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Abstract We introduce the notion of tracial equivalence for C∗-algebras. Let A and B be two unital
separable C∗-algebras. If they are tracially equivalent, then there are two sequences of asymptotically
multiplicative contractive completely positive linear maps φn : A → B and ψn : B → A with a tracial
condition such that {φn ◦ ψn} and {ψn ◦ φn} are tracially approximately inner. Let A and B be two
unital separable simple C∗-algebras with tracial topological rank zero. It is proved that A and B are
tracially equivalent if and only if A and B have order isomorphic ranges of tracial states. For the Cantor
minimal systems (X1, σ1) and (X2, σ2), using a result of Giordano, Putnam and Skau, we show that two
such dynamical systems are (topological) orbit equivalent if and only if the associated crossed products
C(X1) ×σ1 Z and C(X2) ×σ2 Z are tracially equivalent.
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1. Introduction

Tracial topological rank for C∗-algebras was introduced in [7] (see also [6]). It plays
an important role in the study of classification of amenable C∗-algebras. A C∗-algebra
A has tracial topological rank zero if (roughly speaking) it can be approximated by
finite-dimensional C∗-algebras in ‘trace’, or the part that cannot be approximated by
finite-dimensional C∗-algebras has small trace. Many amenable C∗-algebras have been
proved to have tracial topological rank zero. More recently, N. C. Phillips [16] has shown
that if A is a unital separable simple C∗-algebra with tracial topological rank zero and
if an automorphism α on A has finite order and has a ‘tracially’ Rokhlin property, then
the resulting crossed product has tracial topological rank zero. It seems that ‘tracial’
versions of many notions in C∗-algebras should be exploited further. As was pointed
out by Phillips, a notion of tracially approximated inner isomorphism may be useful.
Moreover, there should be a ‘tracial’ version of ‘isomorphisms’. In this short note we will
discuss what should be an appropriate version of ‘tracially isomorphism’. We will say
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674 H. Lin

that two C∗-algebras are tracially equivalent if they are ‘tracially isomorphic’. It turns
out that this tracial equivalence is a rather interesting concept. It also further reinforces
the usage of adjective ‘tracial’. Let A be a separable C∗-algebra with non-trivial tracial
state space T (A). Denote by ρA : K0(A) → aff(T (A)) the positive homomorphism from
K0(A) into the affine continuous functions on T (A). Suppose that A and B are two
separable simple C∗-algebras with tracial topological rank zero. We show that A and B

are tracially equivalent if and only if ρA(K0(A)) and ρB(K0(B)) are order isomorphic.
Consequently, unital simple separable C∗-algebras with tracial topological rank zero are
tracially equivalent to unital simple AF-algebras.

Let (X1, φ1) and (X2, φ2) be two dynamical systems. Suppose that X1 and X2 are the
Cantor sets and φ1 and φ2 are minimal homeomorphisms. Giordano, Putnam and Skau [5]
showed (among other things) that two such dynamical systems are topological orbit
equivalent if and only if the resulting simple crossed products have the order isomorphic
ranges of traces. Using this result, we show that (X1, φ1) and (X2, φ2) are orbit equivalent
if and only if the resulting simple crossed products are tracially equivalent.

2. Tracially approximately inner morphisms

Definition 2.1. Let A and B be C∗-algebras. Let Ln : A → B be a positive linear
contraction, n = 1, 2, . . . . The sequence {Ln} is said to be asymptotically multiplicative
if

lim
n→∞

‖Ln(ab) − Ln(a)Ln(b)‖ = 0 for any pair a, b ∈ A.

Note that, since each Ln is positive and linear, Ln is also ∗-preserving.

Definition 2.2. Let A be a unital simple separable C∗-algebra and let {φn} be a
sequence of asymptotically multiplicative positive linear contractions from A to B. We
say that {φn} is tracially approximately inner, if for any ε > 0, any non-zero a ∈ A+,
and any finite subset F ⊂ A, there is an integer N , a sequence of unitaries un ∈ A and
a sequence of projections pn ∈ A such that

(1) ‖pnx − xpn‖ < ε for all x ∈ F and for all n � N ,

(2) ‖u∗
npnxpnun − φn(pnxpn)‖ < ε for all x ∈ F and for all n � N , and

(3) 1 − pn is equivalent to a projection in aAa for all n � N .

Remark 2.3. Suppose that A has at least one tracial state. Then, from (3), p can be
chosen so that τ(p) < σ for all tracial states and for some previously given σ > 0. Thus
that {φn} is tracially approximately inner implies that the ‘part’ of F on which {φn} is
not approximately inner has arbitrarily small ‘measure’ (or in trace).

Remark 2.4. Definition 2.2 assumes A is simple. One can define tracially approxi-
mately inner morphisms for general unital C∗-algebras as follows.

Let A be a unital C∗-algebra and {φn} be a sequence of asymptotically multiplicative
positive linear contractions from A to itself. We say that {φn} is tracially approximately
inner if the following conditions hold: for any ε > 0, any finite subset set F ⊂ A and any
non-zero element b ∈ A+, any 0 < σ4 < σ3 < σ2 < σ1 < 1, there exists an integer N > 0,
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a sequence of unitaries un ∈ A and a sequence of projections pn ∈ A such that

(1) ‖pnx − xpn‖ < ε for x ∈ F and for all n � N ,

(2) ‖u∗
npnapnun − φn(pnapn)‖ < ε for all a ∈ F and for all n � N , and

(3) [fσ1
σ2

((1 − pn)b(1 − pn))] � [fσ3
σ4

(pnbpn)].

Here (3) means that there is xn ∈ A such that

x∗
nxn = fσ1

σ2
((1 − pn)b(1 − pn)) and xnx∗

n ∈ Her(fσ3
σ4

(pnbpn)),

where fβ
α (0 < α < β) is a positive continuous function on (0,∞) such that fβ

α (t) = 0 for
0 � t � α, fβ

α (t) = 1 for β � t and fβ
α (t) is linear in (α, β).

However, in this short note we will only consider the case that A is simple. The general
case will be discussed elsewhere.

Definition 2.5. Let A and B be two unital C∗-algebras and {Ln} be a sequence of
asymptotically multiplicative positive linear contractions from A to B. Fix a projection
p ∈ A. For sufficiently large n, there is a projection qn ∈ B such that

‖Ln(p) − qn‖ < 1
2 .

Note that if there is another projection q′
n such that

‖Ln(p) − q′
n‖ < 1

2 ,

then qn and q′
n are equivalent. We use [Ln]|p for [qn]. Given a finite set P of projections

in A, there is an integer N > 0 such that [Ln]|p is well defined for each p ∈ P and
n � N . We will use [Ln]|P for the finite set [Ln]|p with p ∈ P. For the rest of this paper,
whenever we write [Ln]P we mean that n is large enough so that [Ln]|P is well defined.
Let G(P) be the finitely generated subgroup in K0(A) which is generated by P. With
possibly even large N , [Ln] defines a group homomorphism from G(P) to K0(B). So,
when we write [Ln]|P we also mean that [Ln] defines a group homomorphism. One should
note that [Ln]|P specifies the set of projections P. It is possible that there is another
projection p′ ∈ A which is equivalent to a projection p ∈ P such that Ln(p′) is also closed
to a projection q′ ∈ B but q′ may not be in [Ln]p. However, in order to include [Ln]p′

we should choose large N , so that the projection defined by Ln(p) is equivalent to that
of Ln(p′).

Definition 2.6. Let A be a unital simple C∗-algebra. Let T (A) be the set of tracial
states of A. We assume that T (A) �= ∅. Then T (A) is a compact convex space (a Choquet
simplex; see, for example, [1]). Denote by aff(T (A)) the set of continuous affine functions
on T (A). Define ρA : K0(A) → aff(T (A)) to be the positive homomorphism given by
ρA([p]) = p̂, where p̂(t) = t(p) for t ∈ T (A) and p is a projection in Mk(A) for some
integer k > 0.
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Theorem 2.7. Let A be a separable simple C∗-algebra and {φn} be a sequence of
asymptotically multiplicative positive linear contractions from A to A. If {φn} is tracially
approximately inner, then the following holds. There exists a sequence of finite subsets
Gn of projections such that

(1) dist(ρA(p), ρA(G(Gn))) → 0 as n → ∞ for all projections p ∈ A ⊗ K, where G(Gn)
is the subgroup of K0(A) generated by the equivalence classes determined by pro-
jections in Gn, and

(2) [φn]|Gn = id|Gn for all large n.

Furthermore, for any a ∈ A,

lim
n→∞

τ ◦ φn(a) = τ(a)

uniformly on T (A).

Proof. It suffices to show the following. For any ε > 0 and any finite subset G ⊂
ρA(K0(A)), there exists a finite subset G0 of projections in A such that

(1′) for any g ∈ G, there exists f ∈ G(G0), where G(G0) is the subgroup generated by
G0 such that

‖g − ρA(f)‖ < ε,

(2′) [φn]|G0 = idG0 for all large n.

For each k, let Φ
(k)
n = φn ⊗ idMk

: A ⊗ Mk → A ⊗ Mk be the extension of φn to A⊗Mk.
It is clear that Φ

(k)
n are tracially approximately inner. From this, to simplify notation,

we may assume that G = {q1, q2, . . . , qm} are projections in A.
For each ε > 0, since A is simple, there exists a non-zero positive element a ∈ A such

that τ(a) < ε/2 for all τ ∈ T (A). Choose a large N such that, for all n � N ,

(i) ‖pnqi − qipn‖ < 1
8 , i = 1, 2, . . . , m,

(ii) τ(1 − pn) < 1
2ε for all τ ∈ T (A), there are unitaries un ∈ A such that

(iii) ‖adun ◦ φn(pnqipn) − pnqipn‖ < 1
8 , i = 1, 2, . . . , m.

From (i), one obtains a projection ei � pn such that

‖ei − pnqipn‖ < 1
8 , i = 1, 2, . . . , m.

Moreover, we may assume that there are projections e′
i ∈ A such that

(iv) ‖φn(pnqipn) − e′
i‖ < 1

8 , i = 1, 2, . . . , m.

It follows that
‖u∗

ne′
iun − ei‖ < 1

2 , i = 1, 2, . . . , m.
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Let G0 = {e1, e2, . . . , em}. It follows that

[φn]|G0 = idG0 .

We also note that
|τ(qi) − τ(ei)| < ε, i = 1, 2, . . . , m.

This proves the first part of the theorem. To see the last part, we note that, for each
a ∈ A,

lim
n→∞

[τ ◦ φn(pnapn) − τ(pnapn)] = 0

and it converges uniformly on T (A). We also have τ(pnapn) → τ(a) uniformly on T (A)
since τ(1−pn) → 0 uniformly. The fact that {φn} is asymptotically multiplicative implies
that

lim
n→∞

‖unφn((1 − pn)a(1 − pn))u∗
npn‖ = 0.

It follows that

lim
n→∞

τ(φn((1 − pn)a(1 − pn))) = lim
n→∞

τ(unφn((1 − pn)a(1 − pn))u∗
n)

= lim
n→∞

τ(unφn(1 − pn)a(1 − pn)u∗
n(1 − pn))

� ‖a‖τ(1 − pn)

= 0.

Moreover, the convergence is uniform on T (A). �

Corollary 2.8. Let A be a unital separable C∗-algebra and let h : A → A be a
homomorphism. Let φn = h for each n. If {φn} is tracially approximately inner, then
h∗0 induces the identity map on ρA(K0(A)).

Proof. Note that h∗0 induces a positive homomorphism. In Theorem 2.7, let φn = h

for all n. We then know that

τ(h(a)) = τ(a) for all τ ∈ T (A)

and all a ∈ A. Thus, h∗0 induces the identity map on aff(T (A)). In particular, it induces
the identity map on ρA(K0(A)). �

Definition 2.9 (Lin [7]). Recall that a unital simple C∗-algebra is said to have tracial
topological rank zero (written TR(A) = 0), if for any ε > 0, any finite subset F and a
non-zero element a ∈ A+ there exists a finite-dimensional C∗-subalgebra C ⊂ A with
1C = p such that

(1) ‖px − xp‖ < ε for all x ∈ F ,

(2) dist(pxp, C) < ε for all x ∈ F ,

(3) 1 − p is equivalent to a projection in aAa.
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Every simple C∗-algebra A with TR(A) = 0 is a quasi-diagonal C∗-algebra and has real
rank zero, stable rank one and weakly unperforated K0(A) (see [6]).

It is known all simple AH-algebras with real rank zero and with slow dimension growth
have tracial topological rank zero (see [4,6]). A slightly different version of it (see [11])
says that every simple AH-algebra with real rank zero, stable rank one and weakly
unperforated K0 has tracial topological rank zero. Kishimoto showed that certain simple
crossed products associated with a shift have tracial topological rank zero. It is also
proved (in [12]) that a simple C∗-algebra A with real rank zero, stable rank one, weakly
unperforated K0(A), with countably many extremal tracial states which is an inductive
limit of type-I C∗-algebras has TR(A) = 0.

Theorem 2.10. Let A be a separable simple C∗-algebra with TR(A) = 0 and {φn}
be a sequence of asymptotically multiplicative positive linear contractions from A to A.
Then {φn} is tracially approximately inner if and only if the following hold.

There exists a sequence of finite subsets Gn of projections such that

(1) dist(ρA(p), ρA(G(Gn))) → 0 as n → ∞ for all projections p ∈ A ⊗ K, where G(Gn)
is the subgroup generated by Gn, and

(2) [φn]|Gn
= id|Gn

for all large n.

Proof. Let ε > 0, σ > 0 and F be a finite subset of A. Since A is a simple and
TR(A) = 0, there is a finite-dimensional C∗-subalgebra B ⊂ A and a projection p = 1B

such that

(i) ‖pa − ap‖ < 1
4ε for all a ∈ F ,

(ii) pap ⊂ε/4 B for all a ∈ F , and

(iii) τ(1 − p) < 1
2σ for all τ ∈ T (A).

It follows from Theorem 2.7 that it suffices to show the ‘if’ part of the theorem.
Write

B = Mk(1) ⊕ Mk(2) ⊕ · · · ⊕ Mk(m).

Let qi ∈ Mk(i) be a minimal projection in Mk(i), i = 1, 2, . . . , m. Since

∞⋃

n=1

ρA(G(Gn))

is dense in ρA(K0(A)), we obtain projections pi � qi, i = 1, 2, . . . , m, such that [pi] ∈
G(Gn) and

τ(qi − pi) < σ/2m

for all τ ∈ T (A) and for all large n. We may assume that G(Gn) is generated by
[p1], [p2], . . . , [pm]. We may also assume that φn(pi) are equivalent to pi, i = 1, 2, . . . .
Let e1 = q1 − p1 and di = 1Mk(i) , i = 1, 2, . . . . Consider the C∗-subalgebra

C =
m⊕

i=1

diAdi.
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The projection Ei (in diAdi) with the form

Ei = diag(ei, ei, . . . , ei)

commutes with every element in Mk(i). Define

E = E1 ⊕ E2 ⊕ · · · ⊕ Em.

Then Ex = xE for all x ∈ B. Let B′ = EBE. Then B′ is a finite-dimensional
C∗-subalgebra of A (which is isomorphic to B). We note that we may identify Gn with
jn(K0(B′)), where jn : B′ → A is the embedding.

Note that B′ is semi-projective in the sense in [14]. Therefore, for any η > 0 and for
all large n, there is an injective homomorphism hn : B′ → A such that

‖hn − (φn)|B′‖ < η.

For all large n, we have [φn]|Gn = id|Gn . It follows that (if η is sufficiently small)

(hn)∗0 = idGn .

It then follows that there is a unitary w ∈ A such that

adw ◦ hn = idB′ .

For each a ∈ F , let x ∈ B such that

‖pap − x‖ < 1
4ε.

Then
‖EaE − ExE‖ = ‖E(pap − x)E‖ < 1

4ε.

Note that ExE ∈ B′. We have that

w∗hn(ExE)w = ExE.

Therefore,

‖w∗φn(EaE)w − EaE‖ � ‖w∗φn(EaE)w − w∗φn(ExE)w‖
+ ‖w∗φn(ExE)w − w∗hn(ExE)w‖
+ ‖w∗hn(ExE)w − ExE‖ + ‖ExE − EaE‖

< 1
4ε + η + 0 + 1

4ε

< ε

for all a ∈ F if η < 1
2ε. We also have

τ(1 − E) < τ(1 − p) + τ(p − E) < 1
2σ + 1

2σ = σ
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for all τ ∈ T (A). Furthermore,

‖Ea − aE‖ = ‖Epa − apE‖ � ‖E(pa − pap)‖
+ ‖Epap − Ex‖ + ‖xE − papE‖ + ‖(pap − ap)E‖

< 1
4ε + 1

4ε + 1
4ε + 1

4ε

= ε

for all a ∈ F . Thus {φn} is tracially approximately inner. �

3. Tracial equivalence

Definition 3.1. Let A be a separable C∗-algebra and B be another C∗-algebra. Let
φt : A → B be a family of completely positive linear contractions with t ∈ [0,∞) such
that φt(a) is continuous on C0([0,∞)) for each a and

lim
t→∞

‖φt(ab) − φt(a)φt(b)‖ = 0

for all a, b ∈ A. Such a family will be called an asymptotic morphism from A into B.
Let {φn} be a sequence of asymptotically multiplicative completely positive linear

contractions from A to B. We say that {φn} is a tracially asymptotic morphism if, in
addition, for each projection p ∈ Mk(A) (for any k),

τ ◦ φn(p) → τ(q)

uniformly for τ ∈ T (B) for some projection q ∈ B ⊗ K.
Let {φt} be an asymptotic morphism and tn be an increasing sequence such that

tn → ∞. Let ψn = φtn . Then it is clear that {ψn} is a tracially asymptotic morphism.

Definition 3.2. Let A and B be two unital separable (simple) C∗-algebras. We say
that A and B are tracially equivalent if there is a tracially asymptotic morphism {φn}
from A to B and there exists a tracial asymptotic morphism {ψn} from B to A such that
φn ◦ ψn and ψn ◦ φn are tracially approximately inner.

We say that A and B are weakly tracially equivalent if there is a sequence of asymp-
totically multiplicative positive linear contractions {φn} and there is {ψn} from A to B

and B to A, respectively, such that φn ◦ψn and ψn ◦φn are tracially approximately inner.
We say A and B are h-tracially equivalent if there are homomorphisms h1 : A → B

and h2 : B → A such that h1 ◦ h2 and h2 ◦ h1 are both tracially approximately inner.

Lemma 3.3. Let A be a unital separable simple C∗-algebra with TR(A) = 0. Then
there exists a sequence of finite-dimensional C∗-subalgebras Fn ⊂ A and projections
pn = 1Fn such that

(i) ‖pna − apn‖ → 0 for all a ∈ A,

(ii) dist(pnapn, Fn) → 0 for all a ∈ A, and

(iii) τ(1 − pn) → 0 uniformly on T (A) and τ(1 − pn) > 0 for all τ ∈ T (A).
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Proof. It is clear from the definition that (i), (ii) and the following hold.

(iii′) τ(1 − pn) → 0 uniformly on T (A).

What we need to show is that we can further assume that τ(1−pn) > 0 for all τ ∈ T (A).
Suppose that there is a tracial state τ such that τ(1 − pk(n)) = 0 for an increasing

subsequence {k(n)}. Since A is simple, no non-zero positive element should have zero
trace. Therefore, pk(n) = 1, n = 1, 2, . . . . This implies that A is an AF-algebra.

Now we assume that A is an AF-algebra. Given a finite-dimensional C∗-subalgebra
Fn ⊂ A, we may write that Fn = Mr(1) ⊕ Mr(2) ⊕ · · · ⊕ Mr(l(n)). Let ei be a minimal
projection of Mr(i), i = 1, 2, . . . , l(n). Since A is simple, ρA(K0(A)) is dense in aff(T (A)).
This implies, for any n, that there is a projection ci � ei with ci �= ei such that

τ(ei − ci) < 1/(r(i))2n, i = 1, 2, . . . , l(n),

for all τ ∈ T (A). Let E
(n)
i be a projection with the form

diag(ci, ci, . . . , ci),

where ci is repeated r(i) times, i = 1, 2, . . . , l(n). Put En = E
(n)
1 ⊕ E

(n)
2 ⊕ · · · ⊕ E

(n)
l(n).

Note that Ena = aEn for all a ∈ Fn. Note also that

τ(1 − En) < 1/2n.

It is clear now that if we replace pn by En, (i), (ii) and (iii) hold. �

Theorem 3.4. Let A and B be two separable simple C∗-algebras with TR(A) =
TR(B) = 0. Then A and B are tracially equivalent if and only if there is an order
isomorphism from ρA(K0(A)) onto ρB(K0(B)) which maps [1A] to [1B ].

Proof. We first prove the ‘if’ part. To simplify notation, we may write that
ρA(K0(A)) = ρB(K0(B)).

There exists a sequence of finite-dimensional C∗-subalgebras Fn ⊂ A and projections
pn = 1Fn such that

(i) ‖pna − apn‖ → 0 for all a ∈ A,

(ii) dist(pnapn, Fn) → 0 for all a ∈ A, and

(iii) τ(1 − pn) → 0 uniformly on T (A).

There exists a sequence of finite-dimensional C∗-subalgebras Dn ⊂ B and projections
qn = 1Dn such that

(iv) ‖qnb − bqn‖ → 0 for all a ∈ B,

(v) dist(qnbqn, Dn) → 0 for all b ∈ B, and

(vi) t(1 − qn) → 0 uniformly on T (B).
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Denote the embedding by jn : Fn → A. Thus, (jn)∗0 is a positive homomor-
phism from K0(Fn) into K0(A). Since ρA ◦ (jn)∗0(K0(Fn)) is a finitely generated free
group, by identifying ρA(K0(A)) with ρB(K0(B)), we obtain a positive homomorphism
αn : ρA ◦ (jn)∗0(K0(Fn)) → K0(B) such that ρB ◦ αn = idρA◦(jn)∗0(K0(Fn)). There is a
monomorphism hn : Fn → B such that (hn)∗0 = αn ◦ ρA ◦ (jn)∗0.

For each δn > 0, there is an integer m(n) such that

(vii) ‖qm(n)b − bqm(n)‖ < δn for all b in a finite subset Gn of B which contains a set of
matrix units of hn(Fn),

(viii) dist(qm(n)bqm(n), Dm(n)) < δn for all b ∈ G′
n,

(ix) τ(1 − qm(n)) < δn for all τ ∈ T (B).

By Lemma 3.3, we may assume that 1 − qm(n) �= 0. For any ηn > 0, with sufficiently
small δn, there is a monomorphism h′

n : hn(Fn) → Dm(n) such that

‖h′
n(b) − qm(n)bqm(n)‖ < ηn for all b ∈ Gn ∩ hn(Fn).

Now there is a contractive completely positive linear map s′
n : qm(n)Bqm(n) → Dm(n)

such that s′
n|Dm(n) = idDm(n) (see, for example, Theorem 2.3.5 in [9]). Denote by s̄′

n : B →
Dm(n) the map defined by s̄′

n(b) = s′
n(qm(n)bqm(n)) for all b ∈ B. Let ın : Dm(n) → B be

the embedding. There is positive homomorphism βn : ρB(ı∗0(K0(Dm(n)))) → K0(A) such
that ρA ◦ βn = idρB◦ı(Dm(n)), where we identify ρA(K0(A)) with ρB(K0(B)).

We write Fn = Mr(1) ⊕ · · · ⊕ Mr(l(n)) and let ei be a minimal projection in Mr(i),
i = 1, 2, . . . , l(n). Put gi = βn ◦ [h′

n ◦ hn(ei)].
Note that

τ(ei) > τ(h′
n ◦ hn(ei))

for all τ ∈ T (B). Hence gi � [ei]. Thus, we obtain a projection ci � ei in A such that
[ci] = gi in K0(A), i = 1, 2, . . . , l(n). Let E

(i)
n be a projection in pnApn with the form

E(i)
n = diag(ci, ci, . . . , ci),

where ci is repeated r(i) many times. Let En = E
(1)
n ⊕ E

(2)
n ⊕ · · · ⊕ E

(l(n))
n .

Note that
Ena = aEn for all a ∈ Fn.

Define F ′
n = EnFnEn. Note F ′

n
∼= Fn and denote by κ the isomorphism. There is a

contractive completely positive linear map sn : EnAEn → F ′
n such that sn|F ′

n
= idF ′

n

(see, for example, Theorem 2.3.5 in [9]). Denote by s̄n : A → F ′
n the map defined

by s̄n(a) = sn(EnaEn). Note also that s̄n is a contractive completely positive linear
map. Define Ln : A → B by Ln = h′

n ◦ hn ◦ κ ◦ s̄n. For a fix projection p ∈ A, let
f ∈ ρB(K0(B)) such that f = p̂ (here again we identify ρA(K0(A)) with ρB(K0(B))). It
is easy to verify that

τ ◦ Ln(p) → f(τ)

uniformly on T (B) by (i)–(iii) and (vii)–(ix).
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There is a homomorphism h′′
n : Dm(n) → A such that (h′′

n)∗0 = βn. Define Ψ ′
n = h′′

n ◦ s̄′
n.

For each projection q ∈ B, let g ∈ ρA(K0(A)) such that g = q̂ (here again we identify
ρA(K0(A)) with ρB(K0(B))). One checks

t ◦ Ψ ′
n(q) → g(t)

uniformly on T (B) by (vii)–(ix). So {Ln} and {Ψ ′
n} are tracially asymptotic morphisms

from A to B and B to A, respectively. In the following computation we note that
Ln(ci) ⊂ Dm(n):

[Ψ ′
n ◦ Ln](ci) = [Ψ ′

n ◦ h′
n ◦ hn ◦ κ](ci)

= [Ψ ′
n] ◦ [h′

n ◦ hn](ei)

= βn ◦ [h′
n ◦ hn(ei)] = gi = [ci].

Since TR(A) = 0, A has stable rank one. Thus there is a unitary wn ∈ A such that
adwn ◦ Ψ ′

n ◦ Ln(ci) = ci, i = 1, 2, . . . , l(n). Define Ψn = adwn ◦ Ψ ′
n. Thus, for each pro-

jection e ∈ F ′
n,

[Ψn ◦ Ln](e) = [e].

Denote also by jn : F ′
n → A and let Gn be the group generated by jn(K0(F ′

n)).
Finally, let ε > 0 be positive be a finite subset of ρA(K0(A)) and let P = {d1, . . . , dm}

be a finite subset of projections in A. Let N(ε) > 0 be a positive number such that

τ(1 − En) < ε for all τ ∈ T (A) if n � N(ε).

Since ‖pndi − dipn‖ → 0 as n → ∞ for each i and Ena = aEn for all a ∈ Fn, we may
also assume that

‖Endi − diEn‖ < ε, i = 1, 2, . . . , m.

We obtain projections d′
i ∈ F ′

n such that

|τ(di) − τ(d′
i)| < ε, i = 1, 2, . . . , m.

Let Pn be the finite subset {d′
1, . . . , d

′
m}. Note we have shown that

[Ψn ◦ Ln](d′
i) = [d′

i], i = 1, 2, . . . , m.

It follows from Theorem 2.10 that {Ψn ◦ Ln} is tracially approximately inner.
Let d′′

i = Ln(d′
i). Since Ψn ◦ Ln(ci) = ci, we have that [Ln ◦ Ψn(d′′

i )] = [d′′
i ], i =

1, 2, . . . , m. Since ρA(K0(A)) = ρB(K0(B)), we see that (1) and (2) in Theorem 2.10 also
hold for any ε > 0 and any finite subset F of projections in B. It follows that {Lk(n)◦Ψn}
is tracially approximately inner. Therefore, A and B are tracially equivalent.

For the converse, suppose that {φn} from A to B and {ψn} from B to A are two
tracially asymptotic morphisms such that {ψn ◦ φn} and {φn ◦ ψn} are tracially approx-
imately inner. There are positive homomorphisms σ : aff(T (A)) → aff(T (B)) and
γ : aff(T (B)) → aff(T (A)) given by

σ(â)(t) = lim
n→∞

t(φn(a)) for a ∈ A+
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and

γ(b̂)(τ) = lim
n→∞

τ(ψn(b)) for b ∈ B+.

It follows from Theorem 2.7 that σ ◦ γ = idaff(T (B)) and γ ◦ σ = idaff(T (A)). Therefore,
aff(T (A)) and aff(T (B)) are order isomorphic. Since {φn} is a tracially asymptotic mor-
phism, σ(p̂) ∈ ρB(K0(B)) for all projections p ∈ A. This implies that σ maps ρA(K0(A))
into ρB(K0(B)). Similarly, γ maps ρB(K0(B)) into ρA(K0(A)). Since

γ ◦ σ|ρA(K0(A)) = idρA(K0(A)) and σ ◦ γ|ρB(K0(B)) = idρB(K0(B)),

we conclude that σ|ρA(K0(A)) and γ|ρB(K0(B)) are order isomorphisms. �

Remark 3.5. It is worth pointing out that Theorem 3.9 holds without assuming
that A or B satisfy the universal coefficient theorem (UCT). Perhaps more importantly,
neither A nor B are assumed to be amenable (nuclear). We also point out that, according
to a result of Dadarlat [2] (see also [6]), a unital separable simple C∗-algebra with tracial
topological rank zero need not be amenable.

Corollary 3.6. Let A be a unital separable simple C∗-algebra with TR(A) = 0. Then
A is tracially equivalent to a unital simple AF-algebra.

Proof. It follows from Theorem 6.11 in [7] that K0(A) is a countable weakly unper-
forated simple (partial) ordered group with the Riesz interpolation property. Conse-
quently, ρA(K0(A)) is a countable unperforated simple ordered group with the Riesz
interpolation property. It follows from [3] that there is a unital simple AF-algebra
B such that K0(B) = ρA(K0(A)). Since ρA(K0(A)) has no infinitesimal elements,
ρB(K0(B)) = ρA(K0(A)). By Theorem 3.4, A is tracially equivalent to B. �

The proof of the following theorem is virtually the same as that of Theorem 3.4.
However, for completeness and for revealing the difference between the tracial equivalence
and weakly tracial equivalence, we present a proof below.

Theorem 3.7. Let A and B be two unital separable amenable simple C∗-algebras
with TR(A) = TR(B) = 0. Then A and B are weakly tracially equivalent if there is a
dense subset G ⊂ ρA(K0(A)) and an order isomorphism α : aff(T (A)) → aff(T (B)) such
that α(G) ⊂ ρB(K0(B)).

Proof. There exists a sequence of finite-dimensional C∗-subalgebras Fn ⊂ A and
projections pn = 1Fn such that

(i) ‖pna − apn‖ → 0 for all a ∈ A,

(ii) dist(pnapn, Fn) → 0 for all a ∈ A, and

(iii) τ(1 − pn) → 0 uniformly on T (A).

There exists a sequence of finite-dimensional C∗-subalgebras Dn ⊂ A and there exist
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projections qn = 1Dn
such that

(iv) ‖qnb − bqn‖ → 0 for all a ∈ B,

(v) dist(qnbqn, Dn) → 0 for all b ∈ B, and

(vi) t(1 − qn) → 0 uniformly on T (B).

Denote the embedding by jn : Fn → A. By applying the argument in the proof of
Lemma 3.3, we may assume that ρA ◦ (jn)∗0(K0(Fn)) ⊂ G. Since ρA ◦ (jn)∗0(K0(Fn))
is a finitely generated free group, we obtain a positive homomorphism αn : ρA ◦
(jn)∗0(K0(Fn)) → K0(B) such that ρB ◦ αn = α|ρA◦(jn)∗0(K0(Fn)). There is a monomor-
phism hn : Fn → B such that (hn)∗0 = αn ◦ ρA ◦ (jn)∗0.

For each δn > 0, there is an integer m(n) such that

(vii) ‖qm(n)b − bqm(n)‖ < δn for all b in a finite subset Gn of B which contains a set of
matrix units of hn(Fn),

(viii) dist(qm(n)bqm(n), Dm(n)) < δn for all b ∈ G′
n,

(ix) τ(1 − qm(n)) < δn for all τ ∈ T (B).

By Lemma 3.3, we may assume that 1−qm(n) �= 0. Thus for any ηn > 0, with sufficiently
small δn, there is a monomorphism h′

n : hn(Fn) → Dm(n) such that

‖h′
n(b) − qm(n)bqm(n)‖ < ηn for all b ∈ Gn ∩ hn(Fn).

Now there is a contractive completely positive linear map s′
n : qm(n)Bqm(n) → Dm(n)

such that s′
n|Dm(n) = idDm(n) (see, for example, Theorem 2.3.5 in [9]). Denote by

s̄′
n : B → Dm(n) the map defined by s̄′

n(b) = s′
n(qm(n)bqm(n)) for all b ∈ B Denote the

embedding by ın : Dm(n) → B.
Again, by applying the argument in the proof of Theorem 2.7, we may assume that

ρB((ın)∗0(K0(Dm(n)))) ⊂ α(G).
There is a positive homomorphism βn : ρB(ı∗0(K0(Dm(n)))) → K0(A) such that

ρA ◦ βn = α−1|ρB◦ı(Dm(n)).
We write Fn = Mr(1) ⊕ · · · ⊕ Mr(l(n)) and let ei be a minimal projection in Mr(i),

i = 1, 2, . . . , l(n). Put gi = βn ◦ h′
n ◦ hn(ei). Now we will apply the argument in the proof

of Theorem 2.10 again as follows. Note that

êi > τ(h′
n ◦ hn(ei))

for all τ ∈ T (B). Thus gi � [ei]. Thus, we obtain a projection ci � ei in A such that
[ci] = gi in K0(A), i = 1, 2, . . . , l(n). Let E

(i)
n be a projection in pnApn with the form

E(i)
n = diag(c1, c1, . . . , c1),

where ci repeats r(i) many times. Let En = E
(1)
n ⊕ E

(2)
n ⊕ · · · ⊕ E

(l(n))
n . Note that

Ena = aEn for all a ∈ Fn.
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Define F ′
n = EnFnEn. Note that F ′

n
∼= Fn and denote by κ an isomorphism. There is

a contractive completely positive linear map sn : EnAEn → F ′
n such that sn|F ′

n
= idF ′

n

(see, for example, Theorem 2.3.5 in [9]). Denote by s̄n : A → F ′
n the map defined by

s̄n(a) = sn(EnaEn). Note that s̄n is a contractive completely positive linear map.
Define Ln : A → B by Ln = h′

n ◦ hn ◦ κ ◦ s̄n. Note that {τ(Ln(a))} converges uni-
formly on T (B) for each a ∈ A. There is a homomorphism h′′

n : Dm(n) → A such that
(h′′

n)∗0 = βn. Define Ψ ′
n = h′′

n ◦ s̄′
n. We also have the result that {t(Ψ ′

n(b))} converges uni-
formly on T (A) for each b ∈ B.

Note also that {Ln} and {Ψ ′
n} are asymptotically multiplicative contractive completely

positive linear maps from A to B and B to A, respectively. In the following computation
we note that Ln(ci) ⊂ Dm(n):

[Ψ ′
n ◦ Ln](ci) = [Ψ ′

n ◦ h′
n ◦ hn ◦ κ](ci) = [Ψ ′

n] ◦ [h′
n ◦ hn](ei)

= βn ◦ h′
n ◦ hn(ei) = gi = [ci].

Since TR(A) = 0, there is a unitary wn ∈ A such that adwn ◦ Ψ ′
n ◦ Ln(ci) = ci, i =

1, 2, . . . , l(n). Define Ψn = adwn ◦ Ψ ′
n. Thus for each projection e ∈ F ′

n,

[Ψn ◦ Ln](e) = [e].

Denote also by jn : F ′
n → A. Let Gn be the group generated by jn(K0(F ′

n)).
Let ε > 0 be positive and let P = {d1, . . . , dm} be a finite subset of projections in A.

Let N(ε) > 0 be a positive number such that

τ(1 − En) < ε

for all τ ∈ T (A) if n � N(ε). We may also assume that

‖Endi − diEn‖ < ε, i = 1, 2, . . . , m.

We obtain projections d′
i ∈ F ′

n such that

|τ(di) − τ(d′
i)| < ε, i = 1, 2, . . . , m.

Let Pn be the finite subset {d′
1, . . . , d

′
m}. Note we have shown that

[Ψn ◦ Ln](d′
i) = [d′

i], i = 1, 2, . . . , m.

It follows from Theorem 2.10 that {Ψn ◦ Ln} is tracially approximately inner.
Let d′′

i = Ln(d′
i). Since Ψn ◦ Ln(ci) = ci, we have that [Ln ◦ Ψn(d′′

i )] = [d′′
i ], i =

1, 2, . . . , m. Since α : aff(T (A)) → aff(T (B)) is an order isomorphism and α(G) is dense
in ρB(K0(B)), we see Theorem 2.10 applies here. It follows that {Lk(n) ◦ Ψn} is tracially
approximately inner. Therefore, A and B are weakly tracially equivalent. �

Proposition 3.8. Let A and B be two unital separable simple C∗-algebras. Suppose
that A and B are h-tracially equivalent. There are then positive homomorphisms α :
K0(A) → K0(B) and β : K0(B) → K0(A) with α([1A]) = [1B ] and β([1B ]) = [1A] such
that α ◦ β and β ◦ α induce identity maps on ρB(K0(B)) and ρA(K0(A)), respectively.
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Proof. Let h1 : A → B and h2 : B → A be two homomorphisms such that h1 ◦h2 and
h2 ◦ h1 are tracially approximately inner. We first note that (h1)∗0 : K0(A) → K0(B)
and (h2)∗0 : K0(B) → K0(A) are positive homomorphisms. The fact that h1 ◦ h2 is
tracially approximately inner implies (by Corollary 2.8) that (h1)∗0 ◦ (h2)∗0 induces the
identity map on ρB(K0(B)). It also implies that (h2)∗0 ◦ (h1)∗0 induces the identity map
on ρA(K0(A)). To complete the proof we need to show that h1 and h2 are unital. Clearly,
h1(1A) � 1B . However, τ(1B − h1(1A)) = 0 for all τ ∈ T (B). Since B is simple, this
implies that h1(1A) = 1B . The same argument shows that h2 is also unital. �

We will use N for the class of separable C∗-algebras which satisfy the UCT (see [15]).

Theorem 3.9. Let A and B be two unital separable amenable simple C∗-algebras in
N with TR(A) = TR(B) = 0. Then A and B are h-tracially equivalent if and only if
there are positive homomorphisms α : K0(A) → K0(B) and β : K0(B) → K0(A) with
α([1A]) = [1B ] and β([1B ]) = [1A] such that α ◦ β and β ◦ α induce identity maps on
ρB(K0(B)) and ρA(K0(A)), respectively.

Proof. From the previous proposition, we only need to show the ‘if’ part of the theo-
rem. It follows from [4,13] (see also [10]) that we may assume that A = limn→∞(An, φn)
and B = limn→∞(Bn, ψn), where Bn and An have the form Pn(C(Xn) ⊗ Mk(n))Pn,
where X is a finite simplex with dimension no more than three (of course, each Xn

and k depends on Bn and An) and Pn ∈ C(X) ⊗ Mk is a projection, By [4] (or The-
orem 4.6 in [8]) there are monomorphisms h1 : A → B and h2 : B → A such that
(h1)∗0 = α and (h2)∗0 = β. Since h2 ◦ h1 and h2 ◦ h1 induce identity maps on ρA(K0(A))
and ρB(K0(B)), respectively, it follows from Theorem 2.10 that h2 ◦ h1 and h1 ◦ h2 are
tracially approximately inner. Therefore, A and B are h-tracially equivalent. �

Corollary 3.10. Let A and B be two separable amenable simple C∗-algebras in N
with TR(A) = TR(B) = 0. Suppose that the following two short exact sequences split

0 → ker ρA → K0(A) → ρA(K0(A)) → 0

and

0 → ker ρB → K0(B) → ρB(K0(B)) → 0.

If there is an order isomorphism from ρA(K0(A)) onto ρB(K0(B)) which maps ρA([1A]) to
ρB([1B ]), then there is a projection e ∈ M2(B) with ρB(e) = ρB(1B) such that eM2(B)e
is h-tracially approximate equivalent to A.

Proof. This immediately follows from Theorem 3.9. �

Example 3.11. (1) The condition of h-tracially equivalent is stronger than that of
tracially approximately equivalent.
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Let A be a unital amenable simple C∗-algebra with TR(A) = 0. Suppose that

0 → ker ρA → K0(A) → ρA(K0(A)) → 0

is not splitting. Let B be a unital amenable simple C∗-algebra with TR(B) = 0 and
(K0(B), K0(B)+, [1B ]) = (ρA(K0(A)), ρA(K0(A))++, [1A]). Then, by Theorem 2.10, A

and B are tracially equivalent. However, there is no β : ρA(K0(A)) → K0(A) such that
ρA ◦ β = idρA(K0(A)), since the above mentioned short exact sequence is not splitting.

(2) The weak tracial equivalence is weaker than tracial equivalence.

Let A be a simple AF-algebra with

(K0(A), K0(A)+, [1A]) = (Q + Q(
√

2), (Q + Q(
√

2))+, 1)

and let B be a simple AF-algebra with

(K0(B), K0(B)+, [1B ]) = (Q + Q(
√

3), (Q + Q(
√

3))+, 1).

Note that aff(T (A)) = R = aff(T (B)) and Q is dense in R. It follows from Theorem 3.7
that A and B are weakly tracial equivalent. However, by Theorem 3.9, A and B are not
tracially equivalent.

4. Dynamical systems

Let X be a compact metric space and σ : X → X be a homeomorphism such that

orbitσ1(x) = {σn(x) : n ∈ Z}

is dense in X for each x ∈ X. The result dynamical system is called minimal.
Let X be the Cantor set and σ : X → X be a homeomorphism such that (X, σ) is

a minimal dynamical system. Such dynamical systems will be called Cantor minimal
systems.

Definition 4.1. Let (X1, σ1) and (X2, σ2) be two dynamical systems. They are said
to be (topological) orbit equivalent if there exists a homeomorphism F : X1 → X2 such
that

F (orbitσ1(x)) = orbitσ2(F (x))

for each x ∈ X1.

Let (X1, σ1) and (X2, σ2) be two Cantor minimal systems.
In [5], Giordano, Putnam and Skau showed that, for Cantor minimal systems, orbit

equivalence can be characterized by the K-theory of the associated crossed product
C∗-algebra C(X) ×σ Z. Here we will use the tracial equivalences of crossed products
C(X) ×σ Z to describe orbit equivalences of Cantor minimal systems.

Theorem 4.2. Let (X1, σ1) and (X2, σ2) be two Cantor minimal systems. Let A =
C(X1) ×φ1 Z and B = C(X2) ×φ2 Z. Then the following are equivalent.
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(1) (X1, σ1) and (X2, σ2) are (topological) orbit equivalent.

(2) There is an order isomorphism between ρA(K0(A)) and ρB(K0(B)) which maps
ρA([1A]) to ρB([1B ]).

(3) A and B are tracially equivalent.

Proof. The equivalence of (1) and (2) is established in [5]. It is known that for Cantor
minimal systems, C(X) ×σ Z is an AT-algebra with real rank zero and stable rank one.
Furthermore, TR(C(X) ×σ Z) = 0. Thus the equivalence of (2) and (3) follows from
Theorem 2.10. �

As mentioned above, for Cantor minimal systems (X, α) the associated simple crossed
products C(X)×αZ have tracial topological rank zero. By Corollary 3.6, they are tracially
equivalent to some unital simple AF-algebras.

Corollary 4.3. Let (X1, σ1) and (X2, σ2) be two Cantor minimal systems. Let A =
C(X1)×φ1 Z and B = C(X2)×φ2 Z. Suppose that ρA(K0(A)) and ρB(K0(B)) are finitely
generated. Then the following are equivalent.

(1) (X1, σ1) and (X2, σ2) are (topological) orbit equivalent.

(2) There is positive homomorphism α : K0(A) → K0(B) which maps [1A] to [1B ] such
that α induces an order isomorphism between ρA(K0(A)) and ρB(K0(B)).

(3) A and eM2(B)e are h-tracially equivalent for some projection e ∈ M2(B) with
ρB(e) = ρB(1B).

Proof. This follows from Corollary 2.8 the same way as Theorem 4.2 follows from
Theorem 2.10. �
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