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Complemented Subspaces of Linear
Bounded Operators

Manijeh Bahreini, Elizabeth Bator, and Ioana Ghenciu

Abstract. We study the complementation of the space W (X,Y ) of weakly compact operators, the space

K(X,Y ) of compact operators, the space U (X,Y ) of unconditionally converging operators, and the

space CC(X,Y ) of completely continuous operators in the space L(X,Y ) of bounded linear operators

from X to Y . Feder proved that if X is infinite-dimensional and c0 →֒ Y , then K(X,Y ) is uncom-

plemented in L(X,Y ). Emmanuele and John showed that if c0 →֒ K(X,Y ), then K(X,Y ) is uncom-

plemented in L(X,Y ). Bator and Lewis showed that if X is not a Grothendieck space and c0 →֒ Y ,

then W (X,Y ) is uncomplemented in L(X,Y ). In this paper, classical results of Kalton and separably

determined operator ideals with property (∗) are used to obtain complementation results that yield

these theorems as corollaries.

Introduction

Throughout this paper X and Y will denote real Banach spaces and X∗ will denote the

continuous linear dual of X. An operator T : X → Y will be a continuous and linear

function. The set of all bounded linear operators from X to Y will be denoted by

L(X,Y ), and the compact (resp., weakly compact, unconditionally converging, com-

pletely continuous) operators will be denoted by K(X,Y ) (resp., W (X,Y ), U (X,Y ),

CC(X,Y )). An operator T : X → Y is unconditionally converging if T maps weakly

unconditionally converging series into unconditionally converging series. An opera-

tor T : X → Y is called completely continuous (or Dunford–Pettis) if T maps weakly

Cauchy sequences to norm convergent sequences.

If A is a subset of X, then [A] denotes the closed linear span of A. Let (en) be the

Schauder basis of c0, (e∗n ) be the basis of ℓ1, and (e2
n) the basis of ℓ2. The reader is

referred to Diestel [7] or Dunford–Schwartz [11] for undefined notation and termi-

nology.

For many years mathematicians have been interested in the problem of whether an

operator ideal is complemented in the space L(X,Y ) of all bounded linear operators

between X and Y ; see Thorp [29], Arteburn and Whitley [2], Emmanuele [12, 13],

John [23], Feder [16, 17], Emmanuele and John [15], and Kalton [24]. In this note

we will present results related to the complementability of W (X,Y ), U (X,Y ), and

CC(X,Y ) in L(X,Y ).
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1 The Uncomplemented Spaces W (X,Y ) and U (X,Y )

We begin this section with a characterization of spaces X so that W (X, c0) is comple-

mented in L(X, c0). In the process, we extend the characterizations of Grothendieck

space given in [9]. (A Banach space X is called a Grothendieck space if weak∗ and

weak convergence of sequences in X∗ coincide.) See [3, Theorem 4] for a related

result.

Theorem 1.1 Let X be a Banach space. The following are equivalent:

(i) X is a Grothendieck space;

(ii) L(X, c0) = W (X, c0);

(iii) W (X, c0) is complemented in L(X, c0).

Proof (i) ⇒ (ii). Since X is a Grothendieck space, every bounded linear operator

T : X → c0 is weakly compact (see [9, p. 179]).

(ii) ⇒ (iii) is clear. Hence, it suffices to verify that (iii) ⇒ (i).

Suppose that X is not a Grothendieck space. Choose a w∗-null sequence (x∗n ) in

X∗ with no weakly null subsequence. Let X0 be a separable subspace of X such that

the natural restriction map M from [x∗n :n ∈ N] to X∗

0 is an isometry. Thus (M(x∗n ))

is w∗-null, and no subsequence of (M(x∗n )) converges weakly.

Define T : ℓ∞ → L(X, c0) by

T(b)(x) =
∑

bnx∗n (x)en, b = (bn) ∈ ℓ∞, x ∈ X.

Let S : c0 → ℓ∞ be the inclusion. Let P : L(X, c0) → W (X, c0) be a projection, and

let R : L(X, c0) → L(X0, c0) be the natural restriction map. Then SRPT : ℓ∞ →
W (X0, ℓ∞) is an operator such that SRPT(en) = T(en)|X0

for each n ∈ N. Propo-

sition 5 of Kalton [24] produces an infinite subset M of N such that SRPT(χM) =

T(χM)|X0
. Hence T(χM)|X0

is weakly compact. However, (T(χM)|X0
)∗(e∗n ) = M(x∗n )

for each n ∈ M, which is a contradiction.

Remark Emmanuele [13, Theorem 2] showed that if X has the Dunford–Pettis

property, the Gelfand–Phillips property, and does not have the Schur property, then

W (X,Y ) is not complemented in L(X,Y ), whenever c0 →֒ Y . Bator and Lewis [3,

Theorem 4] improved this result by only assuming that X is not a Grothendieck space

and c0 →֒ Y . If X is a separable Grothendieck space, it is readily seen that X is reflexive

and W (X,Y ) = L(X,Y ) for any Banach space Y . Thus, we have the following result.

Corollary 1.2 Suppose X is a separable Banach space and c0 →֒ Y . The following are

equivalent:

(i) X is a Grothendieck space;

(ii) L(X,Y ) = W (X,Y );

(iii) W (X,Y ) is complemented in L(X,Y ).

Theorem 1.3 If X is non-reflexive, then W (X, ℓ∞) is not complemented in L(X, ℓ∞).

Proof Let X0 be a separable subspace of X that is not a Grothendieck space. Choose

a w∗-null sequence (y∗n ) in X∗

0 such that no subsequence of it converges weakly to a
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point in X∗

0 . For each n ∈ N, let x∗n ∈ X∗ be a Hahn-Banach extension of y∗n . Define

T : ℓ∞ → L(X, ℓ∞) by

T(b)(x) = (bn x∗n (x)), b = (bn) ∈ ℓ∞, x ∈ X.

Note that the operator T is well defined and T(en) = x∗n ⊗ en for each n ∈ N.

Suppose that W (X, ℓ∞) is complemented in L(X, ℓ∞). Let P : L(X, ℓ∞) →
W (X, ℓ∞) be a projection, and let R : L(X, ℓ∞) → L(X0, ℓ∞) be the natural re-

striction map. Define ψ : ℓ∞ → L(X0, ℓ∞) by ψ(b) = RT(b). Then RPT : ℓ∞ →
W (X0, ℓ∞) is an operator so that RPT(en) = y∗n ⊗en = ψ(en) for each n ∈ N. Propo-

sition 5 of Kalton [24] produces an infinite subset M of N such that RPT(χM) =

ψ(χM). Hence ψ(χM) is weakly compact. However, (ψ(χM))∗(e∗n ) = x∗n |X0
= y∗n ,

n ∈ M, which is a contradiction.

Corollary 1.4 Suppose that X is a Banach space and ℓ∞ →֒ Y . The following are

equivalent:

(i) X is reflexive;

(ii) L(X,Y ) = W (X,Y );

(iii) W (X,Y ) is complemented in L(X,Y ).

Proof (iii) ⇒ (i). Suppose that X is non-reflexive. It is known that if ℓ∞ →֒ Y ,

then ℓ∞
c
→֒ Y (since ℓ∞ is injective). Since W (X,Y ) is complemented in L(X,Y ),

W (X, ℓ∞) is complemented in W (X,Y ), and thus in L(X,Y ). Now W (X, ℓ∞) ⊆
L(X, ℓ∞) ⊆ L(X,Y ), hence W (X, ℓ∞) is complemented in L(X, ℓ∞), which is a con-

tradiction with Theorem 1.3.

Now we turn our attention to the complementation of the space of uncondition-

ally converging operators U (X,Y ) in L(X,Y ). A key step in the proof of [24, Theo-

rem 4], [12, Theorem 2], and [17, Theorem 1] involves the unconditional pointwise

convergence of a series of compact operators to an operator which is not compact.

Analogous hypotheses guarantee that U (X,Y ) is not complemented in L(X,Y ).

Theorem 1.5 Suppose that E is an infinite-dimensional separable and complemented

subspace of X so that U (E,Y ) = K(E,Y ). If (Ti) is a sequence from U (X,Y ), T ∈
L(X,Y ),

∑
Ti(x) converges unconditionally to T(x) for each x ∈ X, and T|E is not

unconditionally converging, then U (X,Y ) is not complemented in L(X,Y ).

Proof Let J : E → X be the natural inclusion, and note that
∑

Ti J(x) converges

unconditionally to T J(x) for each x ∈ E. However, since T J is not unconditionally

converging,
∑

Ti J does not converge in the norm topology. Without loss of general-

ity, suppose that infi ‖Ti J‖ > 0.

Now suppose that U (X,Y ) is complemented in L(X,Y ) and let Γ : L(X,Y ) →
U (X,Y ) be a projection. If P : X → E is a projection and R : L(X,Y ) → L(E,Y ) is

the natural restriction map, then Q : L(E,Y ) → U (E,Y ), Q(T) = RΓ(TP) defines a

projection from L(E,Y ) onto U (E,Y ). Define φ : ℓ∞ → L(E,Y ) by

φ(b) =
∑

biTi J (strong operator topology)
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for b = (bi) ∈ ℓ∞. Then φ(en) = Tn J, and thus φ(en) ∈ U (E,Y ) for each n ∈ N.

Further, {φ(b)(x) : b ∈ ℓ∞, x ∈ E} is separable. Apply [24, Lemma 2] to obtain an

infinite subset M of N so that φ(b) ∈ U (E,Y ) for each b ∈ ℓ∞(M).

Since infi∈M ‖Ti J‖ > 0,
∑

i∈M Ti J is not unconditionally convergent. How-

ever, since
∑

i∈M Ti J(x) is unconditionally convergent for each x ∈ E, the Uniform

Boundedness Principle shows that
∑

i∈M Ti J is weakly unconditionally convergent.

Thus c0 →֒ U (E,Y ) = K(E,Y ), and [12, Theorem 2] provides a contradiction which

finishes the proof.

Corollary 1.6 If c0
c
→֒ X and c0 →֒ Y , then U (X,Y ) is not complemented in L(X,Y ).

Proof Suppose that E is a complemented isomorphic copy of c0 in X and (xn) is a

copy of (en) in E. Let P̂ : X → E be a projection, I : E → c0 be an isomorphism

with I(xn) = en for each n ∈ N, and A = IP̂. For each n ∈ N, let x∗n = e∗n A and

let (yn) be a copy of (en) in Y . Define T : X → Y by T(x) =
∑

x∗n (x) yn, x ∈ X.

Let Tn = x∗n ⊗ yn, n ∈ N. Then each Tn is a rank one operator,
∑

Tn(x) converges

unconditionally to T(x) for each x ∈ X, and T(xn) = yn for each n ∈ N. Hence, T|E
is not unconditionally converging. Apply Theorem 1.5.

Bator and Lewis [3, Theorem 2] showed that if X is separable and there is an

operator T : X → Y which is not unconditionally converging, then U (X,Y ) is not

complemented in L(X,Y ). Now we present a generalization of this theorem.

Corollary 1.7 Suppose that BX∗ is w∗-sequentially compact and Y is a Banach space.

The following are equivalent:

(i) c0 6 →֒ X or c0 6 →֒ Y ;

(ii) L(X,Y ) = U (X,Y );

(iii) U (X,Y ) is complemented in L(X,Y ).

Proof (i) ⇒ (ii). If A : X → Y is an operator which is not unconditionally converg-

ing, then there is a subspace H of X isomorphic to c0 such that A|H is an isomorphism

[7, p. 54]. Hence c0 →֒ X and c0 →֒ Y .

(ii) ⇒ (iii) is obvious.

(iii) ⇒ (i). Suppose that c0 →֒ X and c0 →֒ Y . Let (xn) be a basic sequence in X

such that (xn) ∼ (en) and let (x∗n ) be a sequence of biorthogonal coefficients in X∗.

Since BX∗ is w∗-sequentially compact, we may suppose without loss of generality that

(x∗n ) is w∗-convergent. If (x∗n )
w∗

−→ x∗, then (x∗n − x∗)(xn) = 1 − x∗(xn) → 1, hence

(xn) is not limited. By a result of Schlumprecht [30, p. 36], (xn) has a subsequence

(cn) such that [cn]
c
→֒ X. This provides a contradiction to Corollary 1.6.

Theorem 1.8 If c0 →֒ X, then U (X, ℓ∞) is not complemented in L(X, ℓ∞).

Proof Let (xn) be a copy of (en) in X, and let X0 = [xn]. Suppose that (x∗n ) is the

associated sequence of coefficient functionals and ( f ∗n ) is a sequence of Hahn–Banach

extensions in X∗. Define T : ℓ∞ → L(X, ℓ∞) by

T(b)(x) = (bn f ∗n (x)), b = (bn) ∈ ℓ∞, x ∈ X.

https://doi.org/10.4153/CMB-2011-097-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-097-2


Complemented Subspaces of Linear Bounded Operators 453

Note that the operator T is well defined and T(en) = f ∗n ⊗ en for each n ∈ N.

Suppose that P : L(X, ℓ∞) → U (X, ℓ∞) is a projection and R : L(X, ℓ∞) →
L(X0, ℓ∞) is the natural restriction map. Then RPT : ℓ∞ → U (X0, ℓ∞) is an op-

erator so that RPT(en) = T(en)|X0
= x∗n ⊗ en for each n ∈ N. By [24, Proposition 5],

there is an infinite subset M of N such that RPT(χM) = T(χM)|X0
. Hence T(χM)|X0

is unconditionally converging. However, (T(χM)|X0
)(xn) = en, n ∈ M, which is a

contradiction.

Corollary 1.9 Suppose that X is a Banach space and ℓ∞ →֒ Y . The following are

equivalent:

(i) c0 6 →֒ X;

(ii) L(X,Y ) = U (X,Y );

(iii) U (X,Y ) is complemented in L(X,Y ).

Proof (i) ⇒ (ii). If L(X,Y ) 6= U (X,Y ), then c0 →֒ X (see [7, p. 54]).

(iii) ⇒ (i). Suppose that c0 →֒ X. Since ℓ∞ →֒ Y , ℓ∞
c
→֒ Y . If U (X,Y )

c
→֒

L(X,Y ), then U (X, ℓ∞)
c
→֒ L(X, ℓ∞), which is a contradiction with the previous

theorem.

2 Separably Determined Operator Ideals

In the previous section we made an investigation of the subspaces W (X,Y ) and

U (X,Y ) of L(X,Y ). In this section we generalize some of these results to arbitrary

operator ideals. We say that O is an operator ideal if for all Banach spaces X, Y , Z,

and W , the following hold.

• O(X,Y ) is a subspace of L(X,Y ).
• If S ∈ L(Z,X), T ∈ O(X,Y ), and R ∈ L(Y,W ), then RTS ∈ O(Z,W ).

Lemma 2.1 Let O be a non-trivial operator ideal and X, Y be Banach spaces. Then

every finite rank operator from X to Y is in O(X,Y ).

Proof Let x∗0 ∈ X∗, y0 ∈ Y , and let ϕ ∈ O(X,Y ), ϕ 6= 0. Choose x0 ∈ X and

z∗ ∈ BY∗ such that ϕ(x0) = z 6= 0 and z∗(z) = 1. Define T : X → X and S : Y → Y

by T(x) = x∗0 (x) x0, x ∈ X and S(y) = z∗(y) y0, y ∈ Y . Note that SϕT = x∗0 ⊗ y0,

and thus x∗0 ⊗ y0 ∈ O(X,Y ).

In the following results O is a closed operator ideal. We consider conditions that

yield copies of c0 and ℓ∞ in O(X,Y ). If X is infinite dimensional and c0 →֒ L(X,Y ),

then ℓ∞ →֒ L(X,Y ) (see [24, 25]). Part (iii) of the following corollary generalizes

this result. It is known that ℓ∞ →֒ L(ℓ2, ℓ2) (see [24]). Moreover, if X has an un-

conditional basis, then ℓ∞ →֒ L(X,X) (see [25]). Part (iv) of the following corollary

generalizes this result. The Banach space X has the Dunford–Pettis property (DPP)

if every weakly compact operator T : X → Y is completely continuous.

Corollary 2.2 (i) If ℓ∞ →֒ X∗ or ℓ∞ →֒ Y , then ℓ∞ →֒ O(X,Y ).

(ii) Suppose that X and Y are infinite-dimensional Banach spaces and O(X,Y ) is com-

plemented in L(X,Y ). If c0 →֒ X∗ or c0 →֒ Y , then ℓ∞ →֒ O(X,Y ).
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(iii) Suppose that X and Y are infinite-dimensional Banach spaces and O(X,Y ) is com-

plemented in L(X,Y ). Then ℓ∞ →֒ O(X,Y ) if and only if c0 →֒ O(X,Y ).

(iv) Suppose X, Y are infinite-dimensional Banach spaces satisfying the following as-

sumption: there exist a Banach space G with an unconditional basis (gn) and

biorthogonal coefficients (g∗n ), and two operators R : G → Y and S : G∗ → X∗

such that (R(gn)) and (S(g∗n )) are seminormalized and either (R(gn)) or (S(g∗n )) is

a basic sequence. If O(X,Y ) is complemented in L(X,Y ), then ℓ∞ →֒ O(X,Y ).

(v) Assume that X has the DPP and X∗ does not have the Schur property, and there

is an operator T : ℓ2 → Y such that the sequence (T(e2
n)) is seminormalized. If

O(X,Y ) is complemented in L(X,Y ), then ℓ∞ →֒ O(X,Y ).

Proof (i) Observe that X∗ and Y embed in the finite rank operators from X to Y .

Apply Lemma 2.1.

(ii) If c0 →֒ Y (or c0 →֒ X∗), then c0 →֒ O(X,Y ). Apply [20, Theorem 1].

(iii) Apply [20, Theorem 1].

(iv) Lemma 3.2 in [18] shows that (S(g∗n )⊗R(gn)) ∼ (en), and thus c0 →֒ O(X,Y ).

Apply [20, Theorem 1].

(v) Since X has the DPP and X∗ does not have the Schur property, ℓ1 →֒ X (see

[8,22]). Then L1 →֒ X∗ (by a result in [26]), hence ℓ2 →֒ X∗ (see [7]). Apply (iv).

The following result concerns operators on abstract continuous function spaces.

We refer the reader to [1, 5] for a complete discussion of this setting. We recall that

if T : C(K,X) → Y is an operator with representing measure m and semivariation

m̃, then T is called strongly bounded if (m̃(An)) → 0, whenever (An) is a pairwise

disjoint sequence of Borel subsets of K. The Banach space X has property (V ) if

every unconditionally converging operator on X is weakly compact [26].

Theorem 2.3 Suppose there exists an operator ideal O(X,Y ) so that c0 6 →֒ O(X,Y ).

Then the following assertions hold.

(i) Every operator T : C(K,X) → Y is strongly bounded.

(ii) If X is reflexive, then every operator T : C(K,X) → Y is weakly compact.

(iii) If ℓ1 6 →֒ X and X has property (u), then every operator T : C(K,X) → Y is weakly

compact.

(iv) Every operator T : C(K,X) → Y has an unconditionally converging adjoint.

Proof (i) Suppose that T : C(K,X) → Y is an operator which is not strongly

bounded. Then T is not unconditionally converging by results in [5, 10]. It follows

that T is an isomorphism on a copy of c0 [7, p. 54], and c0 →֒ Y . Therefore c0 embeds

in the rank one operators from X to Y , hence in O(X,Y ).

(ii) Part (i) and [5, Theorem 4.1] show that every operator T : C(K,X) → Y is

weakly compact.

(iii) By results in [6, 31], C(K,X) has property (V ). Hence, by part (i), every

operator T : C(K,X) → Y is unconditionally converging, and thus weakly compact.

(iv) If T : C(K,X) → Y is an operator and T∗ : Y ∗ → C(K,X)∗ is not uncondi-

tionally converging, then T∗ is an isomorphism on a copy of c0 (see [7, p. 54]). Hence

c0 →֒ C(K,X)∗, and thus ℓ1
c
→֒ C(K,X) (see [4]). Then ℓ1

c
→֒ X (see [28]), and thus
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c0 →֒ X∗. Therefore c0 →֒ O(X,Y ), which is a contradiction which concludes the

proof.

We use the following notation. Let A : X → ℓ∞ be an operator and M be a

nonempty subset of N. We define AM : X → ℓ∞ by AM(x) = (yn), where yn =

e∗n (A(x)), n ∈ M, and yn = 0 otherwise.

Suppose that O is a closed operator ideal. We say that O has property (∗) if when-

ever X is a Banach space and A 6∈ O(X, ℓ∞), there is an infinite subset M0 of N such

that AM 6∈ O(X, ℓ∞) for all infinite subsets M of M0. If M is a subset of N, then

P∞(M) denotes the infinite subsets of M.

A closed operator ideal O is said to be separably determined provided that for each

pair of Banach spaces X and Y , an operator T : X → Y belongs to O(X,Y ) if and only

if T|S ∈ O(S,Y ) for each separable subspace S of X.

Lemma 2.4 If T : F → E∗ is an operator and T∗|E is (weakly) compact, then T is

(weakly) compact.

Proof (compact) Let S = T∗|E. Suppose x∗∗ ∈ BE∗∗ and choose a net (xα) in BE

which is w∗-convergent to x∗∗. Then (T∗(xα))
w∗

→ T∗(x∗∗). Now, (T∗(xα)) ⊆ S(BE),

which is a relatively compact set. Then (T∗(xα)) → T∗(x∗∗). Hence T∗(BE∗∗) ⊆
S(BE), which is relatively compact. Therefore T∗(BE∗∗) is relatively compact, and

thus T is compact.

Lemma 2.5 The ideal of (weakly) compact operators has property (∗).

Proof (compact) Suppose that A : X → ℓ∞ is not compact and let x∗n = A∗(e∗n ) for

each n ∈ N. Then A∗ : ℓ∗
∞

→ X∗ is not compact. It follows that A∗|ℓ1
is not compact,

and thus (x∗n ) is not relatively compact. Without loss of generality suppose that (x∗n )

has no convergent subsequence. Let M0 = N and let M be an infinite subset of M0.

Note that A∗

M(e∗n ) = x∗n , n ∈ M and A∗

M(e∗n ) = 0, otherwise. Then (A∗

M(e∗n )) is not

relatively compact, and thus AM is not compact.

Theorem 2.6 Let O be a separably determined operator ideal with property (∗). Sup-

pose that U has an unconditional and seminormalized basis (un) with biorthogonal co-

efficients (u∗

n). If L(X,U ) 6= O(X,U ) and U →֒ Y , then O(X,Y ) is not complemented

in L(X,Y ).

Proof Let A : X → U such that A 6∈ O(X,U ). Let J : U → ℓ∞ be an isometric

embedding. Then JA 6∈ O(X, ℓ∞). Let X0 be a separable subspace of X such that

B = JA|X0
6∈ O(X0, ℓ∞). Choose M0 ∈ P∞(N) such that BM 6∈ O(X0, ℓ∞) for each

M ∈ P∞(M0). Note that
∑

bnu∗

n(A(x))un converges unconditionally in U for each

x ∈ X and b = (bn) ∈ ℓ∞. Define T : ℓ∞ → L(X,U ) by

T(b)(x) =
∑

bnu∗

n(A(x))un, x ∈ X.

Let i : U → Y be a linear embedding and let yn = i(un) for each n ∈ N. Use the

injectivity of ℓ∞ to select an operator S : Y → ℓ∞ so that S(yn) = en for each n ∈ N.

Suppose that O(X,Y )
c
→֒ L(X,Y ). Let P : L(X,Y ) → O(X,Y ) be a projection, and

https://doi.org/10.4153/CMB-2011-097-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-097-2


456 M. Bahreini, E. Bator, and I. Ghenciu

let R : L(X, ℓ∞) → L(X0, ℓ∞) be the natural restriction map. Consider the operators

ϕ : ℓ∞ → L(X0, ℓ∞) and Γ : ℓ∞ → O(X0, ℓ∞) defined by ϕ(b) = RSiT(b) and

Γ(b) = RSPiT(b). Since T(en) is a rank one operator, Γ(en) = ϕ(en) for each n ∈ N.

By [24, Proposition 5], there is an infinite subset M of M0 such that Γ(b) = ϕ(b),

b ∈ ℓ∞(M). Hence, ϕ(χM) ∈ O(X0, ℓ∞). However, ϕ(χM) = BM 6∈ O(X0, ℓ∞),

which is a contradiction.

The following result generalizes Theorem 1.1.

Corollary 2.7 Let O be a separably determined operator ideal with property (∗). The

following are equivalent:

(i) L(X, c0) = O(X, c0);

(ii) O(X, c0) is complemented in L(X, c0).

Theorem 2.6 generalizes [17, Corollary 4]. We remark that if X is an infinite-

dimensional Banach space and c0 →֒ Y , then the Josefson–Nissenzweig theorem

guarantees that L(X,Y ) 6= K(X,Y ).

Corollary 2.8 ([17, Corollary 4]) If X is an infinite dimensional Banach space and

c0 →֒ Y , then K(X,Y ) is not complemented in L(X,Y ).

Proof Use the Josefson–Nissenzweig theorem to choose a w∗-null and normalized

sequence (x∗n ) in X∗. Define S : X → c0 by S(x) = (x∗n (x)). Clearly (S∗(e∗n )) = (x∗n ) is

not relatively compact, hence S is not compact. Apply Theorem 2.6 and Lemma 2.5.

Corollary 2.9 ([13, Theorems 2 and 3]; [3, Theorem 4]) If X is not a Grothendieck

space and c0 →֒ Y , then W (X,Y ) is not complemented in L(X,Y ).

Proof Let (x∗n ) be a w∗-null sequence in X∗ with no weakly convergent subsequence.

Then the operator T : X → c0 defined by T(x) = (x∗n (x)) is not weakly compact.

Apply Theorem 2.6 and Lemma 2.5.

Corollary 2.10 ([13, Corollary 4]) Assume that X contains a complemented copy of

c0 and c0 →֒ Y . Then W (X,Y ) is not complemented in L(X,Y ).

Proof If c0
c
→֒ X and W (X,Y )

c
→֒ L(X,Y ), then W (c0,Y )

c
→֒ L(c0,Y ). Apply

Corollary 2.9.

The next theorem is motivated by results in [3, 13, 14, 24].

Theorem 2.11 (i) Suppose that U has an unconditional and seminormalized basis

(ui) with biorthogonal coefficients (u∗

i ), U
c
→֒ X, and T : U → Y is an operator such

that (T(ui)) is not relatively compact in Y . Let S(X,Y ) be a closed linear subspace of

L(X,Y ) which properly contains K(X,Y ) such that φ(b) ∈ S(U ,Y ) for all b ∈ ℓ∞,

where φ(b)(u) =
∑

biu
∗

i (u)T(ui), u ∈ U . Then K(X,Y ) is not complemented in

S(X,Y ).

(ii) Suppose that U has an unconditional and seminormalized basis (ui) with bior-

thogonal coefficients (u∗

i ), U
c
→֒ X, and T : U → Y is an operator such that (T(ui)) is
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not relatively weakly compact in Y . Let S(X,Y ) be a closed linear subspace of L(X,Y )

which properly contains W (X,Y ) such that φ(b) ∈ S(U ,Y ) for all b ∈ ℓ∞, where

φ(b)(u) =
∑

biu
∗

i (u)T(ui), u ∈ U . Then W (X,Y ) is not complemented in S(X,Y ).

Proof (i) Note that
∑

b ju
∗

j (u)T(u j) converges unconditionally in Y for each u ∈ U

and b = (bi) ∈ ℓ∞, by the unconditionality of the basis (ui). Let J : [(T(ui)] → ℓ∞
be a linear isometry, and let A : Y → ℓ∞ be a continuous linear extension of J. Now

suppose that K(X,Y ) is complemented in S(X,Y ). Then K(U ,Y ) is complemented

in S(U ,Y ). Let P : S(U ,Y ) → K(U ,Y ) be a projection. Consider the operators

APφ : ℓ∞ → K(U , ℓ∞) and Aφ : ℓ∞ → S(U , ℓ∞). Since φ(e j) = u∗

j ⊗ T(u j), φ(e j)

is a rank one operator, thus compact. Then APφ(e j) = Aφ(e j) for each j ∈ N.

Proposition 5 of Kalton [24] produces an infinite subset M of N such that

APφ(b) = Aφ(b), b ∈ l∞(M).

Therefore Aφ(χM) is compact. But φ(χM)(u j) = T(u j), j ∈ M, and

{T(u j) : j ∈ M}

is not relatively compact. Therefore φ(χM) is not compact. However, this is a contra-

diction, since A|[T(ui )] is an isometry.

(ii) The proof is essentially the same as the proof of (i), replacing “relatively weakly

compact” with “relatively compact”.

Corollary 2.12 ([14, Lemma 3]) Let Y be a Banach space without the Schur property.

If ℓ1
c
→֒ X, then K(X,Y ) is not complemented in W (X,Y ).

Proof Let (yn) be a weakly null normalized basic sequence in Y and S(X,Y ) =

W (X,Y ). Define T : ℓ1 → Y by T(x) =
∑

xn yn, x = (xn) ∈ ℓ1. If φ : ℓ∞ → L(ℓ1,Y )

is defined as in the previous theorem, then φ(b)(x) =
∑

bn xn yn, x = (xn) ∈ ℓ1.

Note that φ is well defined and since φ(b)(e∗n) = (bn yn) is weakly null, φ(b) is weakly

compact for each b ∈ ℓ∞. Apply Theorem 2.11.

The next result contains [24, Lemma 3].

Corollary 2.13 Suppose that ℓ1
c
→֒ X and Y is infinite-dimensional. Then K(X,Y ) is

not complemented in CC(X,Y ) and K(X,Y ) is not complemented in U (X,Y ). Conse-

quently, K(X,Y ) is not complemented in L(X,Y ).

Proof Let (yn) be a normalized basic sequence in Y . Define T : ℓ1 → Y by T(x) =∑
xn yn, x = (xn) ∈ ℓ1. Let φ : ℓ∞ → L(ℓ1,Y ), φ(b)(x) =

∑
bn xn yn, x = (xn) ∈ ℓ1.

Note that φ(b) is completely continuous for each b ∈ ℓ∞, since ℓ1 has the Schur

property. Let S(X,Y ) = CC(X,Y ) and apply Theorem 2.11. Furthermore, φ(b)

is unconditionally converging for each b ∈ ℓ∞. By Theorem 2.11, K(X,Y ) is not

complemented in U (X,Y ).

Corollary 2.14 ([3, Theorem 3]) If ℓ1
c
→֒ X and Y is non-reflexive, then W (X,Y ) is

not complemented in L(X,Y ).
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Proof Let (yn) be a sequence in BY with no weakly convergent subsequence and

S(X,Y ) = L(X,Y ). Define T : ℓ1 → Y by T(x) =
∑

xn yn, x = (xn) ∈ ℓ1. Let

φ : ℓ∞ → L(ℓ1,Y ), φ(b)(x) =
∑

bn xn yn, x = (xn) ∈ ℓ1. Apply Theorem 2.11.

We recall that if ℓ∞ 6 →֒ X, then every operator T : ℓ∞ → X is weakly compact (see

[27]). Furthermore, if c0 6 →֒ X, then every operator T : C(K) → X is weakly compact

(see [19, 21]). The next result contains [13, Theorem 5].

Corollary 2.15 If L(X, ℓ1) 6= K(X, ℓ1) and Y is non-reflexive, then W (X,Y ) is not

complemented in L(X,Y ).

Proof Let T : X → ℓ1 be a noncompact operator. Then T∗ : ℓ∞ → X∗ is not weakly

compact. By results of [21, 27], c0 →֒ X∗, and thus ℓ1
c
→֒ X (see [4]). Apply the

previous corollary.

Corollary 2.16 ([12, Theorem 2]) If c0 →֒ K(X,Y ), then K(X,Y ) is not comple-

mented in L(X,Y ).

Proof By Corollaries 2.8 and 2.13 we may assume that c0 6 →֒ X∗ and c0 6 →֒ Y . Thus,

by [24, Theorem 4], ℓ∞ 6 →֒ K(X,Y ). If K(X,Y ) is complemented in L(X,Y ), then

Corollary 2.2 provides a contradiction which concludes the proof.

In the next results we investigate the complementation of the space of completely

continuous operators CC(X,Y ) in L(X,Y ). A Banach space X has the Schur property

if every weakly null sequence in X is norm null. Corollary 3.10 of [22] shows that if

X is a separable Banach space, then X has the Schur property if and only if L(X, c0) =

CC(X, c0).

Theorem 2.17 The ideal of completely continuous operators has property (∗).

Proof Let A : X → ℓ∞ be an operator which is not completely continuous. Let

(xn) be a weakly null sequence in X and δ > 0 such that ‖A(xn)‖ > δ for each

n ∈ N. Let n1 = 1 and choose N1 ∈ N such that |e∗N1
(A(xn1

))| > δ. Now (A(xn)) is

weakly null. Choose n2 > n1 so that |e∗k (A(xn))| < δ for n ≥ n2 and 1 ≤ k ≤ N1.

Choose N2 > N1 such that |e∗N2
(A(xn2

))| > δ. Continuing this process we obtain a

subsequence (xni
) of (xn) and an increasing sequence (Ni) of natural numbers such

that |e∗Ni
(A(xni

))| > δ for each i ∈ N. Let M0 = {Ni : i = 1, 2, . . . }. Note that M0 is

an infinite subset of N and ‖AM0
(xni

)‖ ≥ δ for each i ∈ N. If M is an infinite subset

of M0, then AM is not completely continuous. Therefore the ideal of completely

continuous operators has property (∗).

Corollary 2.18 Let X be a Banach space. The following are equivalent:

(i) L(X, c0) = CC(X, c0);

(ii) CC(X, c0) is complemented in L(X, c0).

If X is separable, then (i) and (ii) are equivalent to

(iii) X has the Schur property.

Proof Apply Corollary 2.7, Theorem 2.17, and [22, Corollary 3.10].
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Corollary 2.19 If L(X, c0) 6= CC(X, c0) and c0 →֒ Y , then CC(X,Y ) is not comple-

mented in L(X,Y ).

Proof Apply Theorem 2.6 and Theorem 2.17.

A bounded subset S of X is called a limited subset of X if each w∗-null sequence

(x∗n ) in X∗ tends to 0 uniformly on S, and X is said to have the Gelfand–Phillips

property if every limited subset of X is relatively compact.

Corollary 2.20 Suppose that X has the Gelfand–Phillips property and does not have

the Schur property. If c0 →֒ Y , then CC(X,Y ) is not complemented in L(X,Y ).

Proof Let (xn) be a normalized weakly null sequence in X. Then (xn) is not limited.

Choose a w∗-null sequence (x∗n ) in X∗ such that x∗n (xm) = δnm (see [30, Theorem

1.3.1]). Define T : X → c0 by T(x) = (x∗n (x)). Then T is not completely continuous

since ‖T(xn)‖ ≥ |x∗n (xn)| = 1 for each n ∈ N. Apply Corollary 2.19.

Theorem 2.21 If X does not have the Schur property, then CC(X, ℓ∞) is not comple-

mented in L(X, ℓ∞).

Proof Suppose that (xn) is a normalized weakly null basic sequence in X. Let X0 =

[xn] and let (x∗n ) be the associated sequence of coefficient functionals. For each n ∈ N,

let f ∗n ∈ X∗ be a Hahn–Banach extension of x∗n . Define T : ℓ∞ → L(X, ℓ∞) by

T(b)(x) = (bn f ∗n (x)), b = (bn) ∈ ℓ∞, x ∈ X. Note that the operator T is well

defined and T(en) = f ∗n ⊗ en for each n ∈ N.

Suppose that CC(X, ℓ∞) is complemented in L(X, ℓ∞). Let P : L(X, ℓ∞) →
CC(X, ℓ∞) be a projection, and let R : L(X, ℓ∞) → L(X0, ℓ∞) be the natural re-

striction map. Define ψ : ℓ∞ → L(X0, ℓ∞) by ψ(b) = RT(b). Then RPT : ℓ∞ →
CC(X0, ℓ∞) is an operator such that RPT(en) = x∗n ⊗ en = ψ(en) for each

n ∈ N. Proposition 5 of Kalton [24] produces an infinite subset M of N such

that RPT(χM) = ψ(χM). Hence ψ(χM) is completely continuous. However,

ψ(χM)(xn) = en, n ∈ M, which is a contradiction.

Corollary 2.22 Suppose that X is a Banach space and ℓ∞ →֒ Y . The following are

equivalent:

(i) X has the Schur property;

(ii) L(X,Y ) = CC(X,Y );

(iii) CC(X,Y ) is complemented in L(X,Y ).

Proof (iii) ⇒ (i). Suppose that X does not have the Schur property. If ℓ∞ →֒ Y ,

then ℓ∞
c
→֒ Y . Since CC(X,Y )

c
→֒ L(X,Y ), CC(X, ℓ∞)

c
→֒ L(X, ℓ∞), which is a

contradiction with the previous theorem.
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