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Abstract

A direct search quasi-Newton algorithm is presented for local minimization of
Lipschitz continuous black-box functions. The method estimates the gradient via central
differences using a maximal frame around each iterate. When nonsmoothness prevents
progress, a global direction search is used to locate a descent direction. Almost sure
convergence to Clarke stationary point(s) is shown, where convergence is independent
of the accuracy of the gradient estimates. Numerical results show that the method is
effective in practice.
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1. Introduction

Many direct search methods for unconstrained optimization [15, 19] originated in
the mid-twentieth century, as did the various quasi-Newton methods. Subsequent
development saw the latter being preferred on smooth problems due to superior
performance [29]. More recently, direct search methods have enjoyed a resurgence,
with newer methods, such as the generalized pattern search (gps) [27] and the mesh
adaptive direct search (mads) [4], having strong convergence theory. These newer
classes of direct search methods also include variants which mimic gradient-based
methods such as quasi-Newton, while retaining the desirable convergence properties
of a modern direct search method [10].

The effectiveness of discrete quasi-Newton techniques on smooth problems justifies
their use on nonsmooth problems for two reasons. First, continuous functions can be
arbitrarily well approximated by smooth functions, allowing discrete quasi-Newton
methods to generate very good steps in some circumstances. Second, a nonsmooth
function might have substantial regions where it is smooth, but ill conditioned.
Inability to cope with such regions may prevent a method from finding the solution.
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A direct search mimic of the classical Broyden–Fletcher–Goldfarb–Shanno (BFGS)
quasi-Newton method is described in this paper. It has the theoretical convergence
properties of a direct search method, and a similar numerical performance to a quasi-
Newton method on smooth problems. Numerical testing shows that the quasi-Newton
nature of the method also substantially improves its performance on nonsmooth
problems.

This paper addresses the unconstrained local optimization problem

minimize f (x) x ∈ Rn, (1.1)

where f is the objective function, and a local minimizer of f is sought. We consider
the “black-box” objective functions, where f (x) can be calculated for selected points
x, but no other information is available. The convergence analysis requires Lipschitz
continuity for f in the region of interest.

Several types of method have been proposed for (1.1), including bundle-based
methods [17], generalized gradient-based methods [1], smoothing techniques [20],
gradient sampling [8, 26] and direct search methods [3, 5, 27]. Direct search methods
are directly applicable to black-box functions as they require only function values.
However, associated convergence results typically apply only to a restricted set of
problems. Initially, convergence to one or more stationary points was shown [27]
under the assumption of continuous differentiability. This was then reduced to strict
differentiability at all limit points of interest [3]. Results were also developed for
locally Lipschitz [4, 6] and discontinuous [28] functions. The results for locally
Lipschitz functions are partial in the sense that convergence to a Clarke stationary
point is shown, but such points might still have descent directions [23], unless an
additional property such as local convexity also holds.

The gps [27] minimizes a function by searching over a succession of increasingly
fine nested meshes. Each iteration of the gps uses both a “search” step and a “poll”
step. The former is an optional arbitrary process that calculates f at a finite number
of points on the current mesh. The poll step is compulsory, and is used to establish
the convergence properties of the gps. The gps calculates f at a finite number of mesh
points forming a frame around the iterate until either a descent step is found or the
frame is complete. The frame has the property that every half-space with the iterate
on the boundary contains at least one frame point in its interior. This property enables
convergence to be shown for the gps when f is continuously differentiable. However,
the nature of the gps restricts steps from an iterate to a frame point to a finite number
of directions over all iterations. This prevents extension of the convergence theory to
nonsmooth problems.

Audet and Dennis [4] sidestepped this aspect of the gps by making the meshes
become increasingly fine relative to the size of the frames. As the meshes become
arbitrarily fine, this allows their algorithm (mads) to asymptotically look in all
directions, and thus allows convergence to Clarke stationary point(s) to be shown.
Two variants, lt-mads and orthomads [4, 5], have been proposed, employing random
and quasi-random methods to choose search directions respectively. This implicitly
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implements a global search strategy similar to pure random search over the set of
directions from the current iterate to nearby mesh points.

The use of meshes in the gps and the mads implicitly implements a sufficient descent
condition, provided all points that the algorithm looks at lie in a bounded set. This is
because there are only a finite number of differences in the function values at two
such mesh points. The largest negative difference is effectively the minimum sufficient
descent. An alternative approach is to dispense with the meshes and impose a sufficient
descent condition directly. The absence of a mesh permits an Armijo backtracking line
search [14] to be implemented [21]. It also allows the use of more sophisticated global
optimization strategies for locating a descent step from an iterate: herein a modified
form of accelerated random search (ars) is used.

This global direction strategy is combined with the quasi-Newton search as follows.
The discrete quasi-Newton method is used while it makes progress. Once progress
stalls we switch to the global search to locate a descent direction.

This paper is organized as follows. The next section describes the nonsmooth quasi-
Newton (nsqn) method for solving (1.1). Section 3 establishes almost sure convergence
and Section 4 numerically tests the nsqn algorithm. Concluding remarks are presented
in Section 5.

2. The nsqn algorithm

The algorithm generates a sequence of iterates {xk}
∞
k=1 with the property that the

corresponding sequence of function values { fk} is monotonically decreasing, where
the notation fk ≡ f (xk) has been used for convenience. At each iterate xk, the algorithm
calculates f at all points forming a frame around xk. The frame yields a finite difference
gradient gk of f at xk, which is used to form a quasi-Newton search direction.

Frames are constructed using maximal positive bases [12] of the form

V+ = {e1, e2, . . . , en,−e1,−e2, . . . ,−en},

where ei is the ith unit coordinate vector. A frame Φ is defined in terms of its centre
xk, the positive basisV+ and a frame size hk via

Φk = Φ(xk, hk,V+) = {xk + hkv | for all v ∈ V+}.

The frame centre xk is not part of the frame. At each iteration, the function
values are calculated at all points in the frame Φk around the current iterate. These
points allow second-order estimates of the gradient using central differences. These
central differences also furnish estimates γ11, . . . , γnn, of the nonmixed second partial
derivatives of f . In the first iteration, these are used to initialize the Hessian
estimate [14] B as the diagonal matrix with diagonal elements Bii = max(γii, 10−4).
At each subsequent iteration, the previous iteration’s Hessian estimate Bk−1 is
updated using the BFGS update, yielding Bk. If this update causes a loss of positive
definiteness, then it is abandoned and Bk is set equal to Bk−1.
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2.1. The basic strategy of the algorithm At each iteration the method attempts to
get a sufficient reduction in f . First, it searches along a quasi-Newton direction. If that
does not yield satisfactory descent, then it tries a search along the ray from xk through
the lowest point in the current frame. If that is also unsuccessful, a global search for a
descent direction is performed, and a ray search is done along the best direction found.
If none of these searches yield sufficient descent, then the frame size h is reduced.

Algorithm 1: The nonsmooth quasi-Newton (nsqn) algorithm.
Step 1 Choose an initial point x1 ∈ R

n. Set k = 1. Select hmin ≥ 0 and h1 > hmin.
Choose τmin, τacc > 0.

Step 2 Form the frame Φ(xk, hk,V+). Calculate the finite difference gradient gk.
Let wk ∈ V+; minimize f (xk + hkv) over v ∈ V+.

Step 3 Update Bk−1, giving Bk. Form the quasi-Newton direction pqN = −B−1
k gk.

Step 4 Perform a forward/back tracking ray search along xk + αpqN, α > 0,
yielding the point tk. If f (tk) < fk −max(τmin, τacchk) go to Step 7.

Step 5 Perform a forward tracking ray search along the ray xk + αwk, α > 0,
yielding the point sk. If f (sk) < fk −max(τmin, τacchk), go to Step 7.

Step 6 Perform a global search for a descent direction, and do a forward tracking
ray search along this direction.

Step 7 Set xk+1 equal to the lowest known point. If fk+1 ≥ fk − τacchk or
‖xk+1 − xk‖ < hk/3, set hk+1 = max{hmin, 4hk/5}. Go to Step 9.

Step 8 If αk > 100 and ‖xk+1 − xk‖ > 2hk, set hk+1 = 3hk/2. Otherwise, set hk+1 = hk.
Step 9 If stopping conditions hold, then halt.

Otherwise, increment k and go to Step 2.

The quantities τmin and τacc define the least reduction max(τmin, τacchk) in f required
to avoid having to perform the global direction search in Step 6.

The discrete quasi-Newton direction pqN is calculated as follows. First, Bk−1 is
updated via the BFGS formula, giving Bk. The modified Cholesky factors [14] LDLT

of Bk are then calculated, where D is a diagonal matrix, and L is a lower triangular
matrix with Lii = 1 for all i = 1, . . . , n. If min{Dii | i = 1, . . . , n} < 10−12, the updated
matrix Bk is regarded as too close to indefiniteness, and the update is abandoned by
setting Bk = Bk−1 and setting L and D equal to the modified Cholesky factors of Bk−1.
The equation LDLT pqN = −gk can then be solved for pqN via forward and backward
substitution.

A standard forward or forward/back tracking ray search is used along each ray of the
form xk + αp, α > 0. If f (xk + p) < f (xk), the method performs a forward tracking ray
search. Otherwise, for a quasi-Newton direction pqN only, it does a backtracking ray
search. The forward tracking search tries α values in an increasing geometric sequence
α = 1, β, β2, . . . with β > 1. It halts when the condition

f (xk + β j+1 p) ≥ f (xk + β j p)
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is satisfied, and assigns αk = β j. The backtracking ray search tries α values in a
diminishing geometric sequence η, η2, . . . with 0 < η < 1, and assigns αk to be the
first value η j to satisfy the sufficient descent condition

f (xk + η j pqN) < f (xk) + ρη jgT
k pqN .

Here ρ is the Goldstein–Armijo parameter [14] with 0 < ρ < 1/2.
The algorithm reduces h via hk+1 = max{4hk/5, hmin}, whenever either

‖xk+1 − xk‖ < hk/3 or fk+1 ≥ fk − hkτacc

holds. An immediate consequence of this reduction rule is that either { fk} is unbounded
below or hk → hmin as k→∞. In the latter case when hmin is strictly positive, hk = hmin

will be achieved after a finite number of iterations.
Reducing h when the step taken is significantly shorter than hk helps to keep the

step size similar to h. To this end, the method increases h via hk+1 = 3hk/2 when both
αk > 100 and ‖xk − xk−1‖ ≥ 2hk.

2.1.1 Stopping conditions. The stopping conditions are as follows. Algorithm 1
halts if either:

(1) both ‖gk‖2 ≤ τacc and hk ≤ τh; or
(2) hk = hmin and fk ≥ fk−1 − hkτacc.

The first of these is appropriate, when f is continuously differentiable. It says that the
estimated gradient gk is zero to within a tolerance τacc, and that hk does not exceed the
tolerance τh. Satisfaction of this latter condition means that it is reasonable to expect
the estimated gradient gk to be accurate. The second set of conditions addresses the
case when f is not continuously differentiable.

2.2. The global direction search If a line search along the quasi-Newton direction
does not yield sufficient descent, Algorithm 1 attempts to obtain sufficient descent,
firstly by a ray search along the most promising frame direction and, if unsuccessful,
by using a variant of accelerated random search [2] to locate a descent direction.
The accelerated random search (ars) searches for a global minimizer of a function
subject to finite simple bounds on all variables. Herein the ars is modified to minimize
f (xk + hkv) over the unit hypersphere Sn = {v ∈ Rn | ‖v‖2 = 1}. The search strategy used
by the ars to minimize a function f over a feasible region Ω is essentially as follows. At
each iteration, the ars has a candidate for the global minimizer called the control point
c. The ars polls randomly in a finite sequence {Ω j}

J
j=1 of nested regions, all of which

contain the control point. This sequence of regions satisfies Ω1 = Ω, and Ω j ⊂ Ω j−1

for all j > 1. The ars works cyclically through the sequence of regions, randomly
generating one sample point in each region until a better point than the control point is
found. This better point becomes the new control point, and a new sequence of nested
regions centred on the new control point is chosen. The ars then starts polling from the
beginning of the new sequence of regions. Almost sure convergence of the ars follows
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on noting that at least every Jth iterate is chosen randomly from Ω, where J is the
number of regions in the sequence of nested regions.

An alternative view of the ars is that it samples cyclically from a finite sequence
of probability distributions. The first distribution in the sequence is the uniform
distribution over Ω, which guarantees convergence almost surely, irrespective of the
other distributions. The remaining distributions focus near the control point in the
hope of increasing the chance of finding a better point. This view provides enhanced
flexibility; many probability distributions do not correspond to random sampling over
any region.

In light of this, the ars is modified, yielding a hyperspherical accelerated random
search (hars), which seeks a global minimizer of a function over the hypersphere
Sn ⊂ R

n, as follows. Sampling randomly over Sn can be done by generating a
random sample q from the standard n-dimensional normal distribution, which is to
say the normal distribution with zero mean and the identity as its covariance matrix.
Normalizing q yields a random point on Sn.

Nonuniform sampling uses a scale factor σ to regulate how much sample points
are concentrated around the control point c. Initially, σ = 1 and the sample is drawn
randomly from Sn. Each time the sample point fails to improve on c, σ is reduced
via σ← σ/

√
2. Nonuniform sampling first chooses q ∈ Sn randomly. It then shifts q

towards c along the circle defined by the intersection of Sn with the plane containing
the origin, q and c. Let θ ∈ [0, π] be the angle between the vectors q and c. The sample
point w is chosen to lie on this circle, such that the angle between w and c is σθ and
the angle between q and w is (1 − σ)θ.

Algorithm 2: The hars algorithm for locating a descent direction on nonsmooth
problems.
Step 1 Randomly pick c1 ∈ Sn. Set m = 1, σ = 1 and σmin = 10−8. Pick mmax > 1.
Step 2 Choose q ∈ Sn randomly. Let θ ∈ [0, π] be the angle between cm and q.
Step 3 Choose w ∈ span{cm, q} ∩ Sn, such that the angle between w

and cm is σθ and the angle between q and w is (1 − σ)θ.
Step 4 If f (xk + hkw) < f (xk + hkcm), also calculate f (xk − hkw).
Step 5 Set cm+1 equal to the best known point on Sn.
Step 6 If cm+1 , cm or σ < σmin, set σ = 1; otherwise set σ = σ/

√
2.

Step 7 Increment m. If f (xk + hkcm) ≥ fk − hkτacc and m < mmax, go to Step 2.
Step 8 Perform a forward tracking ray search along xk + αhkcm, α ≥ 0

and then exit the algorithm.

The maximum number of function evaluations mmax for the hars is set at 40n when
hk = hmin, and at 4n + 20 otherwise. In the former case, if the hars does not obtain
sufficient descent, then the nsqn halts; this justifies a more thorough global search.

https://doi.org/10.1017/S1446181117000323 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181117000323


[7] A direct search quasi-Newton method for nonsmooth unconstrained optimization 221

3. Convergence

The convergence properties of Algorithm 1 are examined when the stopping
conditions are deactivated. This includes setting hmin = 0, because Algorithm 1 halts
when an unsuccessful global direction search is performed and hk = hmin.

The convergence results use the generalized derivative, which is also known as the
Clarke(–Rockafellar) derivative [9]. The Clarke derivative f ◦ of f at x∗ in the direction
v is given by

f ◦(x∗; v) = lim sup
y→x∗,t↓0

f (y + tv) − f (y)
t

,

where f must be locally Lipschitz [9] at x∗ to ensure that the limit supremum is finite.

Assumption 3.1. For each cluster point x∗ of {xk}
∞
k=1, the objective function f is locally

Lipschitz in a neighbourhood of x∗.

Convergence also requires the following assumption that the sequences of iterates
and function values do not diverge.

Assumption 3.2. (a) The sequence of iterates {xk}
∞
k=1 lies in a compact subset of Rn.

(b) The sequence of function values { f (xk)}∞k=1 is bounded below.

Assumption 3.2(b) ensures that Steps 5 and 6 of the nsqn method in Algorithm 1
are executed infinitely often. Together, Assumption 3.2(b) and the sufficient descent
condition in Step 7 of Algorithm 1 imply that hk → 0 as k→∞.

Proposition 3.3. Steps 5 and 6 of Algorithm 1 are performed infinitely often.

Proof. At each iteration, Algorithm 1 either reduces f by at least τmin or it performs
Steps 5 and 6. However, the sequence of function values { fk} is monotonically
decreasing, and it is also bounded below by Assumption 3.2(b). Hence the number
of times f can be reduced by τmin or more is finite. �

The next proposition asserts that if the Clarke derivative f ◦(x∗; v∗) is negative,
then any finite difference quotient at a point and in direction sufficiently near x∗

and v∗ is also negative. This can be used to show that f ◦(x∗; v) ≥ 0 for all nonzero
v is a necessary, but not sufficient, condition for x∗ to be a local minimizer. A
point x∗ satisfying f ◦(x∗; v) ≥ 0 for all v , 0 is called a Clarke stationary point. For
convenience, the notation Bε(x) is used to denote the open ball of radius ε centred at
the point x.

Proposition 3.4. If Assumption 3.1 holds at x∗ and f ◦(x∗; v∗) < 0, then for all µ < 1,
there exists δ > 0 such that y ∈ B2βδ(x∗), v ∈ Bδ(v∗) and h ∈ (0, δ) imply that

f (y + hv) − f (y)
h

< µ f ◦(x∗; v∗).
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Proof. Let f have a Lipschitz constant L in a neighbourhood of x∗. Then

f (y + hv) − f (y)
h

=
f (y + hv) − f (y + hv∗) + f (y + hv∗) − f (y)

h

≤
L‖h(v − v∗)‖

h
+

f (y + hv∗) − f (y)
h

.

Examining the right-hand term for sufficiently small δ > 0,

f (y + hv∗) − f (y)
h

<
1 + µ

2
f ◦(x∗; v∗)

from the definition of f ◦. The left-hand term has magnitude less than Lδ, so by
choosing δ so that Lδ < (µ − 1) f ◦(x∗; v∗)/2,

L‖v − v∗‖ +
f (y + hv∗) − f (y)

h
<
µ − 1

2
f ◦(x∗; v∗),+

1 + µ

2
f ◦(x∗; v∗)

which gives the required result. �

Corollary 3.5. Let f ◦(x∗, v∗) < 0 with ‖v∗‖ = 1. Then, for all sufficiently small positive
δ, a forward tracking ray search from y ∈ Bδ(x∗) along v ∈ Bδ(v∗) with h < δ will
generate a value of α satisfying both α ≥ 1, and

f (y + αhv) ≤ f (y) + µ
(2β − 1)δ
β(‖v∗‖ + δ)

f ◦(x∗; v∗). (3.1)

Proof. Let
αmax =

(2β − 1)δ
h(‖v∗‖ + δ)

.

First, note that αmax ≥ β for sufficiently small δ. Now, for α ∈ [0, αmax),

‖y − x∗ + αhv‖ < δ +
(2β − 1)δ
(‖v∗‖ + δ)

‖v‖ ≤ 2βδ,

which implies that y + αhv ∈ B2βδ(x∗).
Proposition 3.4 guarantees that the function f (y + αhv) is strictly decreasing for

0 ≤ α < αmax. Hence the value of α chosen by the forward ray search will satisfy
α ≥ αmax/β. Hence Proposition 3.4 yields (3.1), as required. �

Theorem 3.6. Let (x∗, v∗, 0) be a cluster point of the combined sequence
{(xk, vk, hk)}k∈K , where a forward tracking ray search is performed along the ray
xk + αvk, α > 0, for all k ∈ K . Then f ◦(x∗; v∗) ≥ 0.

Proof. The proof is by contradiction. Assume that f ◦(x∗; v∗) < 0. By replacing
{(xk, vk, hk)} with a subsequence of itself, if necessary, let xk → x∗, vk → v∗ and hk → 0
as k→∞.

Corollary 3.5 yields

f (xk + αkhkvk) ≤ f ∗ + | f (xk) − f (x∗)| + µ
(2β − 1)δ
β(‖v∗‖ + δ)

f ◦(x∗; v∗) (3.2)
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for all sufficiently large k. The term on the far right in (3.2) is strictly negative
and independent of k. Continuity of f implies that | f (xk) − f (x∗)| → 0 as k → ∞.
Together with (3.2), this implies that f (xk + αkhkvk) < f ∗ for all sufficiently large
k. The sequence of function values { f (xk)} is monotonically decreasing, and so the
continuity of f yields the contradiction. �

Theorem 3.6 is applicable to any convergent subsequence {(xk, vk)} of forward
searched rays, including those along quasi-Newton directions. Unfortunately, the
quasi-Newton directions are unpredictable, because the finite difference gradients can
be arbitrarily inaccurate. Consequently, the convergence properties of Algorithm 1 are
developed using the ray searches in Steps 5 and 6 only. These steps are not performed
in all iterations, so we must identify the various subsequences corresponding to these
iterations. To this end, we define the set F such that k ∈ F if and only if Step 5
of Algorithm 1 is executed in iteration k. Similarly, k ∈ G if and only if Step 6 of
Algorithm 1 is executed in iteration k. Proposition 3.3 implies that k ∈ F and k ∈ G for
all sufficiently large k.

The main convergence result is along the following lines. It assumes that a cluster
point x∗ of the sequence of iterates is not a Clarke stationary point. It then shows
that for any sufficiently large k, the nsqn method has a nonzero chance of locating a
better point than x∗, provided xk is sufficiently near x∗. These probabilities are bounded
away from zero for large k, and the global direction searches in different iterations are
independent of one another. Hence it can be shown that the nsqn method will find a
better point than x∗, almost surely. Continuity of f means that convergence to a point
which is not Clarke stationary is a probability zero event.

Corollary 3.7. Let x∗ be a cluster point of the subsequence of iterates {xk}k∈G. Then
x∗ is a Clarke stationary point, almost surely.

Proof. The proof is by contradiction. Let v∗ minimize f ◦(x∗, v) over v ∈ {v ∈ Rn :
‖v‖2 = 1}. Assume that f ◦(x∗; v∗) < 0. By replacing {xk} and {hk} with subsequences
of themselves if necessary, let xk → x∗ and hk → 0 as k→∞. The Clarke derivative
f ◦(x∗; v) is a subadditive and positively homogeneous function of its second argument
v [9, Proposition 2.1.1]. Hence, there is a region D of positive measure on the unit
hypersphere such that f ◦(x∗, v) ≤ f ◦(x∗, v∗)/2 if and only if v ∈ D.

Corollary 3.5 shows that, for sufficiently large k,

f (xk + αkhkvk) − f (xk) ≤
µ(2β − 1)δ
β(1 + δ)

f ◦(x∗, vk) ≤
µ(2β − 1)δ
β(1 + δ)

·
f ◦(x∗, v∗)

2
,

when vk ∈ D and ‖v∗‖ = 1. The set G of iterations in which the hars is performed
is infinite by Proposition 3.3. At each iteration indexed by G, the hars generates at
least one random sample on the unit hypersphere. Hence the probability that vk ∈ D
is at least a for all k ∈ G; here a is the probability that a random point on the unit
hypersphere lies in D. Hence, almost surely we can select k ∈ G sufficiently large such
that vk ∈ D, and

| f (xk) − f (x∗)| <
∣∣∣∣∣µ(2β − 1)δ
β(1 + δ)

f ◦(x∗, v∗)
4

∣∣∣∣∣
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by continuity of f . For this value of k, f (xk+1) ≤ f (xk + αkhkvk) < f (x∗). Now x∗

is a cluster point of {xk}
∞
k=1. Noting that the sequence { f (xk)}∞k=1 is monotonically

decreasing, this contradicts the continuity of f . �

It is possible that the Clarke derivative is nonnegative in all directions, but descent
directions still exist (see, for example, [23]). However, when f is strictly differentiable
or locally convex at x∗, stronger statements can be made. Strict differentiability [9]
of f at x∗ means that there exists a g∗ ∈ Rn such that f ◦(x∗; v) = gT

∗ v for all v ∈ Rn.
When g∗ = 0, x∗ is a stationary point of f . The next result shows that if f is strictly
differentiable at a cluster point x∗ of {xk}, then x∗ is a stationary point of f . This
result does not require a dense set of search directions, and holds even if Step 6 of
Algorithm 1 is omitted.

Theorem 3.8. If f is strictly differentiable at a cluster point x∗ of the subsequence
{xk}k∈F , then x∗ is a stationary point.

Proof. Let g∗ be the gradient of f at x∗. Step 2 of the nsqn method in Algorithm 1
specifies wk such that xk + hkwk is the best point in the frame Φk. Choose K ⊆ F
such that (xk,wk, hk)→ (x∗, v∗, 0) as k → ∞ with k ∈ K . Theorem 3.6 implies that
f ◦(x∗, v∗) ≥ 0. Now f (xk + hkv) ≥ f (xk + hkwk) for all frame directions v ∈ V+, and
hence

f (xk + hkv) − f (xk)
hk

≥
f (xk + hkwk) − f (xk)

hk
for all v ∈ V+.

Strict differentiability at x∗ implies that the right-hand side converges to f ◦(x∗, v∗) as
k→∞. Hence f ◦(x∗, v) ≥ f ◦(x∗, v∗) for all v inV+. Now f ◦(x∗, v∗) ≥ 0, which implies
that vT g∗ ≥ 0 for all v inV+; hence g∗ = 0 [10]. �

The final result shows that a Clarke stationary point in an open neighbourhood over
which f is convex is a local minimizer of f . A proof of this known result [13] is
provided here for convenience.

Theorem 3.9. If x∗ is a Clarke stationary point of f , and if f is locally convex at x∗,
then x∗ is a local minimizer of f .

Proof. [13]. Let v be an arbitrary unit vector and let f be convex on the open
ball B2r(x∗). Then f ◦(x∗; v) ≥ 0 implies that there exist sequences {y j}

∞
j=1 and {t j}

∞
j=1

converging to x∗ and to zero from above such that

f (y j + t jv) − f (y j)
t j

≥
−1

j
.

For fixed a ∈ (0, r), convexity implies that

f (y j + av) − f (y j)
a

≥
−1

j
,

provided j is sufficiently large such that y j ∈ Br(x∗) and t j ≤ a. In the limit as
j→∞, f (x∗ + av) ≥ f (x∗). Since v and a are arbitrary, x∗ must be a nonstrict local
minimizer. �
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Table 1. Results of test set A [18] . Here “h” and “no h” refer to results with and without hars, respectively.
On each problem, both versions of Algorithm 1 found the same listed final function value. All results are
30-run averages. † On problem 18 both methods found a stationary point.

no. fcn evals
Problem Function n f ∗ Final f h no h

1 Rosenbrock 2 0 5.7e-19 255 199
2 Freudenstein & Roth 2 48.9842 48.984253 107 79
3 Powell badly scaled 2 0 2.5e-29 1075 906
4 Brown badly scaled 2 0 0 201 145
5 Beale 2 0 3.5e-22 160 104
6 Jennrich & Sampson 2 124.362 124.362 209 128
7 Helical Valley 3 0 8.0e-20 276 212
8 Bard 3 0.00821487 0.00821488 200 168
9 Gaussian 3 1.12793e-8 1.12793e-8 81 49
10 Meyer 3 87.9458 87.945855 5537 4024
11 Gulf Research 3 0 7.6e-18 402 370
12 Box 3 0 1.1e-16 366 334
13 Powell singular 4 0 3.4e-14 450 378
14 Wood’s 4 0 1.1e-18 862 790
15 Kowalik & Osborne 4 3.07505e-4 3.07505e-4 223 187
16 Brown & Dennis 4 85822.2 85822.2 362 290
17 Osborne 1 5 5.46489e-5 5.46489e-5 873 753
18 Biggs exp6† 6 0 5.65e-3 388 388
19 Osborne 2 11 0.0401377 0.0401377 875 811
20 Penalty function I 4 2.24997e-5 2.24997e-5 1155 1192
21 Penalty function I 10 7.08765e-5 7.08765e-5 3741 2285
22 Broyden tridiagonal 10 0 1.6e-15 583 463
23 Variably dimensioned 10 0 1.6e-20 1931 1811
24 Trigonometric 5 0 2.5e-14 275 275

These convergence results do not rely on the presence or accuracy of the estimated
gradient and Hessian; they remain valid even if the quasi-Newton step is omitted and
neither g nor B are constructed.

4. Numerical results

Algorithm 1 was tested on four sets of test problems, and results averaged over
30 runs are presented. Numerical testing used τacc = 10−5, τh = 10−3, τmin = 10−10,
β = 4, η = 0.5, ρ = 10−5, h1 = 10−6 and hmin = 10−10. Tabulated results use scientific
e-notation; for example 2.6e-7 specifies the number 2.6 × 10−7.

Test set A contains 24 problems from the work of Moré et al. [18]. It is used
to show that Algorithm 1 behaves as an effective quasi-Newton method when f is
smooth. Results are presented in Table 1. Columns 2, 3 and 4 list the name, dimension
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and optimal function value of each test problem, respectively. Columns 5 and 6 list
the final function value found by Algorithm 1, along with the number of function
evaluations needed to find it. Convergence on these smooth problems is guaranteed
by Theorem 3.8, with or without the use of the global direction search. Hence, for
comparison, column 7 lists the number of function evaluations needed when the global
direction search (Step 6 of nsqn) is disabled. Algorithm 1 found the same optimal
function value on each problem with or without Step 6. A comparison shows that
including Step 6 increases the number of function evaluations taken by about 25% on
average.

On problem 18, both versions of Algorithm 1 located a stationary point rather than
a minimizer. On all problems except problem 10, Algorithm 1 halted after satisfying
the estimated gradient condition ‖gk‖ < τacc. On problem 10, Algorithm 1 halted
by reaching hk = hmin without being able to make further progress. The solution to
problem 10 was located to high accuracy, but ‖gk‖2 ≈ 100 in the final iterations. For
all problems except problems 3, 16, 20 and 21 τacc = 10−5 was used. Problem 20 used
τacc = 10−6 and problems 3 and 21 used τacc = 10−8 in order to prevent Algorithm 1
halting early. Problem 16 has a large optimal function value, and hence τacc = 10−5

was found to be overly stringent, with errors in the gradient estimate being of a similar
size. Results are presented using τacc = 10−4 on this problem.

Eleven of the problems in test set A are solved by Wu and Sun [25], nine of which
are also solved in [30]. Algorithm 1 (with hars) was faster on four of the eleven
problems solved by Sun [25], and three of the nine problems solved by Wu and
Sun [30]. Algorithm 1 contains two features which increase the number of function
evaluations taken on smooth problems: the exclusive use of maximal frames and
the global direction search. On smooth functions, the global direction search can be
omitted without compromising convergence properties. Additionally, gradients can
often be estimated using minimal rather than maximal frames, which can reduce the
total function count significantly. Wu and Sun [30] do precisely this. Nevertheless, the
hars and maximal frames are important on nonsmooth problems, and so are permanent
features of the nsqn method.

Test set B contains nonsmooth variants of selected problems of Moré et al. [18], all
of which appear in previous literature [22–24]. The original version of each problem is
a sum of squares

∑m
i=1( fi(x))2 with an optimal function value of zero, giving fi(x∗) = 0

for all i at the solution x∗. Each nonsmooth version is a sum of absolute values
f (x) =

∑m
i=1 | fi(x)|, which has the same solution x∗ with f (x∗) = 0. This can make the

final objective function values of any method look deceptively poor. For example, a
final function value of 10−7 on the nonsmooth version roughly corresponds to a final
function value of 10−14 on the original smooth version.

Results for test set B are listed in Table 2, where a comparison with the classification
and regression trees optimization method CARTopt [24] is made. CARTopt was
compared with two other methods on test set B [24], and shown to be the best overall.
No comparison is made on Wood’s function in Table 2, as the two methods found
different local minimizers.
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Table 2. A comparison of test results for set B with CARTopt [24].

nsqn CARTOpt
Problem Function n m f nf f nf

25 Rosenbrock 2 2 6.9e-7 3605 3e-9 1184
26 Brown 2 3 4.3e-13 853 2e-3 50000
27 Beale 2 3 2.8e-11 3227 1e-9 1083
28 Helical 3 3 5.6e-3 9594 5e-9 1891
29 Gulf 3 99 4.5e-9 4140 5e-6 16405
30 Powell 4 4 1.2e-7 4703 7e-9 2756
31 Trigonometric 5 5 2.0e-7 5056 2e-8 4105
32 Variably dimensioned 8 10 2.2e-6 7223 4e-8 16182

CARTopt is quite different to the nsqn method. At each iteration, it uses a training
set T which consists of a set of points in Rn together with objective function values at
those points. Low points in T are identified and one or more box-shaped regions around
them are constructed. The boxes are not necessarily aligned with the coordinate axes.
Random samples are drawn from these boxes and are used to update the training set T ,
which completes an iteration. Some strengths of CARTopt are clear: for example, the
random search can allow it to step directly into the vicinity of a minimizer, avoiding
difficult intervening terrain. On the other hand, if a long step is required in a particular
direction, then CARTopt might not be able to make that step as efficiently as a line
search method. The results concur with these observations. The nsqn method is least
competitive on the helical valley problem, where it travels from the initial point to
the solution by following a “V” shaped curved valley. The nsqn method is clearly
more effective on problems 26, 29 and 32. It tends to become more competitive as the
dimension of the problem increases. This trend continues in test set C, where CARTopt
fails on almost all problems in 20 and 50 dimensions.

Test set C contains nonsmooth problems listed by Bagirov and Ugon [7] and
elsewhere. Following them, we used randomly generated starting points. For all
problems except generalized Brown and ppsf Brown, the initial points were drawn
randomly from [0, 10]n. For the two Brown problems, initial points were drawn
randomly from [0, 1]n, so that the function values at the initial points are similar to
those listed by Bagirov and Ugon [7]. Algorithm 1 solved all problems to the accuracy
given by them on all runs. These results are listed in Table 3. Direct comparison with
those listed by Bagirov and Ugon [7] is not possible because their algorithm uses
gradient information where it exists.

On test set C, with n = 10, about 30% of the function evaluations are used by the
hars, including its line search. For test set B, this is about 31%. This drops to 18% for
test set C with n = 50. This indicates that the global search process gets comparatively
cheaper as the problem dimension increases.

Test set D consists of nonsmooth problems which were given by Lukšan and Vlček
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Table 3. Results for test set C. The columns headed “ f − f ∗” and “nf” list 30 run averages of the
error between the final and optimal functions values, and the number of function evaluations used to
minimize f .

n = 10 n = 20 n = 50
Function f − f ∗ nf f − f ∗ nf f − f ∗ nf

chained LQ 5.5e-11 8092 1.2e-10 17479 5.7e-10 63890
chained CB3 I 3.3e-10 7772 5.6e-10 16843 1.3e-9 63634
chained CB3 II 1.5e-4 9188 1.4e-4 17213 1.6e-4 36280
generalized Brown 7.2e-11 6488 2.0e-10 13464 1.7e-10 45488
crescent I 1.8e-7 7731 4.8e-7 10654 2.2e-7 21776
crescent II 6.7e-7 11673 5.5e-7 21373 2.3e-6 53968
ppsf Brown 6.5e-11 6147 2.0e-10 14840 7.1e-10 45461
ppsf Broyden 4.6e-11 2376 8.5e-11 8765 8.4e-11 40770
ppsf CB3 I 4.1e-10 7433 6.1e-10 17032 1.9e-9 62432
ppsf CB3 II 5.1e-7 11034 4.7e-6 20040 4.4e-6 56304

Table 4. Results for test set D. The column “ fat cdv” lists the average function value for nsqn at the same
number of function evaluations used in [11].

cdv nsqn

Function n f ∗ nf fcdv fat cdv final f nf

El-Attar 6 0.56 569 0.691 4.081 0.590 18853
EVD61 6 3.49e-2 335 9.07e-2 6.41e-2 3.81e-2 24329
Filter 9 6.19e-3 333 9.50e-3 8.51e-3 8.28e-3 7950
Goffin 50 0 17038 0 16.6 1.17e-9 92729
HS78 5 −2.92 212 2.07e-4 −2.75 −2.91053 6179
L1 Hilbert 50 0 7660 0.220 8.81e-5 6.52e-5 32148
max Hilbert 50 0 3164 1.24 4.05e-5 1.74e-6 27811
Osborne 2 11 4.803e-2 761 0.101 0.144 5.693e-2 54694
PBC1 5 2.234e-2 264 0.434 5.53e-2 2.766e-2 7070
Polak2 10 54.5982 1739 54.6 54.6 54.5982 3367
Shor 5 22.6002 257 23.4 22.6 22.6002 5161
Wong1 7 680.630 366 685 699 680.715 18356
Wong2 10 24.3062 763 25.8 42.0 24.6708 11542

[16] and which were solved by Custódio et al. [11]. Results for test set D are listed in
Table 4. The column headed fat cdv lists the average function value for nsqn after the
same number of function evaluations at which [11] halted. Nsqn was ahead on seven
of the thirteen problems at that point, and tied on one. When allowed to run until its
stopping conditions were triggered, the nsqn method found better solutions on eleven
of the thirteen problems, with a tie on one problem, at the expense of many more
function evaluations than those done by Custódio et al. [11].
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A different selection of problems from Lukšan and Vlček [16] was solved by
Bagirov et al. [6] using randomly generated initial points. Nsqn was compared with
their method [6] using the standard initial points listed by Lukšan and Vlček [16]
in place of randomly generated ones. Also, nsqn was limited to the same number of
function evaluations as [6]. The results showed that the nsqn method did better on
eleven problems, worse on five and tied with [6] on two. Two problems solved by
Bagirov et al. [6] were not used, as they clearly located a different local minimizer to
the solution listed by Lukšan and Vlček [16].

The behaviour of the nsqn method on nonsmooth problems was examined via
test sets B–D. The convergence theory for nonsmooth problems is established via
Corollary 3.7, and it requires the global direction search. Disabling the global direction
search led to worse solutions being found on five of the nonsmooth problems in test
sets B–D, and a total failure on two problems. Interestingly, this shows that a frame-
based quasi-Newton method is capable of solving a significant number of nonsmooth
problems, even though such problems are outside the scope of its convergence theory.
On the other hand, if the quasi-Newton direction is replaced by the steepest descent
direction, the performance of the algorithm deteriorates; it solves half of the problems
in test set A, three problems in test set B and two from test set D. On most of these
problems it is much slower than the nsqn method. If the quasi-Newton step is simply
removed, the performance is even worse than with the replacement of the steepest
descent direction.

5. Conclusion

A discrete quasi-Newton algorithm for minimizing black-box Lipschitz continuous
functions has been proposed. Algorithm 1 performs as a discrete quasi-Newton method
as a first choice, but resorts to global optimization techniques when progress is not
forthcoming. The global direction search provides almost sure convergence to one or
more Clarke stationary points under mild conditions. In addition, if local convexity
or strict differentiability holds at such a point, then that point is stationary. Without
the global direction search, it is only possible to show that the Clarke derivative is
nonnegative in directions parallel to the coordinate axes. In this case, local convexity
no longer guarantees stationarity.

The nsqn method has been numerically tested on a wide range of smooth and
nonsmooth functions in up to 50 dimensions. Comparisons with other methods show
that nsqn is respectable in terms of speed and robustness across this range of problems.
This paper demonstrates the theoretical and practical viability of tackling Lipschitz
continuous problems via direct-search-based quasi-Newton techniques.
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