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Abstract
In this paper we analyse insurance claim frequency data using the bivariate negative binomial
regression (BNBR) model. We use general insurance data on claims from simple third-party liability
insurance and comprehensive insurance. We find that bivariate regression, with its capacity
for modelling correlation between the two observed claim counts, provides both a superior fit and
out-of-sample prediction compared with the more common practice of fitting univariate negative
binomial regression models separately to each claim type. Noting the complexity of BNBR models
and their potential for a large number of parameters, we explore the use of model shrinkage
methodology, namely the least absolute shrinkage and selection operator (Lasso) and ridge
regression. We find that models estimated using shrinkage methods outperform the ordinary
likelihood-based models when being used to make predictions out-of-sample. We find that the Lasso
performs better than ridge regression as a method of shrinkage.
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1. Introduction

We explore the use of a bivariate negative binomial regression (BNBR) model in the context of modelling
bivariate insurance claim frequency data. Two types of insurance claims, the third-party liability claim
and the comprehensive cover claim, made by the same policyholder are assumed to be correlated and to
be explained by a set of explanatory variables. By allowing a correlation between the two response
variables, the performance of the BNBR is better than if two univariate negative binomial regression
(UNBR) models are fitted separately, both in terms of in-sample goodness-of-fit and out-of-sample
prediction. We also find that the BNBR also outperforms the bivariate Poisson regression (BPR) model.

In addition, we apply two shrinkage techniques, the least absolute shrinkage and selection operator
(Lasso) and ridge regression, to reduce the number of covariates used in the original unshrunken
BNBR model. Although an increasing number of explanatory variables will increase in-sample
goodness-of-fit, an overfitted model may result which performs less well in out-of-sample prediction.
By selecting more relevant risk factors and removing unnecessary explanatory variables, we find that
the shrunken models outperform the unshrunken model in out-of-sample prediction.
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We use the model specification for BNBR in Famoye (2010b), where correlation structure allows for
both a negative and a positive relationship between the two claim type frequencies.

The contributions of this paper are threefold. First, we successfully demonstrate the importance of
the BNBR model in analysing over-dispersed general insurance claim data, which outperforms the
BPR model. Second, the correlation factor is found to be significant, with the implication that BNBR
model is more suitable when the two claim counts are correlated. A similar conclusion is not evident
in Famoye (2010b), where the correlation between the two variables considered is too low for
useful dependence modelling, and thus univariate models seem to be adequate. Third, we shrink
both BNBR models and UNBR models to reduce the size of coefficients of irrelevant explanatory
variables, some of which are eliminated totally from the regression model. The shrinkage results are
consistent with James et al. (2013: Chapter 6), in that the shrunken models provide much higher
out-of-sample prediction accuracy, compared with the original full BNBR models.

The paper is organised as follows: section 2 gives a summary of existing methods to analyse claim
counts, including univariate and bivariate generalised linear models (GLMs). Section 3 describes the
model used in this study as well as the shrinkage techniques. Section 4 introduces the claims data.
Section 5 gives the modelling results and a discussion of findings. Section 6 concludes the paper.

2. Literature Review

Modelling of insurance claim count data has been an active area of research for some decades. The
research interest often lies in modelling the relationship between the observed counts and a set of
explanatory variables. GLMs are very commonly used for this purpose as a mathematical
formulation of the relationship. With a chosen link function, the mean of the distribution can be
expressed as a linear function of the explanatory variables.

Under the GLM framework, the response variable is modelled using a member of the exponential
dispersion family of distributions. Two common choices for this distribution in the case of insurance
count data are the Poisson distribution and the negative binomial distribution (see McCullagh &
Nelder, 1989). While the Poisson regression model assumes equality between the underlying mean
and variance of the response variable, negative binomial regression relaxes the assumption and
accounts for over-dispersion in the data (see Cameron & Trivedi, 2005). Both models have been
widely adopted to analyse claim count data in general insurance. For example, Dionne & Vanasse
(1989) used both Poisson and negative binomial regression models for automobile insurance risk
classification. Haberman & Renshaw (1996) illustrated the use of the over-dispersed Poisson
model in analysing life insurance claim counts, after presenting a summary of GLMs in actuarial
science. Some other early studies in this area are Samson & Thomas (1987), Hürlimann (1990) and
Renshaw (1995).

Various extensions to the basic GLM framework have been proposed in the statistics literature and
explored in insurance contexts. For example, generalised additive models (GAMs) are postulated by
combining an original GLM with additive models in the linear regression model, where smooth
functions with semi-parametric or non-parametric forms are applied to explanatory variables.
So with a chosen link function, the mean of the response variable is expressed as a linear function of
unknown smooth functions of explanatory variables (see Hastie & Tibshirani, 1990). The GAM
framework is adopted in Denuit & Lang (2004) to account for discrete, continuous and spatial risk
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factors in a Bayesian framework for insurance rate-making purposes. Mixtures of GLMs, such as
Poisson mixtures, can be used to accommodate non-homogeneous populations (see Karlis &
Xekalaki, 2005). More recently, increasing attention has been given to the application of extended
GLMs in accounting for excess zero and over-dispersion in count data, especially for automobile
insurance count numbers under no claim discount system. The proposed zero-inflated models are
considered as a mixture of zero point mass and a Poisson or negative binomial regression models
under the original GLM framework. Yip & Yau (2005) provided a good summary of zero-inflated
models with an application in general insurance count data. Heller et al. (2007) considered a group
of candidate distribution to model claim counts, including Poisson, zero-inflated Poisson and
negative binomial. Thorough reviews for count data regression can be found in Denuit et al. (2007)
and Cameron & Trivedi (1998).

In addition to univariate models, bivariate regression models have been proposed to analyse two
response variables that are possibly correlated. These models offer sufficient flexibility by allowing
the two response variables to be affected by different predictive factors. Moreover, a bivariate model
is more helpful for inference and prediction purposes because it allows us to properly specify the
dependency between the two dependent variables (see Shi & Valdez, 2014).

One way to introduce the correlation factor is to use copulas to analyse the correlation structure, by
linking univariate marginals to the full multivariate distribution (see Frees & Valdez, 1998). The use
of copulas is common in analysing correlation structure related to continuous variables such as claim
losses (see Denuit et al., 2006; Frees & Valdez, 2008; Czado et al., 2012). In studying discrete
variables such as the number of insurance claims, Cameron et al. (2004) used a bivariate copula in
modelling the difference between self-reported and true doctor visits, but the application is limited to
studying the distribution of the difference between two counts. Shi & Valdez (2014) considered three
types of automobile claim counts using a mixture of copulas and the family of elliptical copulas.
A review of using couplas to specify correlation structure can be found in a recent study by
Chen & Hanson (2017).

Another group of studies analyse the correlation structure through the trivariate reduction method,
where the pair of dependent variables are specified using three random variables. For example, by
setting Y1=X1 +X12 and Y2=X2 +X12, where X1, X2 and X12 are independent Poisson random
variables, Y1 and Y2 have a bivariate Poisson distribution with a covariance term derived from the
use of the common Poisson variable X12 (see Kocherlakota & Kocherlakota, 1992; Johnson et al.,
1997). The trivariate reduction method has been explored in Jung & Winkelmann (1993),
King (1989) and Kocherlakota & Kocherlakota (2001). Karlis & Xekalaki (2005) proposed an
extension to allow for a combination of common random variables. Bermúdez & Karlis (2011)
postulated a zero-inflated multivariate Poisson model to account for excess of zeros in automobiles
insurance claim data. In another context of frequency modelling, a multivariate Poisson-lognormal
regression model has been used for prediction of crash counts (Ma et al., 2008; El-Basyouny &
Sayed, 2009).

Although the trivariate reduction model can be extended to capture over-dispersion in the data,
one drawback is that the correlation can only be positive (see Famoye, 2010b; Shi & Valdez, 2014).
One way to address the issue is to use an imposed parameter in the bivariate probability func-
tion to specify a covariance term to account for correlation. As the value of this correlation
parameter can be negative, zero and positive, the limitation of positive correlation is removed.
Thus, the model is obviously more flexible with a more straightforward covariance structure.
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Lakshminarayana et al. (1999) defined a BPR model by including a multiplicative factor to capture
the correlation between the two response variables. The probability function for the bivariate
distribution is composed of two univariate Poisson probability functions, linked by the multiplicative
correlation factor whose value depends on the embedded correlation parameter.

Based on a similar correlation structure, Famoye (2010b) applied a BNBR model to analyse the
bivariate distribution of two series of count data, while addressing over-dispersion in the sample. The
study models marginal means of the two response variables with a set of explanatory covariates in a
log-linear relationship. Data from the 1977–1978 Australian health survey is used to illustrate the
model and the coefficients are estimated with maximum likelihood technique. The test results show
that the BNBR model provides a better fit to the data than the BPR model, and supports the use of
BNBR when the variance of the data is very different from the mean. However, the correlation
parameter is not significant, thus two UNBR models may be able to provide similar results in
his study.

2.1. Shrinkage methods

One drawback of the likelihood-based estimation of the regression models described above in the
analysis of count data is that it commonly leads to a large number of variables being used. Although
it is very tempting to incorporate as much information as possible to account for the heterogeneity in
the population, this strategy is more time consuming in terms of model estimation. Too many
explanatory variables in a regression model can also result in overfitting and consequently poor
out-of-sample predictions.

The Lasso and ridge regression are two popular methods to shrink models (see Tibshirani, 1996;
James et al., 2013). Model shrinkage refers to the process of determining a smaller subset of variables
that provide stronger explanatory power. Both techniques constrain the coefficient estimates through
a penalty term in the maximum likelihood estimation algorithm, comprised of the coefficient values
and a shrinkage parameter ω. The higher the shrinkage parameter, the higher the impact of the
shrinkage penalty. As a result, the coefficient values will approach zero as ω increases without
bound. The optimal ω is commonly selected using cross-validation.

The two techniques differ in the way coefficient values are incorporated in the shrinkage penalty. The
Lasso uses the sum of absolute values of coefficients, and ridge regression uses the sum of squared
values. Ridge regression tends to shrink all coefficients towards zero, but will not generally set any of
them to exactly zero. The Lasso is an alternative to ridge regression and can force some of the
coefficient estimate to exactly zero if ω is sufficiently large. In other words, Lasso performs variable
selection (see James et al., 2013: Chapter 6).

The importance of model shrinkage has been recognised in the actuarial literature. First proposed by
Tibshirani (1996), the Lasso has been extended to GLMs to handle count data (see Park & Hastie,
2007). Tang et al. (2014) applied adaptive Lasso to car insurance data. The risk factor selection
improves the model goodness-of-fit both in the Poisson model as well as zero-inflated Poisson model.
Wang et al. (2015) considered over-dispersed data and added a Lasso penalty to the maximum
likelihood function of the negative binomial regression model. Their study concludes that a
parsimonious model offers better prediction and interpretation. Both Tang et al. (2014) and Wang
et al. (2015) used univariate regression models and applied the shrinkage technique to only one
response variable. Ridge regression is shown to improve mean square error in an early study by
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Hoerl & Kennard (1970). The technique is then applied to many areas of science. Some examples are
Shen et al. (2013), Douak et al. (2013) and Meijer & Goeman (2013).

The two shrinkage methods can be applied to regression models to remove less significant variables.
As a consequence, the unnecessary complexity in the model can be reduced and this leads to
easier interpretation and potentially improved out-of-sample predicition (see James et al., 2013:
Chapter 6). It is these possibilities which we explore in the context of bivariate insurance claim data
in this paper.

3. Methodology

3.1. BNBR model

The bivariate Poisson distribution proposed in Lakshminarayana et al. (1999) has a probability
function as the product of Poisson marginals with a multiplicative factor:

P y1; y2ð Þ=
Y2
t=1

θytt e
�θt

yt !
´ 1 + λ e�y1�e�dθ1

� �
e�y2�e�dθ2
� �h i

; y1; y2 =0; 1; 2; ¼ (1)

where d=1 − e−1. θt is the mean of Yt(t=1, 2), and Y1 and Y2 are both Poisson distributed. The
covariance between Y1 and Y2 is λθ1θ2d2e�d θ1 + θ2ð Þ and the correlation is ρ= λ

ffiffiffiffiffiffiffiffiffiffi
θ1θ2

p
d2e�d θ1 + θ2ð Þ.

Depending on the value of λ, the two response variables Y1 and Y2 can be positively or negatively
correlated, or independent if λ is equal to zero.

By using a similar approach, Famoye (2010b) defined a bivariate negative binomial distribution.
Following the same covariance specification as Lakshminarayana et al. (1999), a bivariate negative
binomial distribution has the following probability function:

P y1; y2ð Þ=
Y2
t=1

yt +m�1
t �1

yt

 !
θyt 1�θð Þm�1

t ´ 1 + λ e�y1�c1ð Þ e�y2�c2ð Þ½ �; y1; y2 = 0; 1; 2; ¼ (2)

Both Y1 and Y2 are random variables and follow a negative binomial distribution, with dispersion
parameters m�1

1 and m�1
2 , respectively. The mean of Yt(t=1, 2) is μt =m�1

t θt= 1�θtð Þ and the
variance is σ2t =m�1

t θt= 1�θtð Þ2. Also, ct =E eYt
� �

= 1�θtð Þ= 1�θte�1
� �� �m�1

t .

Let n denote the sample size and Yit (t=1, 2; i=1, 2,… , n) denote the count response variable, the
corresponding vector of k explanatory variables is represented as xi= (xi0= 1, xi1,… , xik). Assuming
a log-linear model and the same set of covariates as possible explanatory variables for both Yi1 and
Yi2, the means of the two response variables can be modelled as

E Yit xijð Þ= μit = exp xiβtð Þ; t= 1; 2 (3)

where βTt = βt0; βt1; βt2; ¼; βtkð Þ and is the vector of the coefficients estimated using the maximum
likelihood method. Given that θit = μit= m�1

t + μit
� �

, equation (2) can be rewritten as:
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Accordingly, the log-likelihood function, which is set to a maximum to estimate the model
parameters, for the unshrunken model is:

logL=
Xn
i= 1

X2
t =1

"
yit log μit�m�1

t logmt� yit +m�1
t

� �
log μit +m

�1
t

� ��log yit !ð Þ
(

+
Xyit�1

j=1

log m�1
t + j

� �#
+ log 1 + λ e�yi1�c1ð Þ e�yi2�c2ð Þ½ �

)
ð5Þ

where ct= 1 + dμitmtð Þ�1=mt with d=1− e−1. Equation (5) can be maximised with respect to βt,mt and λ.
The asymptotic standard deviations of the estimated parameters are obtained in the usual way from
Hessian matrix.

The deviance for the BNBR model, which is a measure of the model’s goodness-of-fit, is defined as:

D= 2
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where ct and ĉt are the values of ct evaluated at μit= yit and μit=μ̂it, respectively, and μ̂it the predicted
value of μit found using equation (3) with estimated coefficients that maximise equation (5).

3.2. The Lasso and ridge regression

Given the BNBR model in equation (4), the coefficient vector βt can be estimated by maximising
equation (5). The resulting model will be called the full model in what follows. Here βt (t=1, 2) are
vectors each having k +1 values. These relate to the model intercept and k explanatory variable
coefficients. When k is large, the model may produce poor out-of-sample results because of an
overfitting problem. It is therefore useful to shrink the estimated BNBR model using either the Lasso
approach or ridge regression, by subtracting a shrinkage penalty from the log-likelihood function.

We define the log-likelihood function of the BNBR model in section 3.1, which is Log L in
equation (5). The new functions to be maximised under the two shrinkage approaches, with 2 × k
coefficients to be analysed are specified as:

The Lasso : logL�ω
P2
t =1

Pk
j=1

βtj
�� ��

Ridge regression : logL�ω
P2
t =1

Pk
j=1

β2tj

(7)

where ω is the shrinkage parameter. Here t takes values 1 and 2, indicating that the shrinkage models
consider regression coefficients for both y1 and y2. Thus the above equations specify the two
shrinkage models in the context of a bivariate model.

Note that we do not shrink the intercept coefficients (βt0), as they simply constitute a measure of the
mean value of the response variables when other explanatory variables are set to zero. Similarly, we
also exclude the two over-dispersion parameters (m1, m2) and the correlation parameter (λ) from
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shrinkage, as we are focussing on shrinking the estimated association of each explanatory variable
with the response. As a result, for each response variable, k regression coefficients are included in
the shrinkage penalty.

When ω is equal to zero, both the Lasso and ridge regression will generate the same coefficients as the
full model. A larger ω gives greater emphasis to model simplicity compared with in-sample goodness-
of-fit. Consequently coefficient values will deviate from the maximum likelihood estimates, resulting
in reduced in-sample goodness-of-fit. At the same time, the model is simplified with the potential for
improved out-of-sample performance.

It is clear that different ω values will lead to different coefficients in the shrunken model and therefore
differing out-of-sample prediction results. In order to perform the two shrinkage techniques as
specified in equation (7) using the maximum likelihood method, the optimal value must be chosen
for ω based on only the sample data to achieve the possibly best out-of-sample prediction accuracy.
In this study we use k-fold cross-validation for this purpose, where commonly k is set to be 5 or 10.
In the cross-validation process, the sample data are randomly divided into k groups. One group is
chosen as the validation set, while the model is fitted on the remaining k−1 groups. The fitted model
is applied to the validation set to calculate the out-of-sample deviance, as the validation set is held
out in the model fitting process. As there are k groups, the procedure can be repeated k times
resulting in k deviances when each of the k groups is held out as the validation set. The average of
the k deviance values, each denoted deviancei (i= 1, 2,… , k), is taken as the cross-validation result,
or k-fold cross-validation, at a particular ω value:

CVðωÞ =
1
k

Xk
i=1

deviancei

For each of the ω values, we perform the procedure as described previously. Among a grid of
ω values, the most appropriate ω is the one that generates the lowest k-fold CV. As the CVs are
calculated on the validation set, separated from the data to fit the model, when ω increases the CV is
expected to decrease initially and later increase again when the impact from the penalty term is too
strong. The ω that gives the minimum CV should be chosen.

We note here that although we develop different log-likelihood functions and shrinkage functions for
the bivariate model, the validation process is standard. This is because the validation process only
takes into consideration the deviances generate by a model, whether it is univariate or bivariate.
Given the specified shrinkage models in equation (5), the validation process mentioned previously is
proper for the BNBR model.

The shrinkage parameter, ω, is not assumed to be the same for the two shrinkage methods.
A separate cross-validation is performed for each of the methods to locate the best ω value. Once this
is achieved, the model is fitted again to the full set of data, disregarding the previously k group
classifications. The shrunken models can then be compared with the full model, which is estimated
using maximum likelihood without any penalty term.

4. Data

The study is based on data from 14,000 automobile policies from a major insurance company
in Spain, randomly selected from a pool of 80,994 policies. A subset of the data is also used in
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Brouhns et al. (2003), Bolancé et al. (2008), Bolancé et al. (2003), Boucher & Denuit (2008),
Boucher et al. (2007), Bermúdez & Karlis (2011) and Boucher et al. (2009). We use 10,000 policies
to estimate the model parameters, and the remaining 4,000 policies are used to test the model’s
out-of-sample prediction accuracy.

We model two types of claims, and their associated claim counts are recorded as Y1 and Y2.
Y1 represents the simple third-party liability with basic guarantees, and Y2 stands for comprehensive
cover. The same set of explanatory variables are assumed to affect both Y1 and Y2. The explanatory
variables are summarised in Table 1. A similar table can also be found in Boucher et al. (2009).

We present in Table 2 a summary of the effects of the covariates on claim count based on all 80,994
policies1. The covariates are classified into eight groups. In the first column, we present the total
number of policies that fall into each subgroup, followed by the percentage of policies with claim
counts equal to 0, 1 or 2 (including higher than 2) for Y1 and Y2, respectively.

For example, in the case of gender, we see here 12,957 of the policyholders are female. In total, 93%
of these female policyholders does not make a third-party liability claim and 91.64% does not make
a claim on the comprehensive cover. This is to be compared with the male policyholders, where
93.80% of them does not make a third-party liability claim and 92.59% makes no claim on the
comprehensive cover. Ignoring other covariates and factors, female policyholders tend to have a
slightly riskier profile compared with male policyholders.

Similar observations can be made for the other groups of covariates. A lower claim count tends to
be associated with driving in low-risk zone, a longer driving experience, a longer time with the
company, an older age and a smaller car horsepower. The effects of driving area (v2) and insurance
cover (v9, v10) seem to be minimal based on this one-way analysis.

The estimated mean and variance of Y1 and Y2 are given at the end of Table 2. Y1 has a lower mean
and smaller variance compared with Y2. Moreover, the variance is much higher than the mean
for both claim types. This feature implies that a model capable of handling over-dispersed data,

Table 1. Explanatory variables in the regression model.

Variables Description

v1 Equals 1 for women and 0 for men
v2 Equals 1 when driving in urban area, 0 otherwise
v3 Equals 1 when zone is medium risk (Madrid and Catalonia)
v4 Equals 1 when zone is high risk (Norther Spain)
v5 Equals 1 if the driving license is between 4 and 14 years old
v6 Equals 1 if the driving license is 15 or more years old
v7 Equals 1 if the client is in the company for more than 5 years
v8 Equals 1 if the insured is 30 years old or younger
v9 Equals 1 if includes comprehensive coverage (except fire)
v10 Equals 1 if includes comprehensive and collision coverage
v11 Equals 1 if horsepower is ≥5,500 cc

1 Similar distribution figures can be generated for the sample chosen in this paper, which are not
presented here.
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such as the negative binomial regression model, is more appropriate compared with Poisson
regression model.

The correlation coefficient between Y1 and Y2 is 0.187, taking into account all 80,944 observations.
The scatter plot is presented in Figure 1, including a trend line. The two variables can only take
integer values. The number of observations at each of the dots is relatively indicated by the size of the
dot, which is a rough reflection of the exact count summary shown in Table 3.

Table 2. Summary statistics of claim frequencies as classified by the explanatory variables.

Y1 (Third-party liability claim) Y2 (Comprehensive cover claim)

Total
Count=0

(%)
Count=1

(%)
Count≥2

(%)
Count= 0

(%)
Count= 1

(%)
Count≥ 2

(%)

Gender
Female (v1=1) 12,957 93.29 5.38 1.33 91.64 6.14 2.22
Male (v1=0) 68,037 93.80 4.86 1.34 92.59 5.60 1.81

Area
Urban (v2=1) 54,183 93.81 4.86 1.33 92.21 5.84 1.95
Other (v2=0) 26,811 93.53 5.10 1.37 92.89 5.37 1.74

Zone risk level
Low (v3= 0, v4=0) 45,958 94.03 4.65 1.33 93.78 4.83 1.39
Medium (v3=1, v4=0) 19,320 93.78 5.01 1.22 88.65 8.14 3.21
High (v3=0, v4=1) 15,716 92.73 5.73 1.55 93.17 5.17 1.66

Driver license
Below 4 years (v5=0, v6=0) 1,894 90.87 7.18 1.95 93.19 5.33 1.48
Between 4 and 14 years
(v5=1, v6= 0)

20,854 92.93 5.57 1.51 90.46 7.19 2.35

Above 14 years (v5= 0,
v6=1)

58,246 94.09 4.65 1.26 93.12 5.16 1.72

Years with the company
<5 years (v7=0) 11,670 92.60 5.79 1.61 90.26 7.22 2.53
Longer than 5 years (v7=1) 69,324 93.90 4.80 1.30 92.80 5.43 1.77

Age
30 years old or younger
(v8=1)

7,484 91.98 6.27 1.75 90.62 7.16 2.22

Older than 30 years (v8= 0) 73,510 93.89 4.81 1.30 92.62 5.54 1.84
Insurance cover
No extra cover (v9=0,
v10=0)

39,791 93.97 4.75 1.29 98.62 1.17 0.21

Only comprehensive (except
fire)
Cover (v9=1, v10=0) 12,613 93.61 5.05 0.90 78.36 14.39 7.25

Both comprehensive and
collision
Cover (v9=0, v10=1) 28,590 93.41 5.17 1.42 90.04 8.13 1.83

Horsepower
<5,500 cc (v11= 0) 15,725 94.07 4.67 1.27 96.09 2.93 0.98
≥5500cc (v11=1) 65,269 93.63 5.01 1.36 91.56 6.35 2.08

Mean 0.081 0.102
Variance 0.123 0.168
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We also analyse the correlation structure in the tail, when at least one of the claim counts is not zero.
The correlation coefficient is computed at 0.126, which is lower than if all observations are
considered. This is consistent with the statistics in Table 3. If a higher right-tailed correlation is
found, modelling tools such as copulas can be used to more accurately model the correlation
structure (see Denuit et al., 2006: Chapter 4.4.4). As tail dependency is not presented in this study,
the model specified in equation (2) will suffice.

In addition to the variables listed in previous tables, we also consider two-way interaction effects
among the variables. Adding interaction terms between independent covariates help relax the
assumption that each of those independent variables only has additive effect in the regression model
(see Fahrmeir et al., 2013). Interaction effects are frequently analysed in regression models and have
been considered in claim counts models (see Yip & Yau, 2005; Shi & Valdez, 2014). We have
initially considered 14 potential two-way interactions. These terms cover the interaction effects
between different groups of covariates, for example, gender and driving experience, and are
summarised in Table 4. We note that after model shrinkage many of the interaction terms were
removed from the model.

Figure 1. Scatter plot of two insurance claim counts. The size of the dot at each point gives a
relative indication of the number of observations. The trend line is also presented.

Table 3. Summary table of two types of insurance counts.

Y1

0 1 2 3 4 5 6 7 8

Y2 0 71,087 3,022 574 149 29 4 2 1 0
1 3,722 686 138 42 15 1 1 0 0
2 807 184 55 21 3 0 0 0 1
3 219 71 15 6 2 0 1 1 0
4 51 26 8 6 1 0 0 0 0
5 14 10 4 1 1 0 0 0 0
6 4 3 1 0 0 2 0 0 0
7 0 1 1 1 0 0 0 0 0
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The total number of variables we use in the regression model is 25, excluding the intercept. Although
we use the same set of variables for both response variables, we do not expect all explanatory variables
to be significant in evaluating the claim counts, nor that the coefficients are the same for Y1 and Y2.

5. Results

5.1. BNBR model

We present in Table 5 the results of fitting four models: the BNBR model, UNBR model for Y1,
UNBR model for Y2, and the BPR model. The four models are classified as full models as opposed to
shrunken models, since at this stage we use all available variables including the chosen interaction
terms. The BNBR model is specified in equation (4). The two UNBR models are fitted separately for
each of the two response variables. The BPR model specification is the same as in Lakshminarayana
et al. (1999) and is given in equation (1).

The results from the BNBR model are compared with the UNBR models. Coefficients from the
BNBR model are consistent with those in UNBR models, both in terms of sign and statistical
significance. By introducing a correlation factor λ, which is significant at the 1% level in the BNBR
model, it is observed that the deviance of BNBR model is much lower than the sum of the deviances
of the two UNBR models. It is true both in sample and out of sample, implying that the BNBR model
provides a better in-sample goodness-of-fit, as well as more accurate out-of-sample prediction.
It adds value to analyse the two correlated variables in a bivariate model, to properly account for
the dependence between the two types of claim counts.

Consistent with expectation, the BNBR model also outperforms the BPR model. Although the BPR
model recognises the correlation between the two response variables, the BNBR is more appropriate
here when the data are over-dispersed and the variance of the claim counts is much higher than the
mean for both types of claims as shown in Table 2. For this reason the BNBR generates both lower
in-sample and out-of-sample deviances as expected.

5.2. The Lasso and ridge regression

The first step when applying the two shrinkage techniques is to choose the most optimal shrink-
age parameter ω through cross-validation. We choose k= 10 and use tenfold cross-validation
which is widely used and effective, see for example, Kohavi (1995)2. The two intercept coefficients

Table 4. Interaction terms used in the regression model.

With v1 With v2 With v6 With v7 With v8

v1v2 v2v6 v6v7 v7v8 v8v11
v1v6 v2v7 v6v11 v7v11
v1v7 v2v8
v1v8 v2v11
v1v11

2 In addition to tenfold cross-validation, we also conduct fivefold cross-validation and the results are robust
to the number of k. Here we present the results for k=10.
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Table 5. Modelling results of the BNBR model, two UNBR models and the BPR model, which are all classified as
the full models.

Variables BNBR UNBR (Y1) UNBR (Y2) BPR

Y1 (third-party liability claim)
Intercept −1.984 (0.570)*** −1.896 (0.573)*** −1.990 (0.452)***
v1 −0.114 (0.431) −0.186 (0.434) −0.123 (0.341)
v2 −0.070 (0.376) −0.112 (0.377) −0.091 (0.301)
v3 0.003 (0.108) 0.036 (0.109) 0.013 (0.089)
v4 0.122 (0.115) 0.113 (0.115) 0.115 (0.091)
v5 −0.341 (0.295) −0.374 (0.300) −0.316 (0.224)
v6 −0.865 (0.501)* −0.952 (0.507)* −0.833 (0.387)**
v7 0.053 (0.437)* 0.056 (0.438) 0.064 (0.349)
v8 −0.655 (0.592) −0.064 (0.594) −0.710 (0.476)
v9 −0.012 (0.132) 0 (0.133) 0.074 (0.109)
v10 0.173 (0.099)* 0.179 (0.099)* 0.195 (0.079)
v11 −0.157 (0.433)* −0.198 (0.434) −0.155 (0.347)
v1v2 −0.056 (0.253) −0.017 (0.252) −0.061 (0.200)
v1v6 0.452 (0.277) 0.481 (0.277)* 0.443 (0.221)**
v1v7 0.011 (0.322) 0.019 (0.322) 0.035 (0.253)
v1v8 −0.100 (0.380) −0.086 (0.382) −0.116 (0.308)
v1v11 −0.042 (0.282) −0.027 (0.282) −0.052 (0.226)
v2v6 0.023 (0.241) 0.057 (0.242) 0.010 (0.193)
v2v7 −0.255 (0.281) −0.253 (0.282) −0.254 (0.224)
v2v8 0.255 (0.366) 0.244 (0.369) 0.266 (0.294)
v2v11 0.335 (0.241) 0.360 (0.242) 0.368 (0.197)
v6v7 0.068 (0.277) 0.059 (0.279) 0.057 (0.216)
v6v11 0.356 (0.295) 0.381 (0.296) 0.345 (0.236)
v7v8 0.666 (0.397)* 0.634 (0.400) 0.688 (0.322)**
v7v11 −0.170 (0.344) −0.179 (0.346) −0.197 (0.282)
v8v11 −0.070 (0.430) −0.044 (0.434) −0.051 (0.339)
m1 6.454 (0.649)*** 6.440 (0.648)***

Y2 (comprehensive cover claim)
Intercept −5.104 (0.629)*** −5.041 (0.640)*** −4.732 (0.525)***
v1 0.068 (0.400) 0.039 (0.412) −0.001 (0.324)
v2 0.489 (0.346) 0.486 (0.355) 0.355 (0.279)
v3 0.136 (0.084) 0.151 (0.087)* 0.184 (0.065)***
v4 −0.257 (0.108) −0.293 (0.108)*** −0.253 (0.089)***
v5 0.421 (0.314) 0.431 (0.323) 0.328 (0.267)
v6 0.373 (0.489) 0.252 (0.506) 0.143 (0.405)
v7 0.578 (0.477) 0.572 (0.476) 0.403 (0.406)
v8 0.209 (0.605) 0.194 (0.609) −0.064 (0.510)
v9 2.946 (0.130)*** 2.943 (0.131)*** 2.942 (0.120)***
v10 1.941 (0.126)*** 1.948 (0.127)*** 1.955 (0.120)***
v11 0.848 (0.497) 0.843 (0.495)* 0.659 (0.422)
v1v2 −0.351 (0.225) −0.331 (0.222) −0.278 (0.181)
v1v6 −0.080 (0.236) −0.039 (0.239) −0.129 (0.192)
v1v7 0.274 (0.275) 0.246 (0.275) 0.317 (0.223)
v1v8 0.142 (0.327) 0.132 (0.327) 0.168 (0.261)
v1v11 −0.142 (0.283) −0.140 (0.283) −0.183 (0.231)
v2v6 −0.165 (0.203) −0.143 (0.207) −0.190 (0.163)
v2v7 −0.213 (0.228) −0.209 (0.231) −0.171 (0.177)
v2v8 −0.406 (0.310) 0.506 (0.314) −0.404 (0.247)
v2v11 −0.023 (0.244) −0.024 (0.250) 0.119 (0.201)
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(β10 and β20), the dispersion parameters (m1 and m2) and the correlation parameter (λ) are excluded
from the shrinkage process. For each of the two dependent variables, Y1 and Y2, 25 coefficients are
estimated by maximising the penalised log-likelihood in equation (7).

We select a grid of values for ω ranging from 0 to 50, and perform the procedure as described in
section 3.2. The sample data containing 10,000 policyholders is randomly divided into ten groups.
One group is held out as the validation group while the model is fitted on the other nine groups at
various ω values. This results in a number of different shrunken models and accordingly different
deviance values based on equation (6) calculated on the validation set. Repeated ten times for ten
different validation sets, we reach a series of CV(a) computed as the average of deviances from the ten
validation sets at a, where a denotes different ω values from 0 to 50.

We present in Figure 2 the CV(a) values from the cross-validation process. As expected, CV(a) decreases
initially to a minimum before increasing again. When ω is zero, the shrunken models are equivalent to
the full model. When ω increases, the deviances calculated using the held-out group first decrease,
indicating better out-of-sample prediction results. Both of the curves increase again after reaching a
minimum, where the shrinkage penalty is too strong and affects the models’ prediction power.

The shrinkage parameter, ω, in the Lasso and ridge regression are chosen using the cross-validation
procedure. We get distinct optimal ω values that minimise deviance under the two different methods.
As can be seen in Figure 2, the optimal ω chosen for the Lasso was found to be around 13, and the
optimal ω for ridge regression was found to be around 4. We refit the BNBR model under two
shrinkage approaches at given ω using the penalised log-likelihood as specified in equation (7). The
estimated coefficients as well as the chosen ω are all presented in Table 6. The full BNBR model fitted
previously in section 5.1 is also included.

Two observations from Table 6 can be made. First, the full model provides the best in-sample
goodness-of-fit among the three, indicated by its lowest in-sample deviance. This is as expected as the

Table 5. Continued

Variables BNBR UNBR (Y1) UNBR (Y2) BPR

v6v7 0.080 (0.216) 0.098 (0.231) 0.234 (0.172)
v6v11 −0.102 (0.293) −0.034 (0.297) −0.058 (0.240)
v7v8 −0.276 (0.305) −0.199 (0.312) −0.075 (0.240)
v7v11 −0.884 (0.411) −0.924 (0.414)** −0.865 (0.361)***
v8v11 0.177 (0.505) 0.177 (0.513) 0.252 (0.441)
m2 2.532 (0.254)*** 2.504 (0.254)***
λ 5.663 (0.396)*** 5.748 (0.371)***

In-sample log-likelihood −5,556.90 −2,384.60 −2,945.76 −5,880.94
Out-of-sample log-likelihood −2,605.69 −1,136.68 −1,519.55 −2,845.35
In-sample deviance 5,215.18 2,384.60 2,866.00 8,764.67
Out-of-sample deviance 2,854.57 1,025.36 1,851.15 4,494.50

Note: The coefficients of each variable are shown, followed by their standard deviation in parentheses.
BNBR, bivariate negative binomial regression; UNBR, univariate negative binomial regression; BPR, bivariate
Poisson regression.
*,**,*** represent, respectively, statistical significance at the 10%, 5% and 1% level, calculated based on the
t-statistics of coefficients of each variable.
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full model is estimated to fit the sample data as closely as possible. Second, both shrunken models
outperform the full model in out-of-sample prediction accuracy. The Lasso-shrunken model is the
best among the three, with an out-of-sample deviance of 2,586.82, <2,626.77 of the shrunken model
obtained using ridge regression.

The shrinkage effect is more obvious in the Lasso-shrunken model. Many of the coefficients are
forced to zero, including the insignificant ones identified in the full model. This indicates that those
variables are not important in assessing the claim counts, and once removed, the out-of-sample
prediction of the model is greatly improved. One possible explanation is that the full model overfits
the sample data and thus underperforms shrunken models in making predictions. With fewer
explanatory variables, the shrunken model is also much easier to interpret.

The shrinkage effect is not as obvious in the model regularised by ridge regression and none of the
coefficients is zero after the shrinkage process. However, many coefficient values are more close to
zero than in the full model, while the more significant variables, such the intercept, have a higher
absolute coefficient and are still significant. This may explain why the shrunken model also out-
performs the full model even when it uses a similar set of variables. Some coefficients of the
regression may be reduced as ridge regression can be applied to treat the problem of collinearity
between independent variables (see García et al., 2015). In this study, we use categorical variables
with values of 0 or 1, which may still lead to some potential for collinearity, for example, between
the policyholder’s age and driving experience measured in years. As a result, treating the problem of
collinearity may further improve the out-of-sample prediction accuracy.

The different results from the Lasso and ridge regression can also be explained with reference
to Figure 3, which is similar to that in James et al. (2013: Chapter 6, 222). The graph on the left
refers to a two-dimensional coefficient scope of the Lasso, and the graph on the right represents the
ridge regression. In both graphs, the dot inside the ellipses indicates the maximum likelihood
estimator β̂ without any shrinkage penalty. Assuming the same constraint amount s is used in both

Figure 2. Deviances from cross-validation at different ω values. Each deviance in the graph is
calculated as the average of the ten deviances at the same ω generated in the tenfold cross-
validation process.
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Table 6. Modelling result for the original full bivariate negative binomial regression model and shrunken models.

Variables Full model the Lasso Ridge regression

ω 0 13 4
Y1(third-party liability claim)
Intercept −1.984 (0.570)*** −2.371 (0.283)*** −2.418 (0.297)***
v1 −0.114 (0.431) 0 (0.009) −0.008 (0.241)
v2 −0.070 (0.376) 0 (0.009) −0.018 (0.225)
v3 0.003 (0.108) 0 (0.009) 0.009 (0.103)
v4 0.122 (0.115) 0 (0.009) 0.118 (0.108)
v5 −0.341 (0.295) −0.012 (0.274) −0.124 (0.203)
v6 −0.865 (0.501)* −0.131 (0.268) −0.224 (0.254)
v7 0.053 (0.437)* 0.082 (0.121) 0.026 (0.230)
v8 −0.655 (0.592) 0 (0.009) −0.081 (0.258)
v9 −0.012 (0.132) 0 (0.009) −0.059 (0.122)
v10 0.173 (0.099)* 0.058 (0.091) 0.141 (0.094)
v11 −0.157 (0.433)* 0 (0.009) −0.023 (0.230)
v1v2 −0.056 (0.253) 0 (0.009) −0.042 (0.194)
v1v6 0.452 (0.277) 0 (0.009) 0.268 (0.201)
v1v7 0.011 (0.322) 0 (0.009) 0.026 (0.213)
v1v8 −0.100 (0.380) 0 (0.009) −0.127 (0.246)
v1v11 −0.042 (0.282) 0 (0.009) −0.053 (0.203)
v2v6 0.023 (0.241) 0 (0.009) −0.062 (0.175)
v2v7 −0.255 (0.281) 0 (0.009) −0.141 (0.189)
v2v8 0.255 (0.366) 0 (0.009) 0.071 (0.229)
v2v11 0.335 (0.241) 0 (0.009) 0.241 (0.177)
v6v7 0.068 (0.277) −0.002 (0.025) −0.105 (0.186)
v6v11 0.356 (0.295) 0 (0.009) 0.140 (0.189)
v7v8 0.666 (0.397)* 0 (0.009) 0.275 (0.233)
v7v11 −0.170 (0.344) 0 (0.009) −0.061 (0.200)
v8v11 −0.070 (0.430) 0 (0.009) −0.159 (0.238)
m1 6.454 (0.649)*** 6.459 (0.643)*** 6.501 (0.653)***

Y2 (comprehensive cover claim)
Intercept −5.104 (0.629)*** −4.073 (0.328)*** −3.895 (0.294)***
v1 0.068 (0.400) 0 (0.009) −0.001 (0.229)
v2 0.489 (0.346) 0.067 (0.081) 0.158 (0.211)
v3 0.136 (0.084) 0.159 (0.085)* 0.184 (0.080)***
v4 −0.257 (0.108) −0.133 (0.105) −0.219 (0.101)**
v5 0.421 (0.314) 0.163 (0.084)* 0.270 (0.198)
v6 0.373 (0.489) 0 (0.009) 0.061 (0.245)
v7 0.578 (0.477) 0.010 (0.331) −0.022 (0.221)
v8 0.209 (0.605) 0 (0.009) −0.018 (0.249)
v9 2.946 (0.130)*** 2.756 (0.123)*** 2.509 (0.107)***
v10 1.941 (0.126)*** 1.748 (0.120)*** 1.545 (0.104)***
v11 0.848 (0.497) 0.375 (0.323) 0.260 (0.224)
v1v2 −0.351 (0.225) 0 (0.009) −0.215 (0.178)
v1v6 −0.080 (0.236) 0 (0.009) −0.049 (0.183)
v1v7 0.274 (0.275) 0 (0.009) 0.174 (0.194)
v1v8 0.142 (0.327) 0 (0.009) 0.073 (0.229)
v1v11 −0.142 (0.283) 0 (0.009) −0.079 (0.195)
v2v6 −0.165 (0.203) 0 (0.009) −0.065 (0.155)
v2v7 −0.213 (0.228) 0 (0.009) −0.104 (0.166)
v2v8 −0.406 (0.310) 0 (0.009) −0.212 (0.210)
v2v11 −0.023 (0.244) 0 (0.009) 0.117 (0.170)
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methods, this means |β1| + |β2|≤ s and β21 + β
2
2 ≤ s, which can be represented by the grey area. If s is

large enough to reach β̂, the Lasso and ridge regression estimates will be the same as the maximum
likelihood estimates (e.g. when ω=0).

The ellipses around β̂ represent regions of constant log-likelihood. The ellipses will expand away
from β̂ and touch the grey constraint area to satisfy the imposed shrinkage penalty. During this
process, the Lasso is very likely to end up on one axis while ridge regression will land on the sphere,
both shown in the graph as the cross. As a result, in the Lasso selection coefficients are commonly set
to zero, while the same cannot be said for ridge regression. This simple graphical example can be
extended to the higher dimensional case, when many Lasso estimated coefficients are equal to zero
simultaneously.

To support the discussion and to show how the coefficient values react under the two shrinkage
techniques, we present the shrunken coefficients at different ω values from the cross-validation
procedure, computed as the average value across the ten different models, each fitted when one
group is held as the validation set. Note that we only plot the coefficients of explanatory variables,
which are directly reduced in the shrinkage process. Figures 4 and 5 show the results from the Lasso
and ridge regression, respectively, and present how the 25 coefficients change when the shrinkage
parameter increases from 0 to 50 for Y1 and Y2 in separate graphes. As expected, all coefficients
decrease with an increasing shrinkage parameter. They behave differently for Y1 and Y2, with some
persistent coefficients significantly different from zero even at large ω values. These are specifically
labelled on the figures.

However, it is quite noticeable that when ω is very large (i.e. set to 50), the coefficients in Figure 4 for
the Lasso are much closer to zero, compared with those found in ridge regression in Figure 5. In
particular, it can be observed that although the coefficients in Figure 5 approach zero initially and a
few of them eventually become very close to zero in the end, most coefficients keep a constant
distance away from zero which lasts to the end. The findings confirm the discussion made previously,
that the two shrinkage techniques affect the coefficients in much distinctive ways.

Table 6. Continued

Variables Full model the Lasso Ridge regression

v6v7 0.080 (0.216) 0 (0.009) 0.104 (0.162)
v6v11 −0.102 (0.293) 0 (0.009) −0.043 (0.184)
v7v8 −0.276 (0.305) 0 (0.009) −0.174 (0.210)
v7v11 −0.884 (0.411) −0.361 (0.345) −0.340 (0.194)*
v8v11 0.177 (0.505) 0 (0.009) 0.186 (0.235)
m2 2.532 (0.254)*** 2.511 (0.253)*** 2.545 (0.255)***
λ 5.663 (0.396)*** 3.797 (0.429)*** 5.774 (0.413)***

In-sample log-likelihood −5,556.90 −5,587.42 −5,567.22
Out-of-sample log-likelihood −2,605.69 −2,491.68 −2,493.17
In-sample deviance 5,215.18 5,228.46 5,228.87
Out-of-sample deviance 2,854.57 2,586.82 2,626.77

Note: The coefficients of each variable are shown, followed by their standard deviation in parentheses.
*,**,*** represent, respectively, statistical significance at the 10%, 5% and 1% level, calculated based on the
t-statistics of coefficients of each variable.
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Figure 3. Comparison of the least absolute shrinkage and selection operator (Lasso) (left) and
ridge regression (right).

Figure 4. Shrunken coefficients: the least absolute shrinkage and selection operator (Lasso).
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The two shrinkage techniques are also applied to UNBR models in a similar way. For each response
variable, two shrunken models are generated at given ω values selected by cross-validations. The
results are presented in Table 7. Two full UNBR models estimated previously are also presented here.

Similar conclusions can be drawn from the shrunken UNBR models. For Y1, both of the two
shrunken models outperform the full model in out-of-sample prediction, implied by lower deviances.
For Y2, although the full model provides the best in-sample goodness-of-fit, it underperforms the
shrunken models out-of-sample, with a lower log-likelihood and higher deviance.

By comparing the results for the Lasso-shrunken BNBR model in Table 6 and the two Lasso-
shrunken UNBR models in Table 7, we see that the in-sample deviance of the BNBR model is much
lower than the deviances from the two UNBR models combined, implying a better in-sample
goodness-of-fit. The out-of-sample deviances are similar for the BNBR model and UNBR models.
Obtained using ridge regression, the shrunken BNBR model outperforms the two shrunken UNBR
models, providing both lower in-sample and out-of-sample deviances. This is in consistent with the
conclusion we draw from the full models. It is beneficial to analyse the two response variables
together in a bivariate model and properly account for the correlation structure between them.

Figure 5. Shrunken coefficients: ridge regression.
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Table 7. Modelling results of the original full univariate negative binomial regression (UNBR) model and UNBR models shrunken by the two methods.

Y1 (third-party liability claim) Y2 (comprehensive cover claim)

Variables UNBR The Lasso Ridge regression UNBR The Lasso Ridge regression

ω 0 7 29 0 23 2
Intercept −1.896 (0.573)*** −2.469 (0.206)*** −2.542 (0.163)*** −5.041 (0.64)*** −4.124 (0.349)*** −4.111 (0.373)***
v1 −0.186 (0.434) 0 (0.014) 0.008 (0.110) 0.039 (0.412) 0 (0.007) −0.014 (0.283)
v2 −0.112 (0.377) 0 (0.012) 0.006 (0.106) 0.486 (0.355) 0.070 (0.085) 0.221 (0.256)
v3 0.036 (0.109) 0 (0.018) 0.021 (0.082) 0.151 (0.087) 0.151 (0.088)* 0.178 (0.084)**
v4 0.113 (0.115) 0.020 (0.110) 0.064 (0.085) −0.293 (0.108)*** −0.024 (0.106) −0.269 (0.105)***
v5 −0.374 (0.300) −0.001 (0.012) −0.013 (0.107) 0.431 (0.323) 0.134 (0.091) 0.303 (0.240)
v6 −0.952 (0.507)* −0.101 (0.273) −0.058 (0.112) 0.252 (0.506) 0 (0.008) 0.015 (0.312)
v7 0.056 (0.438) −0.054 (0.243) −0.032 (0.107) 0.572 (0.476) 0 (0.352) 0.060 (0.279)
v8 −0.064 (0.594) 0 (0.013) 0.003 (0.114) 0.194 (0.609) 0 (0.161) 0.008 (0.326)
v9 0 (0.133) 0 (0.013) −0.011 (0.091) 2.943 (0.131)*** 2.656 (0.122)*** 2.692 (0.117)***
v10 0.179 (0.099)* 0.120 (0.092) 0.122 (0.077) 1.948 (0.127)*** 1.690 (0.119)*** 1.719 (0.113)***
v11 −0.198 (0.434) 0 (0.017) 0.032 (0.107) 0.843 (0.495)* 0.416 (0.344) 0.335 (0.283)
v1v2 −0.017 (0.252) 0 (0.013) −0.011 (0.110) −0.331 (0.222) 0 (0.007) −0.249 (0.198)
v1v6 0.481 (0.277)* 0.070 (0.164) 0.097 (0.111) −0.039 (0.239) 0 (0.007) −0.020 (0.205)
v1v7 0.019 (0.322) 0 (0.015) 0.026 (0.110) 0.246 (0.275) 0 (0.007) 0.197 (0.224)
v1v8 −0.086 (0.382) 0 (0.013) −0.040 (0.121) 0.132 (0.327) 0 (0.270) 0.076 (0.266)
v1v11 −0.027 (0.282) 0 (0.013) −0.010 (0.109) −0.140 (0.283) 0 (0.008) −0.096 (0.224)
v2v6 0.057 (0.242) 0 (0.013) −0.029 (0.100) −0.143 (0.207) 0 (0.013) −0.065 (0.175)
v2v7 −0.253 (0.282) −0.041 (0.166) −0.064 (0.099) −0.209 (0.231) 0 (0.023) −0.125 (0.191)
v2v8 0.244 (0.369) 0 (0.254) 0.022 (0.115) −0.506 (0.314) 0 (0.007) −0.316 (0.248)
v2v11 0.360 (0.242) 0.077 (0.161) 0.109 (0.099) −0.024 (0.250) 0 (0.011) 0.093 (0.196)
v6v7 0.059 (0.279) −0.032 (0.259) −0.085 (0.102) 0.098 (0.231) (0.009) 0.123 (0.188)
v6v11 0.381 (0.296) 0.010 (0.174) 0.052 (0.102) −0.034 (0.297) 0 (0.007) −0.004 (0.215)
v7v8 0.634 (0.400) 0 (0.257) 0.071 (0.115) −0.199 (0.312) 0 (0.007) −0.134 (0.245)
v7v11 −0.179 (0.346) 0 (0.013) −0.024 (0.099) −0.924 (0.414)** −0.289 (0.365) −0.458 (0.243)*
v8v11 −0.044 (0.434) 0 (0.012) −0.028 (0.115) 0.177 (0.513) 0 (0.008) 0.184 (0.299)
m 6.440 (0.648)*** 6.47 (0.666)*** 6.571 (0.658)*** 2.504 (0.254)*** 2.547 (0.269)*** 2.511 (0.254)***
In-sample log-likelihood −2,725.21 −2,732.89 −2,731.50 −2,945.76 −2,961.10 −2,949.04
Out-of-sample log-likelihood −1,136.68 −1,112.983 −1,111.99 −1,519.55 −1,400.59 −1,453.35
In-sample deviance 2,384.60 2,394.80 2,377.77 2,865.60 2,882.55 2,869.90
Out-of-sample deviance 1,025.36 976.22 968.92 1,851.15 1,608.78 1,717.86

Note: The coefficients of each variable are shown, followed by their standard deviation in parentheses.
*,**,*** represent, respectively, statistical significance at the 10%, 5% and 1% level, calculated based on the t-statistics of coefficients of each variable.
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6. Conclusion

In this paper we use the BNBR model to analyse general insurance claim data. We show that with a
more flexibly specified correlation structure, the BNBR model adequately captures the relationship
between the two claim counts and the set of explanatory variables. The correlation, which is totally
ignored if two UNBR are fitted separately, proves to be essential in analysing the two types of claim
counts from the same policyholder. Note that the correlation coefficient between the two claim count
is only 0.187 in this study which is considered as a weak correlation. When a higher correlation
coefficient is present, it is likely that a bivariate model with a proper specification of the correlation
structure is more suitable than a univariate model.

In addition, we apply two shrinkage techniques to choose core independent variables in modelling
claim counts. The results from the Lasso and ridge regression are different, but both shrunken
models outperform original full regression models which are likely to suffer from the overfitting
problem. The shrunken models provide much better out-of-sample prediction accuracy in both
UNBR and BNBR models. This automatic approach to model selection has considerable potential
for application in actuarial modelling where very large numbers of variables and data points are
often available. Moreover, the shrunken BNBR models also outperforms the two separately fitted
shrunken UNBR models, which again emphasises the importance of properly accounting for the
correlation structure between response variables.

In addition to BNBR model in this study, some extended Poisson model can also incorporate
over-dispersion. For example, the zero-inflated versions of multivariate Poisson models used in
Bermúdez & Karlis (2011), where the correlation structure in equation (2) can be implemented
instead of the full covariance specification. The bivariate generalised Poisson regression model in
Famoye (2010a) follows a similar correlation structure as in this study, which also allows for
over-dispersion. These potential alternative models can be considered in future research.
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