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ABSTRACT 
The integration of users’ perception in the design process is and important challenge for the 
optimization of products. This study describes how design recommendations can be drawn, from a 
perceptual experiment with a panel of subjects using a multi-objective interactive genetic algorithm 
(IGA). The application concerns the bi-objective optimization of the unpleasantness and the 
detectability of sounds for electric vehicles (EV). After a description of the experimental protocol for 
the assessment of the detectability and the unpleasantness of EV sounds (listening test), a set of 
optimal sounds (Pareto efficient) is defined with an IGA experiment. The analysis of these sounds, 
based on a probabilistic analysis of the selection process, leads to the definition of design 
recommendations. A second listening test, involving recommended sounds but also other design 
proposals, allows an evaluation of the validity of the approach. Results show that the sounds 
recommended obtain interesting performance, in particular to improve the detectability of EV sounds. 
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1 INTRODUCTION 

The increasing use of Hybrid or Electric Vehicles (EV) has led to safety concerns for pedestrians 

(Gillibrand et al., 2011). Below 40 km/h, the noise emitted by those vehicles is lower than for Internal 

Combustion Engine Vehicles (ICEV). In urban environments in particular, this makes it potentially more 

difficult to detect an approaching vehicle. Visually impaired people are particularly affected, as they rely 

mostly on auditory cues to assess the presence of vehicles (Parizet et al., 2014). Because of this, some 

countries have started to create a legislation requiring EV to be equipped with a warning sound 

generation device, as well as specifications regarding the sound that should be emitted (Konet et al., 

2011). Several studies have come up with recommendations regarding the nature of such sounds 

(Misdariis et al., 2013)(Robart et al., 2013)(Poveda-Martinez et al., 2017). These recommendations must 

also take into account potential noise pollution that could negatively affect the experience of pedestrians, 

cyclists and other drivers (Petiot et al., 2013). 

There is then clearly a conflict between detectability and annoyance for the perception of EV sounds. 

Different studies addressed this problem (Lee et al., 2017), (Parizet et al., 2014). All these studies are 

based on hearing tests of a predefined set of sound stimuli. 

In a previous paper (Petiot et al., 2019), we proposed a method based on an Interactive Genetic 

Algorithm (IGA) for the design of EV sounds that takes into account in the same time detectability and 

unpleasantness. Based on listening tests and a parametric synthesis of EV sounds, it provided efficient 

solutions, validating the relevance of the approach. 

This work is a continuation of this study. It uses the same experimental protocol for the assessment of the 

detectability and the unpleasantness, but the experiments and the analysis of the results are different. A 

multiobjective optimization using IGA is now proposed, and design recommendations are drawn from 

the analysis of the set of Pareto efficient solutions.  

The objectives of this paper are: 

 To present a method for the analysis of a set of Pareto efficient sounds obtained after a 

multiobjective IGA experiment, in order to make design recommendations, 

 To test the efficiency of recommended designs, compared to other EV sound proposals. 

The remainder of the paper is organized as follows. Section 2 presents a background on the experimental 

protocol for the assessment of detectability and unpleasantness of EV sounds: presentation of the sound 

synthesis method and description of the scenario for the listening tests. Section 3 presents the material 

and methods for the experiments and the analysis of the data. A first experiment (experiment 1) uses 

IGA for a biobjective optimization of the detectability and the unpleasantness, leading to a set of Pareto 

efficient sounds (termed Optimal_set). The method for the analysis of the optimal set of sounds is 

presented, in order to draw design recommendations. In a second experiment (experiment 2), design 

recommendations are assessed and compared to current design proposals. Results are presented in 

section 4, and the concluding section provides implications for sound design. 

2 BACKGROUND 

The objective of this section is to make a summary of the EV sounds synthesis method, the scenario 

for the assessment of the detectability and the unpleasantness, and the IGA implementation. 

For more information, the reader is invited to read the initial paper (Petiot et al., 2019). 

2.1 EV sound synthesis 

The EV sounds were synthesized using the mathematical modeling software Matlab and the additive 

synthesis technique. In order to generate different but plausible sounds for an electric car, after an 

analysis of current sounds of different carmakers (Misdariis et al., 2012) and personal propositions 

(Petiot et al, 2013), four main components of the sound were considered. 

 Component C1 “A thermic motor sound”. This component synthesizes the first harmonics of a 

classical 4-stroke internal combustion engine (H0.5, H1, H1.5, H2, H4, H6), 

 Component C2 “A Harmonic Sound”. This component synthesizes different musical ‘notes’, 

harmonic, that constitute a major chord (chord with 3 notes), 

 Component C3 and C4: “A broad band Noise”. These components synthesize two filtered noises. 
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The resulting sound 𝑠(𝑡) is finally a weighted sum of these four components (equation 1), to which 

amplitude modulation is applied, with modulation index m and modulation frequency fm: 

𝑠(𝑡) = (1 + m. sin(2π𝑓𝑚𝑡)) . (𝑎1. 𝐶1(𝑡) + 𝑎2. 𝐶2(𝑡) + 𝑎3. 𝐶3(𝑡) + 𝑎4. 𝐶4(𝑡)) (1) 

Since it is out of the scope of this paper to describe all the parameters of the synthesizer (there are 

more than 70 independent parameters to define a sound), we can mention that all the frequencies and 

amplitudes of the components are adjustable, to create credible and original sounds. The sound is not 

constant but controlled by a control parameter of the car: the speed. To make the sound evolve with 

the speed of the car, we choose to adjust the frequencies and the amplitudes of the different 

components according to the speed with parameterized patterns.  

Among the different synthesis parameters of the sounds, it is necessary to define the optimization 

variables of the problem, i.e. the variables which are manipulated by the IGA and coded in the genome 

(design space of the genetic code). After several experiments, the following 6 factors (A, B, C, D, E, 

F), and their corresponding levels (A1 for level 1 of factor A), were chosen to get a large diversity of 

sounds (Table 1). 

Table 1. Definition of the 6 factors (design variables) and their levels 

Factor Variable Level 1 Level 2 Level 3 Level 4 

A Motor/chord 

proportion 
𝑎2 = 0 𝑎1

𝑎2
= 2 

𝑎1

𝑎2
=

1

2
 

𝑎1 = 0 

B Fundamental/center 

frequency 
𝑓1 = 𝑓3

= 80Hz 

𝑓2 = 120Hz 

𝑓4 = 240Hz 

𝑓1 = 𝑓3

= 120Hz 

𝑓2 = 180Hz 

𝑓4 = 360Hz 

𝑓1 = 𝑓3

= 160Hz 

𝑓2 = 240Hz 

𝑓4 = 480Hz 

𝑓1 = 𝑓3

= 200Hz 

𝑓2 = 300Hz 

𝑓4 = 600Hz 

C Harmonic/noise 

proportion 
𝑎1 = 𝑎2 = 0 𝑎3+𝑎4

𝑎1+𝑎2
= 2 

𝑎3+𝑎4

𝑎1+𝑎2
=

1

2
 

𝑎3 = 𝑎4 = 0 

D Number of harmonics Motor: 1 

Chord: 1 

Motor: 2 

Chord: 2 

Motor: 3 

Chord: 3 

Motor: 6 

Chord: 6 

E Amplitude 

modulation frequency 
𝑓𝑚 = 0.5Hz 𝑓𝑚 = 2Hz 𝑓𝑚 = 5Hz 𝑓𝑚 = 10Hz 

F Amplitude 

modulation ratio 
m = 0% m = 17% m = 33% m = 50% 

With these six factors and four level, the design space counts 46 = 4096 possible designs (all the 

possible combinations of the full factorial). 

2.2 Listening tests of EV sounds 

2.2.1 Scenario  

The scenario chosen for the test corresponds to the following situation (Misdariis et al., 2013): a 

pedestrian located on the sidewalk of a street waits before crossing. An EV may pass by, coming either 

from the right or from the left. The listener is static, and must indicate when he/she detects the EV. 

To obtain a pseudo-realistic passing-by scenario, the following properties have been implemented: 

 The sound level of the EV is modulated according to the vehicle/listener distance. The model 

used, based on acoustic theory, considers the EV as a monopole and provides a sound level 

inversely proportional to the distance to the listener (1/r) (see Figure 1) (Misdariis et al., 2013), 

(Lee et al., 2017), 

 The speed of the EV is considered as constant and equal to 20km/h, 

 The duration of the sound stimuli is 15 seconds, 

 The Doppler effect (shifting in frequency due to the speed of the source) is taken into account for 

a more realistic experience, 

 The direction of the car (from the right or from the left) is randomly chosen, 

 The panning of the EV sound is managed in such a way that the source goes progressively from 

one canal (left or right, depending of the direction of the EV) to the other (right or left) according 

to the position of the vehicle. 
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Given that the objective of the test is to assess the reaction time associated to the detection of the EV 

sound, the sound must be incorporated in a background noise (masking signal). The background noise 

considered in the study corresponds to a stereo street recording of a busy intersection in Paris, France. 

The level of the background noise was adjusted to a convenient level and kept constant for all the 

stimuli proposed in the listening test. Figure 1 describes the mixture of the background and the EV 

sounds and their respective sound level evolution. 

 

Figure 1. Timeline of the assembly of the background and the EV sound, with their respective level 
evolution (the x axis represents indifferently the time or the distance of the EV, given that the speed of 

the vehicle is constant) 

2.2.2 Task of the subject  

The audio stimuli were presented to the participants with a computer interface and Beyerdynamics DT-

990 headphones in a quiet environment. The same sound output level was set by the experimenter for 

all computers. Participants had to strike the “space bar” to start playing the stimuli (t = 0), and next 

strike the “a” key as soon as they detect the EV coming from the left, or the “e” key if it is coming 

from the right (French AZERTY keyboard). This strike allows the definition of the detection time 𝑡2.  

To avoid habituation of the participant in the detection time (and detect inconsistent subjects), the 

starting time 𝑡1 of the EV sound in the mixture (figure 2) was variable, randomly chosen in the interval 

[1, 3] seconds. The detection duration 𝐷𝑑 is then given by (equation 2): 

𝐷𝑑 = 𝑡2 − 𝑡1 (2) 

After assessing the detectability of the sound, participants were asked to rate the unpleasantness of the 

sound on a structured semantic scale from “0” (not at all unpleasant) to “10” (very unpleasant). These 

two assessments (detection time, unpleasanteness) constitute the two objectives of the optimization 

problem that must be minimized. 

2.3 IGA implementation 

The optimization problem addressed in this paper being bi-objective, there are potentially several equally 

satisfying solutions (Pareto efficient). To address this constraint, the proposed method considers an 

adaptation of the NSGA-II algorithm (Deb et al., 2002), which aims at finding an approximation of the 

Pareto front. The solutions are compared based on the so-called crowded-comparison operator: 

 A solution is considered better than another one if it has a lower non-domination rank.  The non 

domination rank of a solution corresponds to the non dominated front it belongs to, 

 Within a non-dominated front, the solutions are ranked based on their distances to other solutions of 

the same front in the objective space. Solutions that are further away from other solutions are 

considered better. This aims at ultimately obtaining solutions that are evenly spread along the 

optimal Pareto front. In this elitist algorithm, a register of the best solutions evaluated is updated 

after each generation and is used to create the next one. 

Background sound 

level 

t=0 

EV sound 

level 

t1 

Listener 

position 

t2: detection time 

Fade in Fade out 

Time/distance 

0 

0 

t3 

r: distance to 

pedestrian 
1/r 
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Concerning the operators of the IGA, the procedure was implemented as follows. The first generation of 

Ng
 solutions was generated using a Latin Hypercube Sample. After evaluation by the user, the best 

solutions register was initialized with all Ng solutions of this first generation. The next generation was 

created by randomly applying one of the following genetic operators to each solution within the register: 

 Mutation: the solution was replicated to the next generation, with one gene value randomly 

changed, 

 Crossover: another solution was selected within the register through a binary tournament based on 

the crowded-comparison operator. The chromosomes representing the two solutions were 

combined, in order to create a new one. This was done by randomly selecting a chromosome 

location, splitting each chromosome into two parts around that location and connecting the first part 

of one solution with the second part of the other one. The order in which the solutions were 

combined was chosen randomly, 

 Selection: the solution was replicated in the next generation without any modification. 

The probability for each operator to be applied is controlled by the crossover rate (𝑐𝑟), the mutation rate 

(𝑚𝑟) and the selection rate (𝑠𝑟). These values were chosen between 0 and 1 in such a way that  𝑐𝑟 +
𝑚𝑟 + 𝑠𝑟 = 1. This process was repeated at each generation. A simulation process (Monte-Carlo) was 

implemented to tune the different parameters of the IGA (see (Poirson et al., 2013) for more 

information). The size of the register was kept constant, only containing the Ng best solutions. At the end 

of the iterations, the Pareto solutions of a participant j were recorded in a set called Optimal_Set_j. 

3 MATERIAL AND METHODS 

3.1 Experiment 1: multiobjective optimization with IGA  

32 students (16 males, 16 females) from the École Centrale de Nantes, France, with no reported auditory 

deficiencies, used the IGA sound optimization tool with the scenario and the sound stimuli described in 

the “Background” section. They evaluated 11 generations of Ng = 9 sounds, which took approximately 

half an hour. Values of mutation rate: 𝑚𝑟 = 0.7, crossrate:  𝑐𝑟 = 0.25, selection rate: 𝑠𝑟 = 0.05, were 

used for the IGA. A high mutation rate was chosen, to preserve diversity in spite of the small number of 

individuals per generation and to avoid premature convergence. 

The union for all the participants of all the Pareto solutions that satisfy the safety criterion was formed. 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙_𝑠𝑒𝑡 = ⋃ (Optimal_set𝑗)m
j=1  (3) 

Optimal_Set represents a selection of EV sounds that, from a perceptual point view, make a satisfying 

trade-off between detectability and unpleasantness. To provide information that could be used as 

recommendations for a sound designer, an analysis of these sounds and the most occurring factors 

levels in Optimal_Set is conducted. 

3.2 Analysis of the sound of Optimal_set 

The principle of the method to draw design recommendations from the analysis of the designs in 

Optimal_Set is to consider the selection process of the designs made by the participants as a random 

process that depends on probability laws. The set Optimal_set, of size N, is a subset of the sample 

space Ω (full factorial design). From the chosen designs in Optimal_Set, estimates of the parameters of 

these probability laws can be calculated. And with these parameters, it becomes possible to make 

inference and provide a probability score for any design of the design space. 

3.2.1 Joint probability 

Given the sample space Ω (set of all possible designs of the design space), and the design variables 

X𝑖, (𝑖 = 1 𝑡𝑜 6) that describe the design, the first model that can be made is to assume that the choice 

of the designs in Optimal_set depends on all the variables and all their possible interactions. 

In this case, the probability law of the selection process of any design d defined by the design 

variables X𝑖, (𝑖 = 1 𝑡𝑜 6), d = (𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋6 = 𝑥6)  by the IGA experiments is given by 

the joint probability: 

P(D = d) = P(𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋6 = 𝑥6) =
𝑐𝑎𝑟𝑑{𝐷∈𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑠𝑒𝑡 𝐷⁄ =𝑑}

𝑐𝑎𝑟𝑑(𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑠𝑒𝑡)
 (4) 
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 Where card represents the cardinality of a set (number of elements) 

For example, if a design is present once in Optimal_set, its probability is P =
1

𝑐𝑎𝑟𝑑(𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑠𝑒𝑡)
, if it is 

not chosen, its probability is P = 0. 

This 6-dimensions joint probability is not so interesting to make design recommendations because it is 

only able to recommend designs that are present (and abundant) in Optimal_set. To be able to make 

recommendations on the levels of the design variables X𝑖, it is necessary to make assumptions on the 

independence of the variables in the selection process. 

3.2.2 Marginal probability 

If we consider that the variables X𝑖, (𝑖 = 1 𝑡𝑜 6) are mutually independent in the selection process (no 

interaction between them), then the probability law of the selection process of any design d = (𝑋1 =
𝑥1, 𝑋2 = 𝑥2, … , 𝑋6 = 𝑥6)  is given by: 

P(𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋6 = 𝑥6) = ∏ P(𝑋i = 𝑥i)
6
𝑖=1  (5) 

This is simply the product of the marginal probabilities, where: 

P(𝑋i = 𝑥i) =
𝑐𝑎𝑟𝑑{𝐷∈𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑠𝑒𝑡 𝑋𝑖=𝑥𝑖⁄ }

𝑐𝑎𝑟𝑑(𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑠𝑒𝑡)
 (6) 

In this case, the designs recommended by the model (designs with the largest probability), is the 

designs with the most occurring level (largest size) for each variable. Of course the mutual 

independence of all the variables is a very strong assumptions that only holds if there is no interaction 

between the variables in the selection process (in the perception of participants). This is rather unlikely 

in design where the global assessment of a product may be different to the sum of the assessments of 

each of its variables (Sylcott et al., 2015). 

3.2.3 Independence checking of the variables 

The two previous models being not satisfactory to make design recommendations, it is interesting to 

propose a model that is based on assumptions that can be checked concerning the independence of the 

variables in the selection process. That’s why we propose first to check the independences between the 

variables, from the choices made in Optimal_set. 

Our proposal is to check, with a statistical test, the independence of any pairs of variables in 

Optimal_set. We propose to use the chi-square independence test to determine whether there is a 

significant association between two qualitative variables.  

For example, suppose that the pairwise independence test shows that the two groups of variables 
{𝑋1, 𝑋2, 𝑋3} and {𝑋4, 𝑋5, 𝑋6} are independent. This can be shown in the pairwise comparison matrix 

(see example in Table 3). 

Then it is possible to use a model where the probability law of the selection process of any design d =
(𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋𝑛 = 𝑥𝑛)  is given by: 

P(𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋6 = 𝑥6) = P(𝑋1 = 𝑥1, 𝑋2 = 𝑥2, 𝑋3 = 𝑥3). P(𝑋4 = 𝑥4, 𝑋5 = 𝑥5, 𝑋6 = 𝑥6) (5) 

Where: 

P(𝑋1 = 𝑥1, 𝑋2 = 𝑥2, 𝑋3 = 𝑥3) =
𝑐𝑎𝑟𝑑{𝐷∈𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑠𝑒𝑡 𝑋1=𝑥1,𝑋2=𝑥2,𝑋3=𝑥3⁄ }

𝑐𝑎𝑟𝑑(𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑠𝑒𝑡)
 (7) 

P(𝑋4 = 𝑥4, 𝑋5 = 𝑥5, 𝑋6 = 𝑥6) =
𝑐𝑎𝑟𝑑{𝐷∈𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑠𝑒𝑡 𝑋4=𝑥4,𝑋5=𝑥5,𝑋6=𝑥6⁄ }

𝑐𝑎𝑟𝑑(𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑠𝑒𝑡)
 (8) 

It is then possible to calculate the probabilities of all the designs d = (𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋6 =
𝑥6) of the design space. Designs with the largest probabilities should be recommended.  

Some of them are of course present in Optimal_set, but it is likely that designs not present in 

Optimal_set get a high probability, and be interesting for the design problem.  

The method presented allows uncovering combinations of the levels of the variables that are efficient 

for the objectives considered in the study. It is the strong point of the method: to make 

recommendations according to the values of the variables instead of the designs themselves. This 

information is of course more interesting for designers that may take into account recommendations, 

but also be free to adjust the design according to personal orientations and other constraints or 

objectives, not taken into account in the objective functions optimized. 
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3.3 Experiment 2: validation test 

After the analysis of Experiment 1, a second panel of subjects (different of the previous panel) was 

asked to assess the detectability and unpleasantness of different EV sound proposals, including 

recommended designs with the previous method. 17 students (14 males, 3 females) from the École 

Centrale de Nantes, France, with no reported auditory deficiencies, participated to the test with the 

protocol described in the “Background” section. 18 EV sounds were proposed to the evaluation: 

 8 sounds (rand1 to rand8 – category random) randomly defined in the experimental space, 

 2 sounds (design1 and design2 – category designed), designed by a sound designer with 

instructions for “good detectability” and “low unpleasantness”, 

 8 sounds (reco1 to reco8 – category reco), recommended by the method described in the previous 

sections (largest probability). 

To be able to assess the experimental error in the assessments, 4 repetitions of each sound were 

proposed. In total, each participant had to assess 72 (18*4) EV sounds, proposed in a random order. 

The global performances of the sounds and of the sound categories (random, designed, reco) were 

compared using Duncan Multiple Comparison tests. 

4 RESULTS 

4.1 Experiment 1: IGA test 

To show the convergence of the solutions across the different generations, the fitness (N.B. the lower, the 

better) of the entire population of sounds can be examined. Since there are two objectives, the fitness can 

be reduced to the sum of the two objectives (the value of the detection time has been scaled so that its 

range matches the one of the unpleasantness). Of course, this is not how the IGA operates (it is a 

multiobjective optimization) but this reduction to a single objective is a convenient way to display the 

results. Figure 2 (left) shows the average sum of the two objectives calculated across all the generations, 

and averaged over all participants, with the standard error bars. This is plotted for two conditions, the 

mean value of the solutions of a generation, and the minimum value of a generation. A diminution of the 

fitness is noticed, both for the mean and the minimum value. This means that the adaptation of the EV 

sounds generated by the IGA to the problem is noticeable after 6 or 7 generations. This is also a sign of 

the reliability of the experimental protocol for the assessment of the detection time and the 

unpleasantness, and a correct tuning of the IGA parameters. 

 

Figure 2. (left): Average values of the sum of the two objectives (unpleasantness and 
detectability) by generation. (right): Scatterplot of the average performances of the different 

EV sounds 

The Optimal_Set counts N=113 sounds. All designs are present once, except d1(A1 B4 C4 D4 E2 F1) 

present twice and d2(A2 B4 C4 D4 E1 F1) present 4 times. The occurrences of each level of the 

variables in Optimal_Set are given in Table 2. To define the variables for which the occurrence of the 

levels is not equiprobable, a multinomial goodness of fit test of the distribution of the occurrences was 

carried out. 
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Table 2. Occurrences of the levels of the variables in Optimal_Set 

 A B C D E F 

Level 1 35 14 19 27 39 36 

Level 2 20 36 21 28 23 33 

Level 3 31 33 23 25 28 24 

Level 4 27 30 50 33 23 20 

Multinomial 

test Signif. N.S. * ** N.S.  N.S. N.S. 

 *: p<0.05 **: p<0.01 N.S.: not significant 

 

Only two variables, B(frequency) and C(Harmonic/noise proportion), obtain occurrences significantly 

different from a random distribution at the 5% level. For the frequency of the sounds, the level B1 (low 

frequency) is under-represented (size = 14). For the Harmonic/noise proportion, the level C4 (broad band 

noise absent) is over-represented (size = 50). For the whole group of participants, it seems necessary to 

avoid low frequencies and broadband noise for the high detectability and low unpleasantness of EV 

sounds. For the other variables (and their possible interactions), it is not possible to make 

recommendations with this simple sorting one variable at once. 

4.2 Analysis of the sound of Optimal_set 

4.2.1 Independence test of the variables 

With the definition of the N designs of Optimal_set, contingency tables of all pairs of variables were 

formed. The results of the Chi-square test of independence (p-value) are given in Table 3. 

The p-values corresponding to a rejection of the independence are presented in bold (a Bonferroni 

correction was applied to deal with the multiple comparisons problem - threshold value of 0.05/15 = 

0.003 – 15 is the number of pairs). For the non-significant pairs, test shows that the dependence in the 

sample is too weak to distinguish it from independence. From this table, the corresponding 

dependence graph can be drawn (Table 3). 

Table 3. Pairwise comparison matrix of the Chi-square test of independence (p-value) 

 A B C D E F  
 

D 

A B 

C F 

E 

 

A / 0.002 0.003 0.953 0.264 0.393 

B  / 0.015 0.001 0.052 0.109 

C   / 0.001 0.530 0.466 

D    / 0.219 0.026 

E     / 0.001 

F      / 

The graph shows that two groups of independent variables can be considered in Optimal_set: 
{𝐴, 𝐵, 𝐶, 𝐷} and {𝐸, 𝐹}. The probability law of the selection process is then given by: 

P(A = 𝐴𝑖, B = 𝐵𝑗, C = 𝐶𝑘 , D = 𝐷𝑙, E = 𝐸𝑚, F = 𝐹𝑛) = P(A = 𝐴𝑖, B = 𝐵𝑗, C = 𝐶𝑘, D = 𝐷𝑙). P(E =

𝐸𝑚, F = 𝐹𝑛) (9) 

The probability can be calculated for all the design samples. Designs with the largest probability are 

recommended. 

4.2.2 Design recommendations  

The 8 designs with the largest probability are presented in Table 4. They present combinations of 

variables that are interesting for the optimization problem. 

4.3 Experiment 2: validation test 

4.3.1 Multiple comparisons 

From the assessments of the participants according to detectability and unpleasantness, the average 

scores of detectability and unpleasantness of the 18 EV sounds was calculated. To investigate the 

https://doi.org/10.1017/pds.2021.418 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.418


 

ICED21 1575 

differences in the performances of the sounds according to their category (reco, designed, random), 

the average scores with their standard errors are presented in Figure 3 left (Unpleasantness) and right 

(Detection time). To study the differences in the average score, a Duncan multiple comparison test is 

carried out for every pair of sounds (significant threshold: p = 0.05). The results are presented with 

bold lines connecting the sounds in the figures. When sounds are connected, pairs are not significantly 

different, whereas they are when not connected.  

Table 4. Definition of the 8 recommended designs (design variables’ levels) 

 A B C D E F 

reco1 A3 B2 C2 D2 E1 F1 

reco2 A1 B4 C4 D4 E1 F1 

reco3 A2 B4 C4 D4 E1 F1 

reco4 A3 B2 C2 D2 E3 F2 

reco5 A1 B4 C4 D4 E3 F2 

reco6 A2 B4 C4 D4 E3 F2 

reco7 A1 B2 C4 D2 E1 F1 

reco8 A4 B3 C4 D2 E1 F1 

According to unpleasantness, the recommended designs (reco) are significantly more unpleasant than 

the two other categories (Figure 3 left). 

According to detection time, all the categories are significantly different: the recommended designs 

(reco) are significantly more detectable than the two other categories (Figure 3 right). 

The results are a little disappointing because they don’t show that in average, the recommended 

designs are always better than the other proposals. But given that the objective are conflicting, we 

cannot rule out the assumptions that it is even not possible to find, in our design space, 8 designs that 

dominates all the designs of our design space. 

 

Figure 3. Bar graph of the average value of the unpleasantness (left) and detection time 
(right) for the different EV sounds categories. Non significant differences between pairs of 

sounds (p>.05) are linked with an horizontal line (Duncan multiple comparisons test). 

The method presented is still interesting because it allows the definition of EV sounds that are 

significantly more detectable than other proposals. 

4.3.2 Average assessments 

To have a more accurate view of the results, Figure 2 (right) presents the average performances of each 

EV sounds of the three categories (reco, designed, random) according to detection time and 

unpleasantness.  

It is clear on Figure 2 that all the recommended sounds (reco) do not Pareto-dominate all the other 

sounds. The Pareto front is made of 3 recommended sounds (reco3, reco2, reco1), one designed sound 

(Design1) and 2 random sounds (rand2 and rand4). 

It is noticeable that the range of the random sounds according to unpleasantness is large, but very narrow 

for detectability: it is unlikely to obtain detectable EV sounds by choosing them randomly. 

The two designed sounds obtain average performances, the sounds Design1 (Pareto efficient) being an 

interesting trade-off between the two objectives. 
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It is also noticeable on Figure 2 (right) that the ranges of the reco sounds according to unpleasantness 

and detectability are large. The most detectable EV sounds are recommended sounds (reco2, reco5, 

reco3 reco6). 

Sounds that are highly detectable seem to be very particular, given that neither random nor designed 

sound obtains comparable performances. The main result is that the recommendation method and the 

experimental protocol using the IGA allow the determination of very detectable EV sounds. The price 

to pay is an increase of the unpleasantness. The recommendation method presented in this paper 

produces interesting results to help the work of a sound designer. 

5 CONCLUSION 

This paper presented a method to make design recommendations after an experiment with an interactive 

genetic algorithm (IGA). The application concerns the bi-objective optimization of the unpleasantness 

and the detectability of sounds for Electric Vehicles, and uses listening tests with a panel of participants 

and an IGA for the multi-objective optimization. 

Based on an analysis of the sounds of the Pareto front of all the participants, the method to make 

recommendations studies the independence of the design variables and calculates a probability score of 

the designs, in order to recommend the designs with the largest probabilities. A validation experiment 

shows that the results are promising: even if the recommended designs do not over-rank proposals of a 

designer according to both objectives, they obtain very good performances according to detectability. 

The next stage of the project will be to explain the relationships between the design variables of the 

sounds and the two objectives. 
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