
Bull. Aust. Math. Soc. 94 (2016), 384–394
doi:10.1017/S0004972716000423

AN UPPER BOUND FOR THE NUMBER OF
DIOPHANTINE QUINTUPLES

MARIJA BLIZNAC� and ALAN FILIPIN

(Received 19 April 2016; accepted 27 April 2016; first published online 16 August 2016)

Abstract

We improve the known upper bound for the number of Diophantine D(4)-quintuples by using the most
recent methods that were developed in the D(1) case. More precisely, we prove that there are at most
6.8587 × 1029 D(4)-quintuples.
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1. Introduction

Definition 1.1. Let n , 0 be an integer. We call a set of m distinct positive integers
a Diophantine D(n)-m-tuple if the product of any two distinct elements of the set
increased by n is a perfect square.

Research on D(n)-m-tuples has been quite active recently, especially in the case
n = 1. The cases n = −1 and n = 4 have also been actively studied. Details of problems
concerning D(n)-m-tuples, together with the history and recent references, can be
found on the webpage [7].

In this paper, we will consider only Diophantine D(4)-quintuples {a, b, c, d, e},
ordered so that a < b < c < d < e. It is conjectured (see [9, Conjecture 1]) that all
D(4)-quadruples a < b < c < d are regular: that is

d = d+ = a + b + c + 1
2 (abc + rst),

where r, s and t are positive integers satisfying ab + 4 = r2, ac + 4 = s2 and bc + 4 = t2.
This conjecture obviously implies that there does not exist a D(4)-quintuple.

The second author, in [11], has proved that an irregular D(4)-quadruple cannot be
extended to a quintuple with a larger element. This is important because it implies
that if {a, b, c, d, e} is a D(4)-quintuple with a < b < c < d < e, then d is uniquely
given by a, b and c. Moreover, the second author also proved, in [12], that there
are at most four ways to extend a D(4)-quadruple to a quintuple with a larger element.

The authors are supported by the Croatian Science Foundation under the project no. 6422.
c© 2016 Australian Mathematical Publishing Association Inc. 0004-9727/2016 $16.00

384

https://doi.org/10.1017/S0004972716000423 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972716000423


[2] Diophantine quintuples 385

The best published bound on the number of D(4)-quintuples is 7 × 1036; this was found
by Baćić and the second author in [3]. By using the most recent methods, mostly from
[5], we prove the following theorem.

Theorem 1.2. There are at most 6.8587 × 1029 Diophantine D(4)-quintuples.

2. The lower bound on b
In this section, we will firstly improve some of the results from [2] and [3].

Lemma 2.1. Let {a, b, c, d, e} be a D(4)-quintuple with a < b < c < d < e. Then
{a, b, c, d} is a regular D(4)-quadruple and at least one of the following is true:

(i) b > 4a and d > b2;
(ii) b ≤ 4a, c = a + b + 2r and d > c2;
(iii) b ≤ 4a, c = c− = (ab + 2)(a + b − 2r) + 2(a + b) and c5/3 < d < c2;
(iv) b ≤ 4a, c = c+ = (ab + 2)(a + b + 2r) + 2(a + b) and c4/3 < d < c5/3.

Proof. The statement follows from [3, Propositions 2.2, and 2.3]. �

The next lemma gives an improvement of [2, Lemma 3] for the lower bound on b
in a D(4)-quintuple.

Lemma 2.2. Let {a, b, c, d, e} be a D(4)-quintuple such that a < b < c < d < e. Then
b > 105.

Proof. We used Baker–Davenport reduction, as described in [2, Lemma 3]. It took
around 80 hours in the Mathematica 10 package with the processor Intel(R) Core(TM)
i7-4510U CPU @2.00–3.10 GHz. �

The next lemma shows that cases (iii) and (iv) from Lemma 2.1 are not possible.

Lemma 2.3. If b < 4a in a D(4)-quintuple {a, b, c, d, e} with a < b < c < d < e, then the
only possibility for c is c = a + b + 2r.

Proof. Suppose c = c± = (ab + 2)(a + b ± 2r) + 2(a + b). The second author proved,
in [13], that b > a + 57

√
a. Then, for b > 105, using a short computer search, it can

be proved that a + b − 2r > 700, which yields c± > ab(a + b − 2r) > 700ab > 7 × 107a
and d = d+ > abc > 700a2b2.

To use the version of Rickert’s theorem from [2] and [2, Lemmas 6 and 7] for
the D(4)-quadruple {a, b, d, e}, we must have d > 308.07 a′b(b − a)2/a, where a′ =

max{4a, 4(b − a)}. But, since

4a ≤ a′ < 4(4a − a) = 12a

and
57
√

a < b − a < 3a,

ac >
7 × 107

12 · 9
a′(b − a)2

a
> 308.07

a′(b − a)2

a
,

and the inequality we need is satisfied, since d = d+ > abc.
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Now

32.02 aa′b4d2 < 32.02 a · 12a · (4a)4d2 = 98365.44 a6d2,

0.026 ab(b − a)−2d2 < 0.0264 · 4a ·
1

(57
√

a)2
d2 < 0.000033 ad2,

bd > ad

and, finally,

0.00325 a(a′)−1b−1(b − a)−2d > 0.00325 a
1

12a · 4a · (3a)2 d > 7 × 10−6a−3d.

Let us also recall that when we consider the extension of a triple to a quadruple, we
are actually solving equations of the form vm = wn, where (vm) and (wn) are binary
recurrence sequences. Now, from [2, Lemmas 6 and 7] and using the fact that we
only have to solve the equation vm = wn for even indices (see [12]), when we have the
extension of a triple {a, b, d} to a quintuple, we see that v2m = w2n implies that

n <
log(98365.44 a6d2) log(0.000033 ad2)

log(ad) log(7 × 10−6a−3d)
.

The right-hand side of the inequality is decreasing in d for d > 700a2b2 > 7 × 107a3,
which yields

n <
12 log(52.916 a) · 7 log(39.925 a)

4 log(91.469 a) log(490)
< 3.391

log(52.916 a) log(39.925 a)
log(91.469 a)

.

On the other hand, from the proof of [3, Proposition 2.3], v2m = w2n implies that

n > 0.5 · 0.495 b−0.5d0.5 > 0.2475 · (4a)−0.5a2 > 0.12375 a1.5.

By solving the inequality

a1.5 < 27.41
log(52.916a) log(39.925a)

log(91.469a)
,

we get a ≤ 32. But 4a > b > 105, so a > 25000, which leads to a contradiction. �

The authors in [8, Lemma 1] show that c = a + b + 2r or c > ab in a D(4)-triple
{a, b, c} with a < b < c. As in [3], to get the better bound on the number on quintuples,
we will also consider the subcases ab < c ≤ a2b2 and c > a2b2.

Lemma 2.4. Let {a, b, c, d, e} be a D(4)-quintuple such that a < b < c < d < e. Then
{a, b, c, d} is a regular quadruple and one of the following is true:

(i) b > 4a, c > a2b2 and d > b3;
(ii) b > 4a, a2b2 ≥ c > ab and d > b2;
(iii) b > 4a, c = a + b + 2r and d > b2; or
(iv) b ≤ 4a, c = a + b + 2r and d > 6250c2.

Proof. The statement follows from [3] and the previous considerations. In the last
case, we have a better constant in the lower bound on d. More precisely, since
4a < c < 4b and a > 1

4 × 105 = 25000, c < 4
25000 ab which gives us d > abc > 6250c2. �
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3. The lower bound on m
As we said earlier, elements of a D(4)-quadruple are defined as solutions of three

simultaneous Pellian equations (see, for example, [11]). The solutions are obtained as
a common term of two second-order linear recurrence sequences vm and wn such that
vm = wn for some positive integers m and n. The next proposition gives us a connection
between those integers and the elements of a quadruple.

Proposition 3.1. Let {A, B,C,D} be a D(4)-quadruple with A < B < C < D for which
v2m = w2n has a solution with 2n ≥ m > n ≥ 2, m ≥ 3. Suppose that A ≥ A0, B ≥ B0,
C ≥ C0, B ≥ ρA for some positive integers A0, B0, C0 and a real number ρ > 1. Then

m > αB−1/2C1/2,

where α is any real number satisfying the two inequalities

α2 + (1 + 2B−1
0 C−1

0 )α ≤ 1 (3.1)
3α2 + α(B0(λ + ρ−1/2) + 2C−1

0 (λ + ρ1/2)) ≤ B0 (3.2)

with λ = (A0 + 4)1/2(ρA0 + 4)−1/2. Moreover, if Cτ ≥ βB for some positive real numbers
β and τ, then

m > αβ1/2C(1−τ)/2. (3.3)

Proof. The proof is similar to the proof of [5, Proposition 3.1] using the results from
[11] and [12]. �

Since the conditions of Proposition 3.1 are satisfied for D(4)-quintuples (see [12]),
we can use it to obtain the lower bound on m in terms of d. From now on, we will
assume that {a, b, c, d = d+} is a regular quadruple, since this follows from [11].

Lemma 3.2. If {a, b, c, d, e} is a D(4)-quintuple with a < b < c < d < e, then we have
the following bounds on m depending on the respective cases from Lemma 2.4:

(i) m > 0.618034d1/3;
(ii) m > 0.618034d1/4;
(iii) m > 0.618034d1/4; and
(iv) m > 48.85d1/4.

Proof. We prove this by using Proposition 3.1 for {A, B,C, D} = {a, B, d, e}, where
B ∈ {b, c}.

In case (i), since B = b > 4a = 4A, we can take ρ = 4. From C = d > abc > a3b3 and
d = d+, we have τ = 1

3 and β = A0. From previous considerations, A0 = 1, B0 = 105,
C0 = 1015 and, after a short computer search, using inequalities (3.1) and (3.2), we get
α = 0.618034.

In cases (ii) and (iii), B = b > 4a = 4A and, again, ρ = 4. From d > b2, τ = 1
2 , β = 1

and we get α = 0.618034, by using A0 = 1, B0 = 105 and C0 = 1010.
In the last case, B = c = a + b + 2r = a + b + 2

√
ab + 4 > 4a = 4A, which again

implies that ρ = 4. Since d > 6250c2, τ = 1
2 , β = 1 and, with the lower bounds

A0 = 2500, B0 = 105, C0 = 6250 × 1010, we get α = 0.618034 again.
Inserting these values in the inequality (3.3) concludes the proof. �
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Remark 3.3. Notice that the inequality (3.1) tends to α2 + α ≤ 1 when B0 and C0 tend
to infinity. The maximal solution of that inequality is 1

2 (−1 +
√

5) ≈ 0.618034, which
means that we have the optimal value of α and we cannot get any better results by
using Proposition 3.1 and increasing the lower bounds for A, B and C.

4. The upper bound on d

First, we state the theorem that we will use, as the authors have done in [5], to get
better results on the upper bound on d by using the results from Lemma 3.2. This
theorem gives slightly better results than the Baker–Wüstholz theorem, which was
used in previous papers on this topic.

Theorem 4.1 Aleksentsev [1]. Let Λ be a linear form in the logarithms of n
multiplicatively independent totally real algebraic numbers α1, . . . , αn, with rational
coefficients b1, . . . , bn. Let h(α j) denote the absolute logarithmic height of α j for
1 ≤ j ≤ n. Let d be the degree of the number field K = Q(α1, . . . , αn) and let
A j = max(dh(α j), | logα j|, 1). Finally, let

E = max
(

max
1≤i, j≤n

{
|bi|

A j
+
|b j|

Ai

}
, 3

)
.

Then

log |Λ| ≥ −5.3n(1−2n)/2(n + 1)n+1(n + 8)2(n + 5)31.44nd2(log E)A1 · · · An log(3nd).

As in [5], we apply the previous theorem to the algebraic numbers

α1 =
S +
√

AC
2

, α2 =
T +
√

BC
2

, α3 =

√
B(
√

C ±
√

A)
√

A(
√

C ±
√

B)
,

where the signs in α3 coincide depending on whether z0 = z1 = 2 or z0 = z1 = −2. Also
S =

√
AC + 4 and T =

√
BC + 4. The linear form is

Λ = j logα1 − k logα2 + logα3,

where j = 2m, k = 2n and it is easy to see that n = 3 and d = 4.
In order to determine E, we have to find estimates for A j. The proof of these

estimates is only slightly different from the one presented in [5] for D(1)-quintuples,
so we will state the results without going into details.

In the following, C1 denotes an integer such that C1 ≥ C.
First, we consider A1. Since the minimal polynomial of α1 is p(X) = X2 − S X + 1,

h(α1) = 1
2 logα1, so A1 = 2 logα1. We get

log Cg2(A0,C1) < A1 < log Cg1(β, ρ, τ,C1),

where

g1(β, ρ, τ,C1) = 1 + τ −
log(βρ)
log C1

and g2(A0,C1) = 1 +
log A0

log C1
.
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Similarly, A2 = 2 logα2 and

log Cg4(B0,C1) < A2 < log Cg3(β, τ,C0),

where

g3(β, τ,C0) = 1 + τ +
log(β−1 + 2C−1−τ

0 )
log C0

and g4(B0,C1) = 1 +
log B0

log C1
.

Since A3 = 4h(α3) = B2(C − A)2 and since the same conditions hold as in [5],

log Cg6(β, ρ, τ, A0,C1) < A3 < log Cg5(β, τ,C1),

where

g6(β, ρ, τ, A0,C1) = 1 − τ +
log(βρ2/4) + 2 log(1 − A0/C1) − log(1 − 4/C1)

log C1
.

Using the fact that C1 > 1010 = C0 and the other parameters we have, it is easy to
show that g6 < g2 < g4 in all of our cases. For simplicity, from now on, we denote the
value of g6(β, 4, τ, 1,C1) by g6 and we will use gi similarly for the other bounds. Since

j
g6 log C

>
j

A1
>

k
A1

>
1
A1
,

j
g6 log C

>
j

A2
>

k
A2

>
1
A2

and
j

g6 log C
>

j
A3
,

it follows that

max
1≤i, j≤3

{
|bi|

A j
+
|b j|

Ai

}
≤

2 j
g6 log C

.

From C1 > C0 = 1010, g6 < 0.561. Also, since d > 1010, the worst case from Lemma
3.2 is m > 0.618034d1/4, which gives us m ≥ 196. If we assume that 2 j/(g6 logC0) < 3,
from [3], we know that d < 1089, so

2 j < 3g6 log C0 < 3 · 0.561 log(1089) < 345,

which yields m ≤ 86, which is a contradiction. We conclude that 2 j/(g6 log C0) ≥ 3
and take

E ≤
2 j

g6 log C0
.

In [10], it is proved that Λ > 0. Now we can use Theorem 4.1 to get

− log Λ ≤ 1.5013 × 1011A1A2A3 log E

≤ 1.5013 × 1011 · 2 logα1 · g3 · g5 · log2 C log
2 j

g6 log C0
.
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Also, from [10],

Λ < 2ACα−2 j
1 =⇒ − log Λ < − log(2AC) + 2 j logα1,

which gives

2 j logα1 < 1.5013 × 1011 · 2 logα1 · g3 · g5 · log2 C log
2 j

g6 log C0
+ log(2AC)

and, since log 2x/2 log 1
2 (
√

x + 4 +
√

x) < 1,

j − 1 < 1.5013 × 1011 · g3 · g5 · log2 C log
2 j

g6 log C0
.

Finally, we can use j = 2m and C = d to get the inequality

2m − 1
log(4m/g6 log C0)

< 1.5013 × 1011 · g3 · g5 log2 d. (4.1)

The function on the left-hand side of inequality (4.1) is increasing in m for m > 0, so we
can use the upper bound on m from Lemma 3.1 to get the upper bound on d in each case
of Lemma 2.4. Inserting appropriate parameters for case (i), yields d < 1.294 × 1052

and we can use that value as the new value for C1 and calculate again the upper bound
on d, but the result is not much better than the previous one. We repeat this procedure
in all cases, which gives us the next Lemma.

Lemma 4.2. For a D(4)-quintuple {a, b, c, d, e} with a < b < c < d < e, in the respective
cases from Lemma 2.4:

(i) d < 1.294 × 1052;
(ii) d < 1.096 × 1071;
(iii) d < 1.096 × 1071; and
(iv) d < 5.452 × 1062.

5. Some arithmetical sums used for bounding the number of quintuples

By combining methods from [4], [5] and [6], we can improve the bounds for some
number-theoretic sums used in [3]. As in [14], we use notation f (x) = ϑ(g(x)) to mean
| f (x)| ≤ g(x) for all x under consideration.

Lemma 5.1 [14, Lemma 13]. For all t > 0,∑
n≤t

d(n)
n

=
1
2

log2 t + 2γ log t + γ2 − 2γ1 + ϑ(1.16t−1/3),

where γ is Euler’s constant and γ1 is the second Stieltjes constant, which satisfies
−0.07282 < γ1 < −0.07281.
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Lemma 5.2 [14, Lemma 14]. Let {gn}n≥1, {hn}n≥1 and {kn}n≥1 be three sequences of
complex numbers satisfying g = h ∗ k, that is, g is the Dirichlet convolution of h
and k. Let H(s) =

∑
n≥1 hnn−s and H∗(s) =

∑
n≥1 |hn|n−s, where H∗(s) converges for

Re(s) ≥ − 1
3 . If there are four constants A, B, C and D satisfying∑

n≤t

kn = A log2 t + B log t + C + ϑ(Dt−1/3) (t > 0),

then ∑
n≤t

gn = u log2 t + v log t + w + ϑ(Dt−1/3H∗(−1/3))

and ∑
n≤t

ngn = Ut log t + Vt + W + ϑ(2.5Dt2/3H∗(−1/3)),

where

u = AH(0), v = 2AH′(0) + BH(0), w = AH′′(0) + BH′(0) + CH(0),
U = 2AH(0), V = −2AH(0) + 2AH′(0) + BH(0),
W = A(H′′(0) − 2H′(0) + 2H(0)) + B(H′(0) − H(0)) + CH(0).

Let g(d) denote the number of solutions n ∈ Zd to the congruence n2 ≡ 4 (mod d).
It is easy to see, from [15], that, for d = 2aq, g(d) = 2ω(q)+s(a), where

s(a) =


0 if a = 0, 1,
1 if a = 2, 3,
2 if a = 4,
3 if a ≥ 5.

Since g(d) is a multiplicative function, we can easily determine its values by using the
values in prime powers: for e1 ≥ 1, e2 ≥ 5 and p odd,

g(2) = 1, g(4) = g(8) = g(pe1 ) = 2, g(16) = 4, g(2e1 ) = 8.

To determine the upper bound on the number of D(4)-quintuples, we will need an
upper bound on the sum

∑
d≤N g(d)/d.

Lemma 5.3. Let g(d) denote the number of solutions of n2 ≡ 4 (mod d) with 0 , n < d
and let N ∈ N. Then∑

d≤N

g(d)
d
≤

3
π2 log2 N + 1.078763 log N + 0.160201 + 7.07945N−1/3

and ∑
d≤N

g(d) ≤
6
π2 N log N + 0.470835N − 0.310634 + 17.6986N2/3.

https://doi.org/10.1017/S0004972716000423 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972716000423


392 M. Bliznac and A. Filipin [9]

Proof. For the Dirichlet series F(s) =
∑∞

d=1 g(d)/ds+1, using the values at prime factors
of g(d), we get the Euler product

F(s) =

(
1 +

1
2s+1 +

2
22(s+1) +

2
23(s+1) +

4
24(s+1) + 8

( 1
25(s+1) +

1
26(s+1) + · · ·

))
×

∏
p,p,2

(
1 +

2
ps+1 +

2
p2(s+1) + · · ·

)
.

Dudek, in [6], showed that

ζ2(s + 1)
ζ(2(s + 1))

=
∏

p

1 + p−(s+1)

1 − p−(s+1) =
∏

p

(
1 +

2
ps+1 +

2
p2(s+1) + · · ·

)
,

where ζ(s) is the Riemann zeta function. To use Lemma 5.2, we must first find
H(s) =

∑
n≥1 hnn−(s+1), such that F(s) = H(s) · K(s) = ζ2(s + 1)H(s), where K(s) =∑∞

n=1 d(n)n−(s+1) = ζ2(s + 1). By comparing the coefficients of appropriate Euler
products,

h(1) = 1, h(p2) = −1, h(pe1 ) = 0 for p , 2 and e1 ∈ N \ {2};

h(2) = h(8) = −1, h(4) = 1, h(16) = h(32) = 2, h(64) = −4,

h(2e2 ) = 0, for e2 ≥ 7.

This gives

H(s) =

(
1 −

1
2s+1 +

1
22(s+1) −

1
23(s+1) +

2
24(s+1) +

2
25(s+1) −

4
26(s+1)

)∏
p>2

(
1 −

1
p2(s+1)

)
.

Now H∗(s) =
∑

n≥1 |hn|n−(s+1) converges for all s > −1 and, in its Euler product, the
product over the primes is equal to ζ(s + 1)/ζ(2(s + 1)), so H∗(− 1

3 ) ≤ 6.103. Similarly,
since ζ(s)−1 =

∏
p(1 − p−s), we easily find that H(0) = 6/π2, H′(0) ≤ 0.377 and

H′′(0) ≤ −1.1321. We can now use Lemma 5.2 to get the upper bounds in the statement
of the lemma. �

From the previous Lemma and considerations from [6], we obtain the next result.

Lemma 5.4. Let d(n) denote the number of divisors of n ∈ N. Then

E =

N∑
n=3

d(n2 − 4)

≤ N
( 6
π2 log2 N + 2.15752 log N + 0.320402 + 14.159N−1/3

)
.

Proof. This follows from
∑N

n=2 d(n2 − 4) ≤ 2N
∑

d≤H g(d)/d. �
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6. Counting the number of quintuples

This section completes the proof of Theorem 1.2. Lemma 5.4 can be used when
we know N such that r < N, where r =

√
ab + 4. Then we can conclude that the total

number of D(4)-pairs {a, b}, such that a < b, is less than E/2. We will now determine
the upper bound on the number of D(4)-quintuples for each case in Lemma 2.4.

Case (i). Here, b > 4a, d > b3 and d < 1.294 × 1052. Since c > a2b2, d > abc > a3b3 >
0.99r6, so

r <
( d
0.99

)1/6
< 4.8535 × 108,

and d > b3 yields b < 2.3478 × 1017. Using the method described before, we see that
the number of pairs {a, b} is less than 6.9567 × 1010. For a fixed pair {a, b}, the number
of elements c which extend it to triple {a, b, c} depends on the binary recurrence
sequences described in [2], and the number of those sequences is less than 8 · 2ω(b).
In every sequence,

√
bcν + 4 > 2(r − 1)ν−1. Since b > 105 and d > abc > 105cν,

cν < 2.85 × 1047, which gives ν ≤ 13: that is, each sequence has at most 13 elements.
The product of the first 15 primes is greater than 6.14 × 1017 > b, which means that
the number of sequences is less than

8 · 2ω(b) < 8 · 214 = 131072.

As we said before, in every D(4)-quintuple d = d+ is unique and, from [12], we know
there are at most four ways to extend a regular D(4)-quadruple to a quintuple, so we
conclude that, in this case, the number of D(4)-quintuples is less than

6.9567 × 1010 · 131072 · 13 · 4 < 4.74151 × 1017.

Case (ii). Here d < 1.096 × 1071. From ab < c ≤ a2b2, we get d > abc > a2b2 > 0.99r4,
that is, r < 5.76825 × 1017. Since d > b2, it is easy to get b < 3.31059 × 1035. The
number of pairs {a, b} is less than 3.18788 × 1020. As in case (i), we see that the
product of the first 25 primes is the first product greater than the upper bound on b, so

8 · 2ω(b) < 8 · 224 = 1.3422 × 108.

From c ≤ a2b2, we get ν ≤ 4 and conclude that the number of quintuples is less than

3.18788 × 1020 · 1.3422 × 108 · 4 · 4 < 6.84604 × 1029.

Case (iii). In this case, c = a + b + 2r > 3r + 1 and d > abc > (r2 − 4)(3r + 1). Since
the upper bounds on b and d are the same as in case (ii), r < 3.32 × 1023 and the upper
bound on the number of pairs {a, b} is less than 3.1547 × 1026 . We conclude that the
number of quintuples is less than

3.1547 × 1026 · 4 < 1.2583 × 1027.
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Case (iv). Here c = a + b + 2r > 3r + 1, b ≤ 4a and d > 6250c2 > 6250 81
16 b2. From

d < 5.452 × 1062, we get b < 1.3127 × 1029 and r < 5.6643 × 1020. The number of
pairs {a, b} is less than 4.475 × 1030, so the number of quintuples is less than

5.6643 × 1020 · 4 < 1.69 × 1024.

If we sum up everything, we have proved the main result: that is, the number of
D(4)-quintuples is less than

4.74151 × 1014 + 6.84604 × 1029 + 1.2583 × 1027 + 1.69 × 1024 < 6.8587 × 1029.
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