 9a2–a4), and
the cylinder–plate vortex pairing transits from CCW–CW to CW–CCW (figures 9b2–b4),
which leads to a change in the direction of the lift force from upwards to downwards
(figures 9b2–b4 and 9d).

From the upward and downward lift forces discussed above, during the downward
motion of the cylinder, note from the marked arrows on the cylinder that the instantaneous
CL,c always tries to take the cylinder outwards (away from the mean position) at
any point of its oscillation. Thus, in contrast to the above discussed restoring force
at larger G∗, the lift force at smaller G∗ is an excitation force that always aids the
outward motion of the cylinder. This leads to a flow-induced negative damping, caused
by the in-phase variation of Yc and CL,c that results in the large-amplitude galloping
phenomenon in state 2. This in-phase variation is a consequence of the pairing of the
cylinder–plate vortices and the cylinder-oscillation-induced upward/downward flow close
to the cylinder. The vertically oscillating flow is stronger when the plate moves almost
in-phase with the cylinder, resulting in a very-high-amplitude galloping response of the
cylinder.

Also note that the proximity interference leads to an upward (downward) roll-up
of the CCW (CW) vortices on the rear surface of the cylinder, as seen in
figures 9(b1,b2) (figures 9b4,b5) in state 2; this is not seen for the larger gaps in
state 1 (figures 8b1–b5).
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Figure 9. Timewise variation of (a–d) flow structures; (e) structural displacement (Yc and Yp) as well as lift
coefficient CL,c of the cylinder; and ( f ) time-averaged V velocity profiles at various transverse Y locations
above the plate, within a half-cycle of periodic motion, corresponding to the cylinder motion from the
topmost to the bottommost position, at U∗

c = 7.7 and G∗ = 0.3 in state 2. Sub-panels (a1–a5), (b1–b5), (c1–c5)
and (d1–d5) show the velocity vectors coloured with the magnitude of resultant velocity, vorticity contours,
streamwise U velocity contours, and V velocity contours, respectively. The vertical arrow in (b1–b5) represents
the relative magnitude and direction of CL,c, and the line in (c1–c5) represents a line contour with U = 1. The
flow structures correspond to the time instants marked 1–5 in (e).

6. Effect of proximity interference on cylinder–plate vortex-interaction dynamics in
the near wake

The previous section discussed the two flow regimes and the correlation of the associated
flow structures with the cylinder amplitude response. This section presents the effect of the
proximity interference on the interaction of the cylinder–plate vortices in the near wake;
the resulting vortex-shedding patterns in the far wake are presented in the next section.
The near wake results are presented below in separate subsections for smaller U∗

c and
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larger U∗
c . Since the cylinder is almost stationary at smaller U∗

c (figure 5a), § 6.1 presents
the effect of the near wake vortex-interaction dynamics on the mean recirculation length
and plate vibrations. For the oscillating cylinder at intermediate and larger U∗

c , the
cylinder–plate vortex-interaction dynamics is presented in § 6.2 with the help of a periodic
variation of vorticity contours, cylinder displacement and plate displacement.

6.1. Effect of vortex interference on mean recirculation length behind an almost
stationary cylinder

Due to very small amplitude of vibration of the cylinder at U∗
c � 2 (figure 5a), the results at

smaller U∗
c can be discussed for FIV of a flexible plate in the wake of an almost stationary

cylinder. In this subsection, the proximity interference effect on the plate vibrations and
mean recirculation region behind the cylinder is presented for various gaps G∗.This mutual
interaction between the plate and the surrounding flow in the wake region is discussed in
this subsection.

A larger proximity interference is observed when the flexible plate is located very close
to the cylinder and inhibits the interaction of the free shear layers above and below the
cylinder. This results in a very large mean recirculation length Lr, as compared to the
Lr,st for an isolated stationary cylinder; more than double for G∗ = 0.1, as shown in
figure 10(a). Thus the plate lies well within the recirculation region, where it is subjected
to a very low transverse velocity, and the plate oscillates with an extremely low amplitude.
Figure 10(b) shows that Lr decreases with increasing gaps up to G∗ = 0.5), which results
in a gradually increasing A∗

p with increasing G∗ � 0.5. Further increase in G∗, up to
1.5, causes insignificant change in Lr. However, with increasing gap G∗, the plate moves
continuously out of the recirculation region, as shown in figure 10(a) for G∗ = 1.5. Since
the plate tip is outside the recirculation region, in a high transverse velocity region, a
significant increase in Ap is observed in figure 10(b) for G∗ = 1.5. At the gaps G∗ � 1.5,
the cylinder vortices are well attached to the plate. However, as the gap increases further
to G∗ = 2, the figure shows that the mean recirculation region shrinks drastically to
Lr < Lr,st, as the cylinder vortices are no longer attached to the plate. This results in an
increase in the plate amplitude, as seen in figure 10(b) at G∗ = 2. Any further increase in
G∗ is seen to cause insignificant change in Lr as well as A∗

p.
The above results show that for the smaller gaps G∗ � 1.5, the proximity interference

increases the mean recirculation region as compared to that for an isolated cylinder. There
exists a critical gap G∗

c = 1.5 beyond which the recirculation region shrinks drastically.
This critical gap is much smaller than the critical gap G∗

c = 2.6 with a rigid plate in a
similar configuration (Hwang et al. 2003), indicating that the structural flexibility of the
plate aids the cylinder–plate vortex interaction and leads to the shrinkage of the mean
recirculation region at a lower G∗.

6.2. Cylinder–plate vortex-interaction dynamics for a vibrating cylinder
At intermediate and high reduced velocity (U∗

c > 2), the cylinder oscillates with a
substantial amplitude in both the states of FICV response (figures 7a,b). Thus the
plate amplitude at these reduced velocities is governed primarily by the nature of
interaction of the cylinder vortex with the plate vortex. In the present study, three
types of cylinder–plate vortex interactions are observed: constructive, destructive and
partial interaction. These vortex-interaction modes are discussed here, correlating the
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Figure 10. (a) Time-averaged streamlines and (b) variation of plate amplitude A∗
p and recirculation length Lr,

with increasing cylinder–plate gaps G∗, for U∗
c = 1, where Lr is measured from the rear surface of the cylinder.

The recirculation length Lr,st for an isolated stationary cylinder is represented by a dashed line in (b).

effect of the vortex interactions on the plate amplitude. The vortex interactions are studied
with the help of a timewise variation of vorticity contours and cylinder/plate displacement
(Yc/Yp) over a half-cycle of the periodic motion, as shown in figure 11.

The destructive interaction is shown in figure 11(a) for a representative case that
corresponds to U∗

c = 5.5 and G∗ = 2.5. When the cylinder is at the mean position,
figure 11(a1) shows that a CCW cylinder vortex ‘I’ reaches the tip of the flexible plate
and interacts with a CW plate vortex ‘i’. Figures 11(a1–a4) show that the opposite-signed
cylinder–plate vortex interaction leads to a weakening and finally the dissipation of the
plate vortex ‘i’. Simultaneously, the figure shows that a CW cylinder vortex ‘II’ advects
along the upper surface of the plate and interacts with a CCW plate vortex ‘ii’. Since
the vortex interaction involves opposite-signed cylinder and plate vortices, this type of
two-structure vortex interaction is called the destructive interaction (Gopalkrishnan et al.
1994). It results in a small lift force on the plate and consequently a smaller plate amplitude
(figure 6a). The plate-tip vortex, formed during the destructive interaction, is very weak
and gets dissipated without causing any significant change in the vortex-shedding pattern,
presented in the next subsection.

The constructive interaction is shown in figure 11(b) for a representative case at U∗
c =

6.7 and G∗ = 2.5. At the mid-position of the cylinder, figure 11(b1) shows a CW cylinder
vortex ‘I’ at the leading edge of the plate, which interacts with a CW plate vortex. Later,
figures 11(b3,b4) show that the two same-signed CW vortices coalesce together forming
a CW vortex ‘Ii’. Simultaneously, as the coalesced cylinder–plate vortex ‘Ii’ advects,
the figure shows the growth of a CCW plate vortex ‘ii’ at the trailing edge of the plate
that would interact with the incoming cylinder vortex ‘II’. Since the interaction involves
same-signed vortices, this type of two-structure vortex interaction is called the constructive
interaction (Gopalkrishnan et al. 1994). It leads to a large lift force on the plate and results
in a larger plate amplitude (figure 6a). Since the cylinder and plate vortices coalesce during
a constructive interaction, this type of interaction (similar to the destructive interaction)
does not affect the vorticity pattern in the wake region, presented in the next subsection.

The partial interaction is shown in figure 11(c) for a representative case at U∗
c = 12.5

and G∗ = 1. When the cylinder is at the mean position, figure 11(c1) shows the formation
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Figure 11. Vorticity contours over a half-cycle of periodic motion of the two structures, corresponding to the
cylinder motion from the mean position to the bottommost and finally back to the mean position, at (a1−a4)
U∗

c = 5.5 and G∗ = 2.5, (b1–b4) U∗
c = 6.7 and G∗ = 2.5, and (c1–c4) U∗

c = 12.5 and G∗ = 1.0. The contours
correspond to the time instants marked 1–4 in (a5), (b5) and (c5), which show the temporal variation of cylinder
displacement Yc and plate displacement Yp.

of a CCW cylinder vortex ‘I’ and a CCW plate vortex ‘i’. As the vortex ‘I’ advects
downstream, figure 11(c3) shows that the plate vortex is fed by the same-signed vorticity of
the cylinder vortex ‘I’. Thus figures 11(c1–c3) show that the CCW plate vortex ‘i’ interacts
and grows in size as ‘I′i’ with some part of the same-signed CCW cylinder vortex. Later,
figure 11(c4) shows that the remaining part of the CCW cylinder vortex ‘I′′’ interacts
with the opposite-signed CW plate vortex. The above cylinder–plate vortex interaction
involves the constructive and destructive interactions in sequence, and is called here the
partial interaction. The partial cylinder–plate vortex interaction results in the formation of
a CCW vortex pair, marked as ‘I′′-I′i’ in figure 11(c4). Later, as the initiation of shedding
of the CCW vortex commences downstream of the cylinder, the vortex pair ‘I′′-I′i’ breaks
and sheds the vortices ‘I′′’ and ‘I′i’ as two distinct CCW vortices for certain cases, while
for the other cases, the coalesced vortex pair is shed. The respective cases result in a
vortex-shedding pattern called here 2P (two pairs of shed vortices) and C(2P) (coalesced
two-pairs) modes of vortex shedding. The larger the distance between the vortex pair, the
weaker the vortex interaction and consequently the smaller the plate amplitude.
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Figure 12. Cylinder–plate vortex-interaction regime map. Contours of (a) absolute value of phase difference
|φc,p| between cylinder displacement Yc and plate displacement Yp, and (b) non-dimensional vortex-shedding
or oscillation frequency (Strouhal number St). Here, Stst is the non-dimensional vortex-shedding frequency of
a stationary cylinder.

The constructive and destructive vortex interactions discussed above were proposed by
Gopalkrishnan et al. (1994) for an FMSI problem on flow across a rigid aerofoil with a
prescribed pitching and heaving motion, and a downstream heaving cylinder. As compared
to the forced motion of the rigid structures in their work, the present work is based
on flow-induced vibration of the two structures (one rigid and the other flexible), and
the correlation between the vortex interactions and the plate amplitude is presented here
probably for the first time. Constructive and destructive interactions were also reported for
forced oscillation of a flexible plate behind a cylinder (Wu et al. 2014); however, the partial
interaction is not found in the literature and is proposed in the present work.

6.3. Cylinder–plate vortex-interaction dynamics based regime map
Figure 12 shows the regime map for the vortex-interaction modes discussed above. The
map shows a demarcation of the vortex-interaction modes, with each mode corresponding
to the contour value of certain quantitative parameters – phase difference φc,p (between
the FICV of the two structures) and the non-dimensional vortex-shedding frequency St.
The figure shows that the destructive interaction occurs at intermediate values of U∗
(≈ 4−6) and larger gap (G∗ � 1.0), while the partial and constructive interactions occur
at intermediate as well as larger U∗

c . Partial interaction is observed only at smaller gaps
(G∗ � 1.0), and constructive interaction is observed for almost all the gaps (G∗ � 0.3).
With increasing U∗

c , note that the vortex-interaction mode transits from destructive to
constructive at larger G∗, and it transits from constructive to partial at smaller G∗.

Figure 12(a) shows that each vortex-interaction mode is correlated closely with the
phase difference between the transient vibrations of the two structures. The figure shows
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that the cylinder and plate vortices undergo constructive interaction when the two
structures oscillate with |φc,p| = 90◦ to 180◦. However, for |φc,p| = 0◦ to 90◦, the vortices
undergo destructive interaction at larger gaps (G∗ � 1.0) and partial interaction at smaller
gaps (G∗ � 1.0). Although the figure shows the variation of absolute value of φc,p, it
is worth pointing out that the destructive interaction almost corresponds to φc,p ≈ −90◦
to 90◦, the partial interaction corresponds to φc,p ≈ 0◦ to −90◦, and the constructive
interaction corresponds to φc,p ≈ 90◦ to 180◦ as well as φc,p ≈ −90◦ to −180◦. For the
transition from φc,p = 180◦ to −180◦, which corresponds to |φc,p| = 180◦ in figure 12(a),
note that the corresponding U∗

c for G∗ � 0.5 in the figure almost matches with the U∗
c for

the proximity-induced deviation of A∗
c in figure 5(a).

Note that the above demarcating values of |φc,p| are representative, and there are a
few exceptions for the partial interaction with |φc,p| > 90◦, corresponding to G∗ = 1.0
(U∗

c = 6.7 and 7.7) and G∗ = 0.5 (U∗
c = 5.0). However, these exceptions are close to

the transition from state 1 (G∗ = 1) to state 2 (G∗ = 0.5) of FICV characteristics. Also
note that the φc,p = 0◦ to −90◦ values, for the partial interaction, overlap with those
for the destructive interaction. However, the two regimes are demarcated by the values
of vortex-shedding/oscillation frequency, i.e, St < Stst for the partial interaction, and
St � Stst for the destructive interaction, as shown in figure 12(b). The figure shows that the
destructive, constructive and partial vortex interactions are larger, intermediate and smaller
frequency phenomena. Thus the increased cylinder–plate proximity interference leads to a
decrease in the frequency of the two-structure system. The high cylinder amplitude region
in the VIV characteristics (for state 1) corresponds to a high-frequency phenomenon
with St > Stst, while the galloping amplitude response (in state 2) corresponds to a
low-frequency phenomenon with St < Stst. The demarcation of the various regimes in
the map corresponds to:

(i) destructive vortex interaction: |φc,p| = 0◦ to 90◦ and St � Stst
(ii) constructive vortex interaction: |φc,p| = 90◦ to 180◦ and St < Stst

(iii) partial vortex interaction: |φc,p| = 0◦ to 90◦ and St < Stst.

It is worth noting that the regime map in figure 12 presents a quantitative identification
of the cylinder–plate vortex-interaction mode as compared to the qualitative identification
observed in figure 11. Such a quantitative identification of the vortex-interaction modes is
not available in the literature.

7. Effect of the cylinder–plate vortex interaction on the vortex-shedding patterns in
the far wake

The cylinder–plate vortex interference in the near wake affects significantly the
vortex-shedding patterns behind the two structures in the far wake. The effect is
predominant in state 2, where the proximity interference effects are dominant. In the
present work, four types of vortex patterns are observed: 2S, C(2S), 2P and C(2P), as
shown in figure 13. The 2S pattern refers to two single opposite-signed shed vortices
per cycle of cylinder oscillation. Here, the wake consists of a staggered arrangement of
opposite-signed vortices in a single row (figure 13a). The C(2S) pattern is a coalesced-2S
pattern, where the same-signed vortices coalesce and a double row of vortices is observed
(figure 13b). The 2P pattern refers to two pairs of opposite-signed vortices shed per cycle of
the cylinder oscillation, with four distinct vortices in the wake for each cycle (figure 13c).
The C(2P) pattern is a coalesced-2P pattern, where the same-signed vortices in each pair
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Figure 13. Instantaneous vorticity contours of the various vortex patterns observed in the present work:
(a) two single, 2S; (b) coalesced-2S, C(2S); (c) two pairs, 2P; and (d) coalesced-2P, C(2P).

of vortices, generated by the cylinder and plate, coalesce. Figure 13(d) shows that as the
coalesced vortex pairs advect downstream, the plate vortex forms the head of the CW
(CCW) coalesced vortex, closely resembling a transversely elongated 2S vortex pattern.
This is in contrast to the 2P pattern, where the coalesced vortex pairs in the near wake break
as they advect downstream. Although both C(2S) and C(2P) patterns involve coalescence
of same-signed vortices, note that the coalescence occurs in the streamwise direction for
C(2S), while it occurs in the transverse direction for C(2P).

The vortex-shedding patterns 2S, C(2S) and 2P are presented, using the terminology
introduced by Williamson & Roshko (1988) for the forced motion of a circular cylinder.
However, the present two pairs of shed vortices in the 2P mode correspond to each pair
shed by the cylinder and the plate as compared to the two pairs shed by the cylinder in
the proposition by Williamson & Roshko (1988). Moreover, the C(2P) mode of vortex
shedding is proposed here and presented for the first time in the literature.

7.1. Vortex-shedding patterns in state 1
For the oscillating wake flow at a larger gap G∗ in state 1, the cylinder and plate are widely
spaced, leading to weak interaction between the two structures. Thus the vortex patterns
in this state are dominated primarily by the upstream cylinder and closely resemble those
of the FIV of an isolated cylinder (G∗ = ∞).

Figure 14 shows the vortex shedding, downstream of both structures, with a 2S
vortex-shedding pattern at low U∗

c (= 1). With an increase in the reduced velocity to
U∗

c = 3.3, the cylinder amplitude A∗
c increases (figure 7a) and results in an increase in the

transverse spacing between the vortices, which leads to a change in vortex pattern from
2S to C(2S). The C(2S) mode of shedding is sustained with further increase in U∗

c , up to
5.5, that corresponds to a larger cylinder amplitude (figure 7a). For U∗

c > 5.5, figure 7(a)
shows a sharp decrease in A∗

c that leads to a transition from C(2S) to 2S mode for G∗ > 1
(figure 14). The smaller A∗

c (at U∗
c > 5.5) does not lead to the two rows of shed vortices

and coalescence. Thus in state 1, the figure shows that the wake gradually transitions from
the C(2S) mode (for the high cylinder amplitude at the intermediate U∗

c ) to the 2S mode of
vortex shedding (for the low cylinder amplitude at smaller and larger U∗

c ). We found that
the downstream distance at which coalescence occurs in the C(2S) regime increases with
increasing U∗

c and decreasing G∗. The coalescence is not observed for certain cases of the
C(2S) regime in the figure (corresponding to larger U∗

c and smaller G∗) due to the shorter
downstream distance considered in figure 14.
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Figure 14. Instantaneous vorticity contours at various cylinder–plate gaps G∗ and reduced velocity U∗
c for

state 1. The vortex-shedding patterns are presented for the instant when the cylinder is at its mean position.
The dash-dot lines demarcate the 2S and C(2S) patterns, and the solid line demarcates the C(2S) and C(2P)
patterns.

The transition of the vortex-shedding pattern from 2S to C(2S) and gradually back
to 2S, with increasing U∗

c , is well reported in past studies on FIV of an isolated
cylinder at low Re (Leontini et al. 2006; Prasanth & Mittal 2008). However, as the
cylinder–plate gap decreases to G∗ = 1.0, the proximity-effect-based cylinder–plate
vortex interaction starts dominating, with a larger plate amplitude at larger U∗

c
(figure 7a), and the figure shows a transition from C(2S) to C(2P) modes of
vortex-shedding pattern at the larger U∗

c . The C(2P) mode of vortex shedding is formed
due to the partial interaction of the cylinder and the plate vortices, presented in
figures 11(c1–c5).

7.2. Vortex-shedding patterns in state 2
Due to the onset of gap flow in state 2, the coupling between the displacement of
the cylinder and the plate intensifies and leads to different vortex-shedding patterns as
compared to the FIV of an isolated cylinder. At smaller reduced velocity U∗

c , figure 15
shows that the vortices arrange in the 2S pattern, similar to that for an isolated cylinder. The
figure shows that the 2S pattern persists over a larger range of U∗

c in state 2, as compared
to that in state 1 (figure 14). Contrary to the vortex-shedding patterns in state 1, figure 15
shows that the 2S pattern in state 2 transits almost directly from the 2S to the C(2P) pattern
with increasing U∗

c . At larger U∗
c , the figure shows that the plate splits the coalesced
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Figure 15. Instantaneous vorticity contours at different cylinder–plate gaps and reduced velocities for state 2.
The vortex-shedding patterns are presented for the instant when the cylinder is at its mean position. The solid
line demarcates the 2S and C(2P) patterns, the dotted line demarcates the C(2P) and 2P patterns, and the dashed
line demarcates the 2P and non-periodic vortex-shedding patterns.

cylinder–plate C(2P) vortices (in the near wake) into 2P vortices (in the far wake), at a
certain downstream distance. However, the downstream distance for the splitting is found
to depend on the values of U∗

c and G∗. Although the transition from C(2P) to 2P mode
(as the vortices move downstream) is not seen in figure 15 (for certain cases) due to
a smaller downstream distance in the figure, the vortex splitting at a larger downstream
distance is ensured for these cases (not shown here). At very low cylinder–plate gaps G∗
and high U∗

c , the wake finally turns non-periodic with no discernible pattern, as shown in
figure 15.

The 2P pattern obtained in the present work (at low Re) resembles that reported for the
FIV of an isolated cylinder (at high Re) (Williamson & Govardhan 2004). However, it
must be noted that the mechanism of formation of the 2P mode in the present low Re case
is different from that reported for the isolated cylinder at high Re. The 2P vortex pattern
was also reported by Borazjani & Sotiropoulos (2009) in their study on FIV of tandem
cylinders at low Re (= 200). However, the 2P pattern for the FIV of the cylinder–plate
system is shown here probably for the first time in the literature.

7.3. Vortex-shedding pattern based regime map
Figure 16 shows a vortex-shedding pattern based regime map, demarcating the various
vortex-shedding regimes, overlapped with the contours of amplitude response of the
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Figure 16. Vortex-shedding pattern based regime map, for various reduced velocities U∗
c and cylinder–plate

gaps G∗, overlapped with the contours of vibrational amplitude of (a) the cylinder, A∗
c , and (b) the plate-tip,

A∗
p.

two structures. The regime map is presented for U∗
c � 4 since the cylinder–plate proximity

interference effect is seen at these U∗
c values; and A∗

c and A∗
p are large enough (figure 7) to

have a significant effect on the vortex-shedding regime.
Figure 16 shows that the various vortex-shedding regimes are correlated strongly with

the amplitude of the cylinder and the plate. In state 1, for larger gaps (G∗ � 1.0), the
cylinder oscillates with a large amplitude A∗

c � A∗
p at the intermediate U∗

c that results
in the formation of a C(2S) vortex-shedding pattern. At the larger U∗

c in state 1, the
plate amplitude increases drastically with A∗

p > A∗
c , and results in the formation of a

single row of vortices with a 2S pattern. With decreasing gap G∗, as the flow transitions
from oscillating wake flow (state 1) to the onset of gap flow (state 2), the figure shows
various transitions for state 2 at smaller gap – C(2S) to C(2P) and then to 2P, and finally
non-periodic vortex-shedding regimes. The demarcation of the various vortex-shedding
regimes in the map is as follows.

(i) 2S vortex shedding: larger G∗ (� 1.5), larger U∗
c (> 6) and A∗

p > A∗
c .

(ii) C(2S) vortex shedding: intermediate U∗
c (< 6), and larger G∗ (with A∗

c > A∗
p) as well

as smaller G∗ (with A∗
c < A∗

p).
(iii) C(2P) vortex shedding: smaller G∗ (� 1.0) and A∗

c < A∗
p.

(iv) 2P vortex shedding: smaller G∗ (� 0.5) and A∗
c > A∗

p.

8. Summary and conclusions

Figure 17 shows a graphical summary of the proximity-induced flow physics and the
resulting vibration characteristics for the present FMSI system. The figure shows that
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Figure 17. Graphical summary of the proximity-induced flow physics and coupled vibration characteristics of
the present multi-physics FMSI system: effect of reduced velocity U∗

c and gap G∗ on the two states of the flow
behind the cylinder, vortex-interaction regimes in the near wake, vortex-shedding patterns in the far wake, and
the representative FICV characteristics of the two structures.

the present FMSI system shows a two-state response, where state 1 occurs at larger gaps
(G∗ � 1) and state 2 occurs at smaller gaps (G∗ � 0.5).

For state 1 at larger gaps G∗ � 1, the plate faces the oscillating wake flow. The
graphical summary in figure 17 shows the cylinder amplitude A∗

c , frequency ratio f ∗
c ,

and phase difference φc with a representative rapid increase/gradual decay VIV-like
response, continuously increasing, and rapid-jump characteristic, respectively. For the
plate, the figure shows a valley–plateau amplitude A∗

p response, summit–plateau frequency
f ∗
p response, and gradually decreasing phase difference φp response. These structural

responses are associated with a transition in the vortex-interaction mode in the near wake,
and the vortex-shedding pattern in the far wake. The figure for state 1 at G∗ � 1 shows that
the vortex-shedding regime transits from 2S to C(2S) and back to 2S, with increasing U∗

c ,
for all the gaps except the transition from 2S to C(2S) to C(2P) pattern for G∗ = 1. The 2S,
C(2S) and C(2P) vortex-shedding patterns are observed when the cylinder vortex interacts
with a same-signed plate vortex, opposite-signed plate vortex, and sequentially with a
same-signed and an opposite-signed plate vortex, called here constructive, destructive and
partial vortex interaction, respectively.

For state 2 at smaller gaps G∗ � 0.5, there is an onset of gap flow that leads
to a transition in the cylinder vibration characteristics, and figure 17 summarizes a
rapid-increase plateau amplitude A∗

c response or a galloping response, rapid-increase
constant frequency f ∗

c response, and a constant value phase φc response. For the plate, the
figure shows a representative summit-like amplitude A∗

p response, gradually decreasing
frequency f ∗

p and phase difference φp response with increasing U∗
c . These structural

responses are associated with a transition from C(2S) to C(2P) to 2P at G∗ = 0.5, and
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further to a non-periodic mode of vortex shedding at G∗ � 0.3 (figure 17). The partial
interaction, observed in state 2, results in the formation of a 2P (C(2P)) pattern for a
weaker (stronger) cylinder–plate vortex interaction.

The vortex dynamics observed in both the states are also associated with quantitative
vibration parameters, where figure 17 shows that the 2S vortex-shedding pattern is
observed only when the plate oscillates with a larger amplitude than the cylinder
(A∗

p > A∗
c ), with a low frequency (St < Stst) and with a phase difference |φc,p| =

90◦ to 180◦. As the cylinder amplitude exceeds the plate amplitude in state 1, figure 17
shows a C(2S) pattern with a large oscillation frequency (St � Stst) and a phase difference
|φc,p| = 0◦ to 90◦. However, for A∗

c > A∗
p in state 2, the figure shows a 2P pattern with

a small oscillation frequency (St < Stst) and |φc,p| = 0◦ to 90◦. The 2P pattern transits
to the 2S pattern at large U∗

c with increasing G∗, with an intermediate C(2P) pattern,
which is observed when the two structures oscillate with a low frequency (St < Stst),
with a phase difference |φc,p| = 60◦ to 90◦ and A∗

c < A∗
p. The present demarcations of

the vortex-interaction modes and vortex-shedding modes are based on a qualitative
observation, which is similar to that adopted in the previous studies Gopalkrishnan
et al. (1994) for vortex-interaction modes and Williamson & Roshko (1988) for
vortex-shedding modes. The present work further reveals certain quantitative parameters –
|φc,p| for vortex-interaction modes (figure 12), and relative magnitude of A∗

c and A∗
p for

vortex-shedding modes (figure 16) – for the demarcation of both the modes, with a few
exceptions.

The present work is significant as it presents the role of proximity interference on the
flow physics (flow regimes behind the cylinder, cylinder–plate vortex interaction and the
associated vortex-shedding patterns) and coupled vibrational characteristics of both the
structures. For an energy-harvesting application of the present FMSI problem, a larger
vibrational amplitude is desired for both the cylinder and the plate, which is obtained here
for intermediate U∗

c ≈ 5 − 7, and will be explored further in our future work.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Charu Mittal https://orcid.org/0000-0002-0576-8348;
Atul Sharma https://orcid.org/0000-0001-6500-924X.

REFERENCES

AKAYDIN, H.D., ELVIN, N. & ANDREOPOULOS, Y. 2010 Energy harvesting from highly unsteady fluid flows
using piezoelectric materials. J. Intell. Mater. Syst. Struct. 21 (13), 1263–1278.

ALLEN, J.J. & SMITS, A.J. 2001 Energy harvesting eel. J. Fluids Struct. 15 (3–4), 629–640.
APELT, C.J., WEST, G.S. & SZEWCZYK, A.A. 1973 The effects of wake splitter plates on the flow past a

circular cylinder in the range 104 < R < 5 × 104. J. Fluid Mech. 61 (1), 187–198.
BAE, J., et al. 2014 Flutter-driven triboelectrification for harvesting wind energy. Nat. Commun. 5 (1), 1–9.
BARRERO-GIL, A., ALONSO, G. & SANZ-ANDRES, A. 2010 Energy harvesting from transverse galloping.

J. Sound Vib. 329 (14), 2873–2883.
BEARMAN, P.W. 2011 Circular cylinder wakes and vortex-induced vibrations. J. Fluids Struct. 27 (5–6),

648–658.
BERNITSAS, M.M, RAGHAVAN, K., BEN-SIMON, Y. & GARCIA, E.M.H. 2008 Vivace (vortex induced

vibration aquatic clean energy): a new concept in generation of clean and renewable energy from fluid flow.
Trans. ASME J. Offshore Mech. Arctic Engng 130 (4), 041101.

BLACKBURN, H.M. & KARNIADAKIS, G.E. 1993 Two-and three-dimensional simulations of vortex-induced
vibration or a circular cylinder. In Proceedings of the 3rd International Offshore and Polar Engineering
Conference. International Society of Offshore and Polar Engineers.

942 A57-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

40
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-0576-8348
https://orcid.org/0000-0002-0576-8348
https://orcid.org/0000-0001-6500-924X
https://orcid.org/0000-0001-6500-924X
https://doi.org/10.1017/jfm.2022.406


C. Mittal and A. Sharma

BLEVINS, R.D. 1990 Flow-Induced Vibration. Van Nostrand Reinhold.
BOKAIAN, A. & GEOOLA, F. 1984a Proximity-induced galloping of two interfering circular cylinders. J. Fluid

Mech. 146, 417–449.
BOKAIAN, A. & GEOOLA, F. 1984b Wake-induced galloping of two interfering circular cylinders. J. Fluid

Mech. 146, 383–415.
BORAZJANI, I. & SOTIROPOULOS, F. 2009 Vortex-induced vibrations of two cylinders in tandem arrangement

in the proximity–wake interference region. J. Fluid Mech. 621, 321–364.
GOPALKRISHNAN, R., TRIANTAFYLLOU, M.S., TRIANTAFYLLOU, G.S. & BARRETT, D. 1994 Active

vorticity control in a shear flow using a flapping foil. J. Fluid Mech. 274, 1–21.
GRIFFIN, O.M., SKOP, R.A. & RAMBERG, S.E. 1975 The resonant, vortex-excited vibrations of structures

and cable systems. In 7th Annual Offshore Technology Conference, paper no. 2319. OTC.
GUPTA, S., THEKKETHIL, N., AGRAWAL, A., HOURIGAN, K., THOMPSON, M.C. & SHARMA, A. 2021

Body-caudal fin fish-inspired self-propulsion study on burst-and-coast and continuous swimming of a
hydrofoil model. Phys. Fluids 33 (9), 091905.

HWANG, J.-Y., YANG, K.-S. & SUN, S.-H. 2003 Reduction of flow-induced forces on a circular cylinder
using a detached splitter plate. Phys. Fluids 15 (8), 2433–2436.

JUNG, H.-J. & LEE, S.-W. 2011 The experimental validation of a new energy harvesting system based on the
wake galloping phenomenon. Smart Mater. Struct. 20 (5), 055022.

KWON, K. & CHOI, H. 1996 Control of laminar vortex shedding behind a circular cylinder using splitter
plates. Phys. Fluids 8 (2), 479–486.

LANEVILLE, A. & BRIKA, D. 1999 The fluid and mechanical coupling between two circular cylinders in
tandem arrangement. J. Fluids Struct. 13 (7–8), 967–986.

LEE, J. & YOU, D. 2013 Study of vortex-shedding-induced vibration of a flexible splitter plate behind a
cylinder. Phys. Fluids 25 (11), 110811.

LEONTINI, J.S., THOMPSON, M.C. & HOURIGAN, K. 2006 The beginning of branching behaviour of
vortex-induced vibration during two-dimensional flow. J. Fluids Struct. 22 (6–7), 857–864.

LIANG, S., WANG, J., XU, B., WU, W. & LIN, K. 2018 Vortex-induced vibration and structure instability for
a circular cylinder with flexible splitter plates. J. Wind Engng Ind. Aerodyn. 174, 200–209.

MITTAL, C. & SHARMA, A. 2021 Flow-induced vibration of a flexible splitter-plate in the wake of a stationary
cylinder. Phys. Fluids 33 (11), 113607.

MITTAL, S. & KUMAR, V. 2001 Flow-induced oscillations of two cylinders in tandem and staggered
arrangements. J. Fluids Struct. 15 (5), 717–736.

PAÏDOUSSIS, M.P., PRICE, S.J. & DE LANGRE, E. 2010 Fluid-Structure Interactions: Cross-Flow-Induced
Instabilities. Cambridge University Press.

PAPAIOANNOU, G.V., YUE, D.K.P., TRIANTAFYLLOU, M.S. & KARNIADAKIS, G.E. 2008 On the effect of
spacing on the vortex-induced vibrations of two tandem cylinders. J. Fluids Struct. 24 (6), 833–854.

PFISTER, J.-L. & MARQUET, O. 2020 Fluid–structure stability analyses and nonlinear dynamics of flexible
splitter plates interacting with a circular cylinder flow. J. Fluid Mech. 896, A24.

PRASANTH, T.K. & MITTAL, S. 2008 Vortex-induced vibrations of a circular cylinder at low Reynolds
numbers. J. Fluid Mech. 594, 463–491.

ROSHKO, A. 1954 On the drag and shedding frequency of two-dimensional bluff bodies. NACA Tech. Rep. TN
3169.

ROSTAMI, A.B. & ARMANDEI, M. 2017 Renewable energy harvesting by vortex-induced motions: review and
benchmarking of technologies. Renew. Sust. Energy Rev. 70, 193–214.

SAHU, T.R., FURQUAN, M. & MITTAL, S. 2019 Numerical study of flow-induced vibration of a circular
cylinder with attached flexible splitter plate at low Re. J. Fluid Mech. 880, 551–593.

SARPKAYA, T. 1995 Hydrodynamic damping, flow-induced oscillations, and biharmonic response. Trans.
ASME J. Offshore Mech. Arctic Engng 117 (4), 232–238.

SARPKAYA, T. 2004 A critical review of the intrinsic nature of vortex-induced vibrations. J. Fluids Struct.
19 (4), 389–447.

SERSON, D., MENEGHINI, J.R., CARMO, B.S., VOLPE, E.V. & GIORIA, R.S. 2014 Wake transition in the
flow around a circular cylinder with a splitter plate. J. Fluid Mech. 755, 582–602.

SHARMA, A. 2016 Introduction to Computational Fluid Dynamics: Development, Application and Analysis.
John Wiley & Sons.

SHI, S., NEW, T.H. & LIU, Y. 2013 Flapping dynamics of a low aspect-ratio energy-harvesting membrane
immersed in a square cylinder wake. Exp. Therm. Fluid Sci. 46, 151–161.

SHIELS, D., LEONARD, A. & ROSHKO, A. 2001 Flow-induced vibration of a circular cylinder at limiting
structural parameters. J. Fluids Struct. 15 (1), 3–21.

942 A57-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

40
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.406


FICV of a circular cylinder and a detached flexible plate

SHUKLA, S., GOVARDHAN, R.N. & ARAKERI, J.H. 2013 Dynamics of a flexible splitter plate in the wake of
a circular cylinder. J. Fluids Struct. 41, 127–134.

TECHET, A.H., ALLEN, J.J. & SMITS, A.J. 2002 Piezoelectric eels for energy harvesting in the ocean. In
Proceedings of the 12th International Offshore and Polar Engineering Conference, pp. 713–718. ISOPE.

THEKKETHIL, N. & SHARMA, A. 2019 Level set function–based immersed interface method and benchmark
solutions for fluid flexible-structure interaction. Intl J. Numer. Meth. Fluids 91 (3), 134–157.

THEKKETHIL, N. & SHARMA, A. 2020 Hybrid Lagrangian–Eulerian method-based CFSD development,
application, and analysis. In Immersed Boundary Method (ed. S. Roy, A. De & E. Balaras), pp. 361–394.
Springer.

THEKKETHIL, N., SHARMA, A. & AGRAWAL, A. 2018 Unified hydrodynamics study for various types of
fishes-like undulating rigid hydrofoil in a free stream flow. Phys. Fluids 30 (7), 077107.

THEKKETHIL, N., SHARMA, A. & AGRAWAL, A. 2020 Self-propulsion of fishes-like undulating hydrofoil: a
unified kinematics based unsteady hydrodynamics study. J. Fluids Struct. 93, 102875.

UNAL, M.F. & ROCKWELL, D. 1988 On vortex formation from a cylinder. Part 2. Control by splitter-plate
interference. J. Fluid Mech. 190, 513–529.

VILLARREAL, D.J.Y. 2018 Vortex resonance wind turbine. US Patent No. 9856854.
WANG, H., ZHAI, Q. & ZHANG, J. 2018 Numerical study of flow-induced vibration of a flexible plate behind

a circular cylinder. Ocean Engng 163, 419–430.
WANG, J., GENG, L., DING, L., ZHU, H. & YURCHENKO, D. 2020 The state-of-the-art review on energy

harvesting from flow-induced vibrations. Appl. Energy 267, 114902.
WILLIAMSON, C.H.K. & GOVARDHAN, R. 2004 Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36,

413–455.
WILLIAMSON, C.H.K. & JAUVTIS, N. 2004 A high-amplitude 2T mode of vortex-induced vibration for a

light body in XY motion. Eur. J. Mech. (B/Fluids) 23 (1), 107–114.
WILLIAMSON, C.H.K. & ROSHKO, A. 1988 Vortex formation in the wake of an oscillating cylinder. J. Fluids

Struct. 2 (4), 355–381.
WU, J., QIU, Y.L., SHU, C. & ZHAO, N. 2014 Flow control of a circular cylinder by using an attached flexible

filament. Phys. Fluids 26 (10), 103601.
ZDRAVKOVICH, M.M. 1985 Flow induced oscillations of two interfering circular cylinders. J. Sound Vib.

101 (4), 511–521.
ZDRAVKOVICH, M.M. & MEDEIROS, E.B. 1991 Effect of damping on interference-induced oscillations of

two identical circular cylinders. J. Wind Engng Ind. Aerodyn. 38 (2–3), 197–211.
ZHOU, C.Y., SO, R.M.C. & LAM, K. 1999 Vortex-induced vibrations of an elastic circular cylinder. J. Fluids

Struct. 13 (2), 165–189.
ZIENKIEWICZ, O.C., KELLY, D.W. & BETTESS, P. 1977 The coupling of the finite element method and

boundary solution procedures. Intl J. Numer. Meth. Engng 11 (2), 355–375.

942 A57-35

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

40
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.406

	1 Introduction
	2 Physical and computational set-up
	3 Mathematical, numerical and parametric details
	3.1 Mathematical details
	3.1.1 Incompressible fluid flow: Navier-Stokes equations
	3.1.2 Elastically mounted cylinder displacement: linear oscillator model
	3.1.3 Flexible-plate deformation: structural dynamics equations
	3.1.4 Fluid-structure interface boundary conditions:

	3.2 Numerical details
	3.3 Code validation, grid independence and domain length independence studies
	3.4 Parametric details

	4 FICV characteristics: proximity-induced transition in the states of vibration response of the cylinder and the plate
	4.1 FIV characteristics of an elastically mounted cylinder
	4.2 Amplitude response of an elastically mounted cylinder with a flexible plate downstream
	4.3 Amplitude response of a cantilever-type flexible plate with an upstream elastically mounted cylinder
	4.4 Two states of the FICV characteristics of the cylinder as well as the plate and the associated flow regimes

	5 Flow-regimes-based flow-induced damping mechanisms for the transition in the FICV characteristics of the cylinder
	5.1 Oscillating wake flow in state 1
	5.2 Onset of gap flow in state 2

	6 Effect of proximity interference on cylinder--plate vortex-interaction dynamics in the near wake
	6.1 Effect of vortex interference on mean recirculation length behind an almost stationary cylinder
	6.2 Cylinder--plate vortex-interaction dynamics for a vibrating cylinder
	6.3 Cylinder--plate vortex-interaction dynamics based regime map

	7 Effect of the cylinder--plate vortex interaction on the vortex-shedding patterns in the far wake
	7.1 Vortex-shedding patterns in state 1
	7.2 Vortex-shedding patterns in state 2
	7.3 Vortex-shedding pattern based regime map

	8 Summary and conclusions
	References

