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Complemented Subspaces of Linear
Bounded Operators

Manijeh Bahreini, Elizabeth Bator, and Ioana Ghenciu

Abstract. 'We study the complementation of the space W (X, Y') of weakly compact operators, the space
K(X,Y) of compact operators, the space U(X,Y) of unconditionally converging operators, and the
space CC(X,Y) of completely continuous operators in the space L(X,Y) of bounded linear operators
from X to Y. Feder proved that if X is infinite-dimensional and ¢y < Y, then K(X,Y) is uncom-
plemented in L(X,Y). Emmanuele and John showed that if ¢y < K(X,Y), then K(X,Y) is uncom-
plemented in L(X,Y). Bator and Lewis showed that if X is not a Grothendieck space and ¢y — Y,
then W(X,Y) is uncomplemented in L(X,Y). In this paper, classical results of Kalton and separably
determined operator ideals with property (*) are used to obtain complementation results that yield
these theorems as corollaries.

Introduction

Throughout this paper X and Y will denote real Banach spaces and X* will denote the
continuous linear dual of X. An operator T: X — Y will be a continuous and linear
function. The set of all bounded linear operators from X to Y will be denoted by
L(X,Y), and the compact (resp., weakly compact, unconditionally converging, com-
pletely continuous) operators will be denoted by K(X,Y) (resp., W(X,Y), U(X,Y),
CC(X,Y)). An operator T: X — Y is unconditionally converging if T maps weakly
unconditionally converging series into unconditionally converging series. An opera-
tor T: X — Y is called completely continuous (or Dunford—Pettis) if T maps weakly
Cauchy sequences to norm convergent sequences.

If A is a subset of X, then [A] denotes the closed linear span of A. Let (e,) be the
Schauder basis of ¢, (¢}) be the basis of ¢;, and (¢?) the basis of £,. The reader is
referred to Diestel [7] or Dunford—Schwartz [11]] for undefined notation and termi-
nology.

For many years mathematicians have been interested in the problem of whether an
operator ideal is complemented in the space L(X,Y) of all bounded linear operators
between X and Y; see Thorp [29], Arteburn and Whitley 2], Emmanuele [12}13],
John [23]], Feder [16,[17], Emmanuele and John [15], and Kalton [24]. In this note
we will present results related to the complementability of W(X,Y), U(X,Y), and
CC(X,Y)in L(X,Y).
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1 The Uncomplemented Spaces W (X,Y) and U(X,Y)

We begin this section with a characterization of spaces X so that W (X, ¢p) is comple-
mented in L(X, ¢). In the process, we extend the characterizations of Grothendieck
space given in [9)]. (A Banach space X is called a Grothendieck space if weak* and
weak convergence of sequences in X* coincide.) See [3, Theorem 4] for a related
result.

Theorem 1.1 Let X be a Banach space. The following are equivalent:

(i) X is a Grothendieck space;
(11) L(X7 CO) = W(Xa CO);
(iii) W(X, co) is complemented in L(X, cp).

Proof (i) = (ii). Since X is a Grothendieck space, every bounded linear operator
T: X — ¢ is weakly compact (see [9, p. 179]).

(ii) = (iii) is clear. Hence, it suffices to verify that (iii) = (i).

Suppose that X is not a Grothendieck space. Choose a w*-null sequence (x};) in
X* with no weakly null subsequence. Let X, be a separable subspace of X such that
the natural restriction map M from [x}:n € N] to X is an isometry. Thus (M(x}))
is w*-null, and no subsequence of (M(x};)) converges weakly.

Define T: ¢, — L(X, cp) by

T(b)(x) = Y byxi(x)en, b= (by) € log,x € X.

Let S: ¢¢ — {oo be the inclusion. Let P: L(X, ¢y) — W (X, ¢y) be a projection, and
let R: L(X,cp) — L(Xp,co) be the natural restriction map. Then SRPT: (o, —
W (Xo, £o) is an operator such that SRPT(e,) = T(e,)|x, for each n € N. Propo-
sition 5 of Kalton [24] produces an infinite subset M of N such that SRPT (xy) =
T(xm)lx,- Hence T(xa)|x, is weakly compact. However, (T (xa)|x,)*(ef) = M(x})
for each n € M, which is a contradiction. [ ]

Remark Emmanuele [[13] Theorem 2] showed that if X has the Dunford—Pettis
property, the Gelfand—Phillips property, and does not have the Schur property, then
W(X,Y) is not complemented in L(X,Y), whenever ¢, < Y. Bator and Lewis [3}
Theorem 4] improved this result by only assuming that X is not a Grothendieck space
and ¢y — Y. If X is a separable Grothendieck space, it is readily seen that X is reflexive
and W(X,Y) = L(X,Y) for any Banach space Y. Thus, we have the following result.

Corollary 1.2 Suppose X is a separable Banach space and ¢y — Y. The following are
equivalent:

(1) X is a Grothendieck space;
(i) L(X,Y)=W(X,Y);
(iii) W(X,Y) is complemented in L(X,Y).

Theorem 1.3 If X is non-reflexive, then W (X, {.) is not complemented in L(X, ().

Proof Let X be a separable subspace of X that is not a Grothendieck space. Choose
a w*-null sequence (y}) in X such that no subsequence of it converges weakly to a
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point in X§. For each n € N, let x;; € X* be a Hahn-Banach extension of y;;. Define
T:ls — L(X,{lx) by

T(b)(x) = (byx,(x)), b= (by) € lg, x € X.

Note that the operator T is well defined and T'(e,) = x}} ® e, for each n € N.
Suppose that W(X, () is complemented in L(X, /). Let P: L(X,4¢») —
W (X, {s) be a projection, and let R: L(X,{,) — L(Xo, /) be the natural re-
striction map. Define 9: oo — L(Xp, %) by ¥(b) = RT(b). Then RPT: {o, —
W (Xo, o) is an operator so that RPT(e,) = y; ®e, = 1(e,) for each n € N. Propo-
sition 5 of Kalton [24]] produces an infinite subset M of N such that RPT(xy) =
¥(xm). Hence () is weakly compact. However, (¢0(xam))*(ef) = x|x, = vi»
n € M, which is a contradiction. [ ]

Corollary 1.4 Suppose that X is a Banach space and {~, — Y. The following are
equivalent:

(1) Xis reflexive;

(i) LIX,Y)=W(X,Y);

(iii) W(X,Y) is complemented in L(X,Y).

Proof (iii) = (i). Suppose that X is non-reflexive. It is known that if /o, — Y,
then /o Sy (since £ is injective). Since W(X,Y) is complemented in L(X,Y),
W(X, ) is complemented in W(X,Y), and thus in L(X,Y). Now W(X,/,,) C
L(X,lx) C L(X,Y), hence W (X, {,) is complemented in L(X, {.,), which is a con-
tradiction with Theorem[1.3] [

Now we turn our attention to the complementation of the space of uncondition-
ally converging operators U(X,Y) in L(X,Y). A key step in the proof of [24} Theo-
rem 4], [12} Theorem 2], and 17, Theorem 1] involves the unconditional pointwise
convergence of a series of compact operators to an operator which is not compact.
Analogous hypotheses guarantee that U(X,Y) is not complemented in L(X,Y).

Theorem 1.5 Suppose that E is an infinite-dimensional separable and complemented
subspace of X so that U(E,Y) = K(E,Y). If (T;) is a sequence from U(X,Y), T €
L(X,Y), > Ti(x) converges unconditionally to T(x) for each x € X, and T|g is not
unconditionally converging, then U(X,Y) is not complemented in L(X,Y).

Proof Let J: E — X be the natural inclusion, and note that > T;J(x) converges
unconditionally to T J(x) for each x € E. However, since T] is not unconditionally
converging, Y T; ] does not converge in the norm topology. Without loss of general-
ity, suppose that inf; | T; J|| > 0.

Now suppose that U(X,Y) is complemented in L(X,Y) and let I': L(X,Y) —
U(X,Y) be a projection. If P: X — E is a projection and R: L(X,Y) — L(E,Y) is
the natural restriction map, then Q: L(E,Y) — U(E,Y), Q(T) = RI'(TP) defines a
projection from L(E,Y) onto U(E,Y). Define ¢: £, — L(E,Y) by

@(b) = Z biT;] (strong operator topology)
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for b = (b;) € {y. Then ¢(e,) = T,]J, and thus ¢(e,) € U(E,Y) for each n € N.
Further, {¢(b)(x) : b € {,x € E} is separable. Apply [24, Lemma 2] to obtain an
infinite subset M of N so that ¢(b) € U(E,Y) for each b € £, (M).

Since infien || T;J|| > 0, > ;) TiJ is not unconditionally convergent. How-
ever, since ) . em TiJ(x) is unconditionally convergent for each x € E, the Uniform
Boundedness Principle shows that ) .,/ T;] is weakly unconditionally convergent.
Thus ¢y < U(E,Y) = K(E,Y), and [12} Theorem 2] provides a contradiction which
finishes the proof. ]

Corollary 1.6 Ifc < Xand co — Y, thenU(X,Y) is not complemented in L(X,Y).

Proof Suppose that E is a complemented isomorphic copy of ¢; in X and (x,) is a
copy of (e,) in E. Let P:X — Ebea projection, I: E — ¢ be an isomorphism
with I(x,) = e, foreachn € N, and A = IP. For each n € N, let X = efA and
let (y,) be a copy of (e,) in Y. Define T: X — Y by T(x) = > x*(x) yn, x € X.
Let T, = x} ® y», n € N. Then each T, is a rank one operator, >, T,(x) converges
unconditionally to T(x) for each x € X, and T(x,) = y, for each n € N. Hence, T|g
is not unconditionally converging. Apply Theorem[L.5] ]

Bator and Lewis [3, Theorem 2] showed that if X is separable and there is an
operator T: X — Y which is not unconditionally converging, then U(X,Y) is not
complemented in L(X,Y). Now we present a generalization of this theorem.

Corollary 1.7 Suppose that By~ is w*-sequentially compact and Y is a Banach space.
The following are equivalent:

(i) > Xore 4 Y;

(i) LIX,Y) =UX,Y);

(iii) U(X,Y) is complemented in L(X,Y).

Proof (i) = (ii). If A: X — Y is an operator which is not unconditionally converg-
ing, then there is a subspace H of X isomorphic to ¢y such that A|j is an isomorphism
[7, p. 54]. Hence ¢g — X and ¢y — Y.

(ii) = (iii) is obvious.

(iii) = (i). Suppose that ¢p — X and ¢y < Y. Let (x,) be a basic sequence in X
such that (x,) ~ (e,) and let (x}) be a sequence of biorthogonal coefficients in X*.
Since Bx~ is w*-sequentially compact, we may suppose without loss of generality that

(x) is w*-convergent. If (x) W—> x*, then (x — x*)(x,) = 1 — x*(x,) — 1, hence
(x,) is not limited. By a result of Schlumprecht [30} p. 36], (x,) has a subsequence
(c,) such that [c,] <y X. This provides a contradiction to Corollary[L.é [ |

Theorem 1.8 Ifcy — X, then U(X, ) is not complemented in L(X, {~).

Proof Let (x,) be a copy of (e,) in X, and let Xy = [x,]. Suppose that (x}) is the
associated sequence of coefficient functionals and ( f;') is a sequence of Hahn—Banach
extensions in X*. Define T: ¢, — L(X, ¢~) by

T(b)(x) = (b f; (x)), b= (by) € loo, x € X.
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Note that the operator T is well defined and T'(e,) = f, ® e, for each n € N.
Suppose that P: L(X,{~) — U(X,¥s) is a projection and R: L(X,{~) —
L(Xo, {) is the natural restriction map. Then RPT: ¢, — U(Xp, ) is an op-
erator so that RPT(e,) = T(e,)|x, = X ® e, for each n € N. By [24} Proposition 5],
there is an infinite subset M of N such that RPT(xu) = T(xm)|x,- Hence T(xm)|x,
is unconditionally converging. However, (T(xa)|x,)(xs) = es, n € M, which is a
contradiction. [ |

Corollary 1.9 Suppose that X is a Banach space and {~, — Y. The following are
equivalent:

1) aorX

(i) LX,Y) =UX,Y);

(iii) U(X,Y) is complemented in L(X,Y).

Proof (i) = (ii). If L(X,Y) # U(X,Y), then ¢y — X (see [ p. 54]).

(iii) = (i). Suppose that ¢ — X. Since {o, — Y, { S Y. If UX,Y) N
L(X,Y), then U(X, {s) N L(X, f~), which is a contradiction with the previous
theorem. [ |

2 Separably Determined Operator Ideals

In the previous section we made an investigation of the subspaces W(X,Y) and
U(X,Y) of L(X,Y). In this section we generalize some of these results to arbitrary
operator ideals. We say that O is an operator ideal if for all Banach spaces X, Y, Z,
and W, the following hold.

* O(X,Y)is asubspace of L(X,Y).

e IfSeL(Z,X), T € OX,Y),andR € L(Y,W), then RTS € O(Z,W).

Lemma 2.1 Let O be a non-trivial operator ideal and X, Y be Banach spaces. Then
every finite rank operator from X toY isin O(X,Y).

Proof Letxj € X*, yo € Y,andlet ¢ € O(X,Y), ¢ # 0. Choose xp € X and
z* € By« such that ¢(xy) =z # 0and z*(z) = 1. Define T: X - Xand S: Y — Y
by T(x) = x{(x) %0, x € X and S(y) = z*(¥) y0, ¥ € Y. Note that ST = xj ® yo,
and thus x} ® yo € O(X,Y). [ |

In the following results O is a closed operator ideal. We consider conditions that
yield copies of ¢y and ., in O(X,Y). If X is infinite dimensional and ¢y — L(X,Y),
then /o, — L(X,Y) (see [24}125]). Part (iii) of the following corollary generalizes
this result. It is known that /., < L({,,{,) (see [24]). Moreover, if X has an un-
conditional basis, then ¢, — L(X, X) (see [25]]). Part (iv) of the following corollary
generalizes this result. The Banach space X has the Dunford—Pettis property (DPP)
if every weakly compact operator T: X — Y is completely continuous.

Corollary 2.2 (i) Ifloe — X*0rlo — Y, thenly — O(X,Y).
(ii) Suppose that X and Y are infinite-dimensional Banach spaces and O(X,Y) is com-
plemented in L(X,Y). If co — X* orcy — Y, then o, — O(X,Y).
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(iii) Suppose that X and Y are infinite-dimensional Banach spaces and O(X,Y) is com-
plemented in L(X,Y). Then o, — O(X,Y) ifand only if ¢g — O(X,Y).

(iv) Suppose X, Y are infinite-dimensional Banach spaces satisfying the following as-
sumption: there exist a Banach space G with an unconditional basis (g,) and
biorthogonal coefficients (g), and two operators R: G — Y and S: G* — X*
such that (R(g,)) and (S(g;;)) are seminormalized and either (R(g,)) or (S(g;;)) is
a basic sequence. If O(X,Y) is complemented in L(X,Y), then o, — O(X,Y).

(v) Assume that X has the DPP and X* does not have the Schur property, and there
is an operator T: €, — Y such that the sequence (T(e2)) is seminormalized. If
O(X,Y) is complemented in L(X,Y), then {o, — O(X,Y).

Proof (i) Observe that X* and Y embed in the finite rank operators from X to Y.
Apply Lemma[2.]]

(i) If ¢g <= Y (or ¢g — X*), then ¢g — O(X,Y). Apply [20, Theorem 1].

(iii) Apply [20, Theorem 1].

(iv) Lemma 3.2 in [[18]] shows that (S(g;) @ R(g.)) ~ (e,), and thus ¢g — O(X,Y).
Apply [20, Theorem 1].

(v) Since X has the DPP and X* does not have the Schur property, ¢; — X (see
[8122]). Then L' < X* (byaresultin [26])), hence £, < X* (see [7]). Apply (iv). ®

The following result concerns operators on abstract continuous function spaces.
We refer the reader to [[IL/5]] for a complete discussion of this setting. We recall that
if T: C(K,X) — Y is an operator with representing measure m and semivariation
1, then T is called strongly bounded if (1(A,)) — 0, whenever (A,) is a pairwise
disjoint sequence of Borel subsets of K. The Banach space X has property (V) if
every unconditionally converging operator on X is weakly compact [26]].

Theorem 2.3 Suppose there exists an operator ideal O(X,Y) so that ¢y /> O(X,Y).
Then the following assertions hold.

(i)  Every operator T: C(K,X) — Y is strongly bounded.

(ii) If X is reflexive, then every operator T: C(K, X) — Y is weakly compact.

(i) Ifty 4 X and X has property (1), then every operator T: C(K, X) — Y is weakly
compact.

(iv) Every operator T: C(K,X) — Y has an unconditionally converging adjoint.

Proof (i) Suppose that T: C(K,X) — Y is an operator which is not strongly
bounded. Then T is not unconditionally converging by results in [5,[10]]. It follows
that T is an isomorphism on a copy of ¢y [[7, p. 54], and ¢y — Y. Therefore ¢, embeds
in the rank one operators from X to Y, hence in O(X,Y).

(ii) Part (i) and [5) Theorem 4.1] show that every operator T: C(K,X) — Y is
weakly compact.

(iii) By results in [6}31], C(K, X) has property (V). Hence, by part (i), every
operator T: C(K, X) — Y is unconditionally converging, and thus weakly compact.

(iv) If T: C(K,X) — Y is an operator and T*: Y* — C(K, X)* is not uncondi-
tionally converging, then T™* is an isomorphism on a copy of ¢, (see [7, p. 54]). Hence
o < C(K,X)*, and thus £; <> C(K, X) (see [4]). Then £, < X (see [28]), and thus
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¢g <> X*. Therefore ¢ — O(X,Y), which is a contradiction which concludes the
proof. ]

We use the following notation. Let A: X — /., be an operator and M be a
nonempty subset of N. We define Ayr: X — foo by Ap(x) = (yn), where y, =
e;(A(x)), n € M, and y, = 0 otherwise.

Suppose that O is a closed operator ideal. We say that O has property (x) if when-
ever X is a Banach space and A ¢ O(X, {,), there is an infinite subset My of N such
that Ay ¢ O(X, £y ) for all infinite subsets M of My. If M is a subset of N, then
P.o (M) denotes the infinite subsets of M.

A closed operator ideal O is said to be separably determined provided that for each
pair of Banach spaces X and Y, an operator T: X — Y belongs to O(X,Y) ifand only
if T|s € O(S,Y) for each separable subspace S of X.

Lemma 2.4 IfT: F — E* is an operator and T*|g is (weakly) compact, then T is
(weakly) compact.

Proof (compact) Let S = T*|g. Suppose x** € Bg«~ and choose a net (x,) in Bg
which is w*-convergent to x**. Then (T*(x,)) Yy T*(x**). Now, (T*(x,)) € S(Bg),
which is a relatively compact set. Then (T*(x,)) — T*(x**). Hence T*(Bp+~) C
S(Bg), which is relatively compact. Therefore T*(Bg«~) is relatively compact, and
thus T is compact. u

Lemma 2.5 The ideal of (weakly) compact operators has property (x).

Proof (compact) Suppose that A: X — { is not compact and let x; = A*(e;) for
eachn € N. Then A*: £% — X* is not compact. It follows that A*|,, is not compact,
and thus (x}) is not relatively compact. Without loss of generality suppose that (x};)
has no convergent subsequence. Let My = N and let M be an infinite subset of Mj.
Note that A3 (e}) = x5, n € M and A},(e;) = 0, otherwise. Then (Aj,(e})) is not
relatively compact, and thus Ay, is not compact. ]

Theorem 2.6 Let O be a separably determined operator ideal with property (x). Sup-
pose that U has an unconditional and seminormalized basis (u,) with biorthogonal co-
efficients (u}). IfL(X,U) # O(X,U) and U — Y, then O(X,Y) is not complemented
in L(X,Y).

Proof Let A: X — U suchthat A ¢ O(X,U). Let J: U — {4 be an isometric
embedding. Then JA ¢ O(X, {). Let X, be a separable subspace of X such that
B = JA|x, € O(Xo, o). Choose My € P (N) such that Byy ¢ O(Xo, £ ) for each
M € Poo(My). Note that > b,u(A(x))u, converges unconditionally in U for each
x€Xandb=(b,) € . Define T: £, — L(X,U) by

T(b)(x) = Y _ by} (A(X))uy, x € X.
Leti: U — Y be a linear embedding and let y, = i(u,) for each n € N. Use the

injectivity of £ to select an operator S: Y — £, so that S(y,) = e, foreach n € N.
Suppose that O(X,Y) < L(X,Y). Let P: L(X,Y) — O(X,Y) be a projection, and

https://doi.org/10.4153/CMB-2011-097-2 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2011-097-2

456 M. Bahreini, E. Bator, and I. Ghenciu

let R: L(X, {s) — L(Xo, ) be the natural restriction map. Consider the operators
Yl = L(Xp,l) and I': o — O(Xp, l) defined by ¢(b) = RSiT(b) and
I'(b) = RSPiT(b). Since T(e,) is a rank one operator, I'(e,) = p(e,) for each n € N.
By (24} Proposition 5], there is an infinite subset M of M, such that I'(b) = ¢(b),
b € l(M). Hence, p(xp) € O(Xo, ). However, o(xy) = By € O(Xo, loo)s
which is a contradiction. [ |

The following result generalizes Theorem [L.1]

Corollary 2.7 Let O be a separably determined operator ideal with property (x). The
following are equivalent:

@) LX) = 0X, q);

(ii) O(X, co) is complemented in L(X, cp).

Theorem generalizes [[17, Corollary 4]. We remark that if X is an infinite-
dimensional Banach space and ¢; < Y, then the Josefson—Nissenzweig theorem
guarantees that L(X,Y) # K(X,Y).

Corollary 2.8 ([17, Corollary 4]) If X is an infinite dimensional Banach space and
co = Y, then K(X,Y) is not complemented in L(X,Y).

Proof Use the Josefson—Nissenzweig theorem to choose a w*-null and normalized
sequence (x;;) in X*. Define S: X — ¢ by S(x) = (x(x)). Clearly (§*(e})) = (x}) is
not relatively compact, hence S is not compact. Apply Theorem 2.6land Lemma[2.5

|

Corollary 2.9 ([13, Theorems 2 and 3]; [3, Theorem 4]) If X is not a Grothendieck
space and ¢y — Y, then W(X,Y) is not complemented in L(X,Y).

Proof Let (x);) be a w*-null sequence in X* with no weakly convergent subsequence.
Then the operator T: X — ¢y defined by T(x) = (x};(x)) is not weakly compact.
Apply Theorem[2.6]and Lemma[2.5 ]

Corollary 2.10 ([13} Corollary 4]) Assume that X contains a complemented copy of
co and cy — Y. Then W (X, Y) is not complemented in L(X,Y).

Proof If ¢ < X and W(X,Y) <» L(X,Y), then W(cy,Y) <> L(cy,Y). Apply
Corollary[2.9 ]

The next theorem is motivated by results in [3,13[14}24].

Theorem 2.11 (i) Suppose that U has an unconditional and seminormalized basis
(u;) with biorthogonal coefficients (u}), U S X, and T: U — Y isan operator such
that (T (u;)) is not relatively compact in Y. Let S(X,Y) be a closed linear subspace of
L(X,Y) which properly contains K(X,Y) such that ¢(b) € S(U,Y) forallb € {,
where ¢(b)(u) = > biuf(u)T(w;), u € U. Then K(X,Y) is not complemented in
S(X,Y).

(ii) Suppose that U has an unconditional and seminormalized basis (u;) with bior-
thogonal coefficients (u}), U S X,and T: U — Y isan operator such that (T(u;)) is
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not relatively weakly compact in'Y. Let S(X,Y) be a closed linear subspace of L(X,Y)
which properly contains W(X,Y) such that ¢(b) € S(U,Y) for all b € (-, where
o) () = > biuf ()T (u;), u € U. Then W(X,Y) is not complemented in S(X,Y).

Proof (i) Note that ) b; u}*(u)T(u ;) converges unconditionally in Y for each u € U
and b = (b;) € £, by the unconditionality of the basis (u;). Let J: [(T(u;)] = ¢
be a linear isometry, and let A: Y — /., be a continuous linear extension of J. Now
suppose that K(X,Y) is complemented in S(X,Y). Then K(U,Y) is complemented
in S(U,Y). Let P: S(U,Y) — K(U,Y) be a projection. Consider the operators
AP¢: log — K(U,{s) and A¢p: Lo — S(U, L ). Since ¢(e;) = u;‘ ® T(u;), ¢(e;)
is a rank one operator, thus compact. Then AP¢(e;) = Ag(e;) for each j € N.
Proposition 5 of Kalton [24] produces an infinite subset M of N such that

APP(b) = Ag(b), b € lo(M).
Therefore A¢(x ) is compact. But ¢(x ) (u;) = T(u; ), j € M, and
{T(u]) : ] c M}

is not relatively compact. Therefore ¢(xas) is not compact. However, this is a contra-
diction, since A|[r(,,)] is an isometry.

(ii) The proof is essentially the same as the proof of (i), replacing “relatively weakly
compact” with “relatively compact”. ]

Corollary 2.12 ([14, Lemma 3]) LetY be a Banach space without the Schur property.
If ¢, < X, then K(X,Y) is not complemented in W(X,Y).

Proof Let (y,) be a weakly null normalized basic sequence in Y and S(X,Y) =
W(X,Y).Define T: 1 > Yby T(x) = > %y ¥y, x = (x,) € £1. I : by — L(41,Y)
is defined as in the previous theorem, then ¢(b)(x) = > b, x, yu, x = (x,) € 4.
Note that ¢ is well defined and since ¢(b)(e;) = (b, y,) is weakly null, ¢(b) is weakly
compact for each b € {,. Apply Theorem[2.11] ]

The next result contains [24, Lemma 3].

Corollary 2.13 Suppose that ¢ S XandY is infinite-dimensional. Then K(X,Y) is
not complemented in CC(X,Y) and K(X,Y) is not complemented in U(X,Y). Conse-
quently, K(X,Y) is not complemented in L(X,Y).

Proof Let (y,) be a normalized basic sequence in Y. Define T: {; — Y by T(x) =
an V> X = (xn) S 61- Let (b: eoo — L(éhy)) ¢(b)(x) = Z bn-xn V> X = (-xn) € El-
Note that ¢(b) is completely continuous for each b € /., since ¢; has the Schur
property. Let S(X,Y) = CC(X,Y) and apply Theorem Furthermore, ¢(b)
is unconditionally converging for each b € {,. By Theorem 211l K(X,Y) is not
complemented in U(X,Y). [ |

Corollary 2.14 ([3} Theorem 3]) If¢; S Xand is non-reflexive, then W(X,Y) is
not complemented in L(X,Y).
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Proof Let (y,) be a sequence in By with no weakly convergent subsequence and
S(X,Y) = L(X,Y). Define T: ¢{; — Y by T(x) = > %y yn» x = (x,) € £1. Let
@ loo — L(41,Y), () (%) = > by xy yn, x = (x,,) € 1. Apply Theorem 2111 [ |

We recall that if /o, ¥+ X, then every operator T: ¢, — X is weakly compact (see
[27]). Furthermore, if ¢y ¥+ X, then every operator T: C(K) — X is weakly compact
(see [T9L21]]). The next result contains [[13} Theorem 5].

Corollary 2.15 IfL(X,{,) # K(X, 1) and Y is non-reflexive, then W(X,Y) is not
complemented in L(X,Y).

Proof Let T: X — ¢, be a noncompact operator. Then T*: ¢, — X* is not weakly

compact. By results of [21,27]], ¢ <— X*, and thus ¢, S X (see [4]). Apply the
previous corollary. u

Corollary 2.16 ([12, Theorem 2]) Ifcy — K(X,Y), then K(X,Y) is not comple-
mented in L(X,Y).

Proof By Corollaries[2.8land Z.13]we may assume that ¢y > X* and ¢y ¥ Y. Thus,
by [24, Theorem 4], ¢, > K(X,Y). If K(X,Y) is complemented in L(X,Y), then
Corollary[2.2 provides a contradiction which concludes the proof. ]

In the next results we investigate the complementation of the space of completely
continuous operators CC(X,Y) in L(X,Y). A Banach space X has the Schur property
if every weakly null sequence in X is norm null. Corollary 3.10 of [22] shows that if
X is a separable Banach space, then X has the Schur property if and only if L(X, ;) =
cC (X , Co ) .

Theorem 2.17 The ideal of completely continuous operators has property (x).

Proof Let A: X — {, be an operator which is not completely continuous. Let
(x,) be a weakly null sequence in X and 6 > 0 such that ||A(x,)|| > J for each
n € N. Let n; = 1 and choose N; € N such that |ej(,l (A(xy,))| > 6. Now (A(x,)) is
weakly null. Choose 1, > n; so that |ef (A(x,))| < d forn > nmyand 1 < k < Nj.
Choose N, > Nj such that \e}i,z (A(x,))| > 0. Continuing this process we obtain a
subsequence (x,,) of (x,) and an increasing sequence (N;) of natural numbers such
that |ey,. (A(x,,))| > 0 for eachi € N. Let My = {N; : i = 1,2,... }. Note that M, is
an infinite subset of N and ||Apy, (x,,)|| > 6 for each i € N. If M is an infinite subset
of My, then Ay is not completely continuous. Therefore the ideal of completely
continuous operators has property (). |

Corollary 2.18 Let X be a Banach space. The following are equivalent:

(1) L(Xa CO) = CC(X7 CO);
(il) CC(X,cy) is complemented in L(X, cp).

If X is separable, then (i) and (ii) are equivalent to
(iii) X has the Schur property.

Proof Apply Corollary2.7] Theorem[2.17] and [22} Corollary 3.10]. [ ]
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Corollary 2.19 IfL(X,cy) # CC(X,¢y) and ¢cg — Y, then CC(X,Y) is not comple-
mented in L(X,Y).

Proof Apply Theorem[2.6land Theorem[2.17] ]

A bounded subset S of X is called a limited subset of X if each w*-null sequence
(x}) in X* tends to 0 uniformly on S, and X is said to have the Gelfand—Phillips
property if every limited subset of X is relatively compact.

Corollary 2.20 Suppose that X has the Gelfand—Phillips property and does not have
the Schur property. If co — Y, then CC(X,Y) is not complemented in L(X,Y).

Proof Let (x,) be a normalized weakly null sequence in X. Then (x,) is not limited.
Choose a w*-null sequence (x;) in X* such that x};(x,,) = um (see [30, Theorem
1.3.1]). Define T: X — ¢y by T(x) = (x};(x)). Then T is not completely continuous
since || T(x,)|| > |x%(x,)| = 1 for each n € N. Apply CorollaryZ.19 [ |

Theorem 2.21 If X does not have the Schur property, then CC(X, {,) is not comple-
mented in L(X, {s).

Proof Suppose that (x,) is a normalized weakly null basic sequence in X. Let Xy =
[x.] and let (x) be the associated sequence of coefficient functionals. For eachn € N,
let ff € X* be a Hahn-Banach extension of x}. Define T: /o, — L(X, /) by
Tb)(x) = (b, f(x)), b = (by) € l, x € X. Note that the operator T is well
defined and T'(e,) = fF ® e, for each n € N.

Suppose that CC(X, {,) is complemented in L(X,¢y,). Let P: L(X,ly) —
CC(X, ) be a projection, and let R: L(X, ) — L(Xp,¢~) be the natural re-
striction map. Define 9: oo — L(Xp, %) by ¥(b) = RT(b). Then RPT: ¢, —
CC(Xp, ) is an operator such that RPT(e,) = x ® e, = 1(e,) for each
n € N. Proposition 5 of Kalton [24] produces an infinite subset M of N such
that RPT(xm) = t(xm). Hence 1(xn) is completely continuous. However,
Y(xm)(x,) = eq, n € M, which is a contradiction. [ |

Corollary 2.22 Suppose that X is a Banach space and o, — Y. The following are
equivalent:

(i) X has the Schur property;
(i) L(X,Y)=CC(X,Y);
(iii) CC(X,Y) is complemented in L(X,Y).

Proof (iii) = (i). Suppose that X does not have the Schur property. If /o, — Y,

then (o, <> Y. Since CC(X,Y) <> L(X,Y), CC(X, o) > L(X,/s), which is a
contradiction with the previous theorem. ]
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