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SMALL FRACTIONAL PARTS OF QUADRATIC FORMS

by R. C. BAKER and G. HARMAN*

(Received 11th February 1981)

1. Introduction

Let ||x|| denote the distance of x from the nearest integer. In 1948 H. Heilbronn
proved [5] that for e > 0 and N>C1(E) the inequality

min | |an2 | |<Ar( 1 / 2 ) + e

holds for any real a. This result has since been generalised in many different directions,
and we consider here extensions of the type: For e > 0, N > c2{e, s) and a quadratic form
Q(xu..., xs) there exist integers nlt..., ns not all zero with InJ, . . . , |ns| ̂  N and with

\\Q(n1,...,ns)\\<N-<^°. (1)

Danicic obtained a result of this type [2] with c3(s) = s/(s+ 1). Cook was able to get (1)
with c3(s)=l for an additive form in two variables [1]. More recently, Schinzel,
Schlickewei and Schmidt have shown [7] that c3(s) may be taken as the maximum of

h s — h +

over odd h in l ^ J i ^ ( s + 5)/3. Taking h asymptotically equal to s/3 gives

This result improves on Danicic's for s ^ 7 and, as is well known, the "limiting"
exponent —2 is best possible. The new idea in [7] is the use of an auxiliary result on
quadratic congruences. For a different approach to the limiting result c3(s)-»2, see [9].

In the present note we refine the method of [7] to prove

Theorem. Let s ^ 3 and let Q(xu...,xs) be a real quadratic form. Then there is a
constant c4(s) such that for every integer N^.2 there are integers nlt...,ns with

(2)

•Written while the second author held a University of London postgraduate studentship.
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having

\\Q(nu..., ns)\\<c4(s)(N/\ogN)-^\ (3)

Here

C2s/(s + 5) for odds,

I 2s(s - l)/(s2 + 4s - 4) for even s. (4)

Our exponent is the same as Danicic's for s = 3, apart from the substitution of a
power of log JV for N". For s ̂  4, our exponent is better than that of [2] or [7], and (4)
gives

The second author has refined the method further for diagonal quadratic forms; for
example, one can take c5(5) = 9/8 and c5(ll) = 3/2 in this special case.

The key to the improvement on [7] is Lemma 1, below. This is a straightforward
extension of the congruence result of [7], but enables us to introduce successive minima
explicitly. This is more economical; the procedure is analogous to that of Davenport
and Ridout [4].

2. Quadratic congruences

Lemma 1. Let Q(x) = Q(x1,..., xh) be a quadratic form in an odd number h of variables
with integer coefficients. Let m be a natural number. Let Kl,...,Khbe positive reals with

(5)

Then there are integers xl,...,xh not all zero, with

Q(Xl,...,xh) = 0 (modm), (6)

and having

\x,\£Ki (i=l,...,h). (7)

The case K1 = .. . = K , = m(1/2)+(1/2'1> is Theorem 1 of [7].

Proof. We first observe that the result is trivial if K^m for some i; hence we
suppose that

Kt<m (i=\,...,h) (8)
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Clearly we may assume that m> 1, and that m is square free. For any m may be written
in the form

m = r2a

where a is square free. If K^ ...Kh^m(h+1)l2, then {KJr)...(Kh/r)^a(h+1)l2. A solution
{yu...,yh) of Q(y) = 0 (moda), with \yt\^KJr, yields a solution x, = /7,- of (5) satisfying
(V).

Let d = (h — l)/2. According to [7], for every prime p dividing m there are integer
vectors r^' , . . . , rd

p) which are linearly independent modulo p, and for which

Q(Sir[p) +•••+ sAp)) = 0 ( m o d p)

whenever su...,sd are integers. By the Chinese remainder theorem there are integer
vectors r l 5 . . . , rd having

ti = r\p) (modp)

for each prime p dividing m. Write r; = ( r a , . . . , rjh).
By Minkowski's linear forms theorem, and taking account of (5), there are integers

s1 ; . . . ,sd, z1,...,zh not all zero, with

i=l,...,d)

0=1-,h).

(9)

(10)

Put x = s1r1 + . . . +sdTd + mz, where z = (z,, . . . ,zh). Then clearly (6) holds, and (7) follows
from (10). Since Kj<m we easily see that (s1,...,sh)=/=0, say s ^ O . Since m is square free,
there is a prime factor p of m with s ^ O (modp). Because r , , . . . , r d are linearly
independent (modp), we have x^O (modp). Thus x=£0.

3. A lemma on exponential sums

The following lemma was pointed out to us by H. L. Montgomery. Compared with
the familiar Lemma 12 of [8], Chapter I, it saves a great deal of work, and a small
power of log N, farther on.

Lemma 2. Let L, M be natural numbers and let al,a2,...,aM be real numbers such
that llajl = LTl (n = 1,.. . , M). Then we have

= M/6.
L

I
1= 1

M

n= 1
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Proof. Let J = {L l, 1 — L ') with indicator function Xj(x). According to
Montgomery [6], p. 559, there is a function bel}(R) such that

(11)

(12)

By an easy calculation, the function

) = 0 for |f| = L.

is in l}(0,1) with Fourier series ), hence

B(x)= £ S(k)e(kx).
\k\SL

(13)

Note that for integral k=f=Q, (13) implies

\6(k)\ rgj \B(x)- | J
0 0

(14)

Combining (11), (13) and (14) with the hypothesis

M

n = l

L M

= 1 n = l

Since 1 — £(0) = L l, the desired inequality follows.

:nj|_L ', we obtain

zMI
n = l

4. Proof of the theorem

The proof will be by contradiction. Suppose that there are no integers nu..
satisfying (2) and (3). Let

•,ns

S(0= e(lQ(nu...,ns)).

Let
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where c4(s) is sufficiently large, then from Lemma 2 with M = NS we have

t
Let / be a natural number, 1 ^ / ̂  L, having

L. (15)

We define linear forms L1,...,LS with symmetric coefficient matrix via the identity

Q(xl,...,xs) = xlLl(x)+ . . . +xsLs(x)-

Let Mu..., Ms be the first s successive minima of the convex body described by

\Xj\<N "'}
with respect to the integer lattice in 2s-dimensional space. It is established in the proof
of Lemma 5 of [3] that

\S(lf £c

In view of (15), then,

(M1...Ms)-
i^c1(s)L72Ns(logN)-s.- (16)

We now consider the cases of odd and even s separately.

Case I. Odd s. By the definition of successive minima, we can find s linearly
independent integer vectors rj, in 2s-dimensional space with

J > | | 1 M ^ (17)

|rJ<JVM,, (18)

f o r j = l , . . . , s , n=l,...,s. Here r; = ( r l M , . . . , t 2 s J and r/i = (rM,.. . ,rs / J) .
Let us write

K,, = c7(s)- 1/SL2/S(2/)(S+ 1 ) / 2 s M; l(\ogN)N~ \ (19)

then

K1...K,^{2iy°+1)'2 (20)

EMS E
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from (16). We also write

s

#,.» = 2/ £ rj>L/rv) (ji,v=l,...,s),
j=l

so that

||0J| <sM)lMv (21)

from (17) and (18). Let b^ be integers with

IKv|| = Kv-V | fo,v=l,...,s). (22)

By Lemma 1 and (20) there are integers xu...,xs not all zero, with

| x j ^ fo = l , . . . ,s) (23)

and

£ £ W . = ° (mod 20. (24)

Put w,. = Z£=i r^x,, for i = 1,..., s. Then

ss s / s

=(2/)-1 f Z Wv+e/r1 Z Z (^v-Uvv
/ i = 1 v— 1 fi= 1 v = 1

(25)

The first sum on the right-hand side of (25) is an integer, in view of (24). Thus

\\Q(nu...,ns)\\^(2r1 £ £ IIUWKI
1 l

|? £ £

S3

(())-2 / SL4 / S(20( S + 1 ) / s ( log N)2N~2
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from (21) and (23). For sufficiently large c^s), we have

\\Q{nu..., ns)\\ < 2s3(c7(s))~2/sI;

Moreover, we have

N= I rmX
n=i

^ sc^s) ~ 1/sL2/s(2Q(s + 1 )/2s log N

By hypothesis, then, we must have

so that Yff=i xnrn = ® a n d consequently

Ex^rJ = C

Combining (26) with (17) we obtain

SAT1 £

as we already saw above. Hence

(26)

is true not only for y = l , . . . , s but for j = s+ 1, . . . ,2s also. This contradicts the linear
independence of r\,...,r'li.

Thus the theorem is proved in Case I.

Case II. Even s. From (16) and M ^ . . . ^ M s , we obtain

( M , . . . Ms_ J-1 ^c7(s)(3' l )"LT2(s" 1)ls(N/\ogNf-1. (27)
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Let rj,, !•„, #„„, bMV be as in Case I. By repeating the argument of Case I, with s —1
instead of s, we obtain integers X[ x , . , such that

'E'iAvVc^O (mod 2/)
J l = l V = l

and

|xM| £ tf „ = c8(s)L2/W/2(s~ l)M; '(log JV)AT *.

After all,
H1. . .Hs_1g(2/) ( ( s - 1> / 2 ) + 1 / 2

provided that c8(s) is sufficiently large. Let

s - l

( « ! , . . . , n s ) = YJ X
IL

TII-
n = l

Continuing as before, we obtain for ||8("i>--->ws)|| the upper bound

^-( max
2/

<L'\ (28)

and

max^nil , . . . , |ns |)^s max H^M^N

^ clo(s)Z<2/s) + <s/2(s -1M log N < N, (29)

for a suitable choice of c4(s). The argument used in Case I can be repeated to obtain

which is a contradiction. This proves the theorem in Case II.
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