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DERIVATIONS FROM TOTALLY ORDERED
SEMIGROUP ALGEBRAS INTO THEIR DUALS

T. D. BLACKMORE

ABSTRACT. For a well-behaved measure ñ, on a locally compact totally ordered
set X, with continuous part ñc, we make Lp(X,ñc) into a commutative Banach bimod-
ule over the totally ordered semigroup algebra Lp(X,ñ), in such a way that the natural
surjection from the algebra to the module is a bounded derivation. This gives rise to
bounded derivations from Lp(X,ñ) into its dual module and in particular shows that
if ñc is not identically zero then Lp(X,ñ) is not weakly amenable. We show that all
bounded derivations from L1(X,ñ) into its dual module arise in this way and also de-
scribe all bounded derivations from Lp(X,ñ) into its dual for 1 Ú p Ú 1 in the case
that X is compact and ñ continuous.

1. Introduction. A Banach algebra is said to be weakly amenable (WA) if all
bounded derivations from it into its dual module are inner. Weak amenability of L1-
algebras has been considered by several authors recently. In [8], B. E. Johnson completed
some previous partial results of his by showing that L1(G) is WA for all locally compact
groups. In [5], N. Groenbæk described all bounded derivations from L1(R+, w) into its
dual, showing that it is not WA for any weight w. In [3], the author considered the weak
amenability of ‡1(S) for several types of discrete semigroup S. In particular he showed
that for commutative S there is, at least often, a coincidence in S being regular or not and
‡1(S) being WA or not. These results perhaps suggest that whether an L1-algebra is WA
or not is dependent on the algebraic properties of the underlying topological semigroup,
such as whether its elements are invertible or not, rather than any topological properties
of the semigroup.

Here we consider the weak amenability of Lp-algebras whose underlying semigroups
are totally ordered semigroups which are locally compact in their order topology. For
such a semigroup, X, we write M+(X) for the set of õ-finite, regular, positive Borel mea-
sures on X and M (X) for the set of measures in M+(X) which are supported on the whole
of X. For ñ 2 M+(X), with the order convolution defined below, L1(X,ñ) is a Banach
algebra, and if ñ is finite, Lp(X,ñ) is a Banach algebra for 1 Ú p Ú 1 also (see [2]).
These algebras have been considered in [7], [11] and [2]. Now ñ 2 M+(X) has a unique
decomposition, ñ ≥ ñc + ñd, where ñc is continuous, ñd is discrete and both are in
M+(X). In Section 3 we show that for each 1 � p Ú 1 and ñ 2 M (X), Lp(X,ñ) is WA
if and only if ñc � 0 (where of course we assume ñ finite for 1 Ú p Ú 1). Here then
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134 T. D. BLACKMORE

the weak amenability of L1(X,ñ) reflects the topological, not the algebraic, structure of
X. In his article in [10], Lau expressed an interest in the weak amenability of M(S) for
locally compact, semitopological semigroups S (Problem 24). Our results imply that if X
is discrete then M(X) is WA, and if there is a non-discrete measure ñ in M (X) then M(X)
contains a subalgebra which is not WA

�
L1(X,ñ)

�
.

In Section 4 we go on to describe all bounded derivations from L1(X,ñ) into its dual
and in Section 5 by a (necessarily in the cases 1 Ú p Ú 1) different method we describe
all the bounded derivations from Lp(X,ñ) into its dual when X is compact and ñ continu-
ous. Thus these sections describe fully the 1-dimensional cohomology group of Lp(X,ñ)
with coefficients in Lp(X,ñ)Ł for their respective cases.

2. Preliminaries. Our basic objects are totally ordered sets with their order topol-
ogy (as described in [9]), which is Hausdorff. For such sets we use the usual interval
notation. We shall require these sets to be order complete so that the compact subsets
are the closed and bounded ones and we have local compactness. With maximum mul-
tiplication these spaces become topological semigroups. We refer to such semigroups as
totally ordered semigroups. If X is a totally ordered semigroup and ñ 2 M (X) (defined
in the introduction) then, as in [2], the order convolution of two ñ-integrable functions,
f and g, is given by

f Ł g(x) ≥ f (x)
Z

(�1,x]
g(u) dñ(u) + g(x)

Z
(�1,x)

f (u) dñ(u).

As noted in the introduction it was shown in [2], that taking multiplication to be convo-
lution, L1(X,ñ) is a commutative Banach algebra and Lp(X,ñ) is a Banach algebra for
1 Ú p Ú 1 if (and only if) ñ is finite. Thus when considering Lp(X,ñ) for 1 Ú p Ú 1
we will assume that ñ is finite.

For definitions relating to Banach algebras not given here we refer the reader to [6].
The notion of weak amenability of a commutative Banach algebra was introduced in [1].
Such an algebra, A, is said to be weakly amenable (WA), if each bounded derivation from
A into any commutative Banach bimodule is 0. It was shown in the same paper that a
commutative Banach algebra, A, is WA if (and only if) all bounded derivations from A
into its dual module are zero. That is if each bounded linear map, D, from A to AŁ, which
satisfies the derivation equality,

D(ab)(c) ≥ D(a)(bc) + D(b)(ca),

is zero. Since this later characterisation has a natural extension to non-commutative Ba-
nach algebras it is the way weak amenability is normally studied.

We note that the dual of Lp(X,ñ) is Lq(X,ñ), where 1 Ú p Ú 1 and 1
p + 1

q ≥ 1, and

since we are only considering õ-finite measures the dual of L1(X,ñ) is L1(X,ñ). The
õ-finiteness also means that we are free to use Fubini’s theorem.
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3. Weak amenability of totally ordered semigroup algebras. We reiterate that
unless otherwise stated X is a totally ordered semigroup and ñ a õ-finite (finite when we
are considering Lp(X,ñ) for 1 Ú p Ú 1), regular, Borel measure supported on the whole
of X. For such a measure, ñ, the measure of any ñ-measurable set can be approximated
from below by the measures of compact subsets. That is to say ñ is compact regular. We
begin this section by stating two results which are special cases of remarks given in [2].
For a fixed measure ñ we use k Ð kp to denote the norm in Lp(X,ñ) and for a fixed p we
use k Ð kñ to denote the norm in Lp(X,ñ).

PROPOSITION 3.1. If f 2 Lp(X,ñ) for any 1 Ú p Ú 1 then f 2 L1(X,ñ) and
kfk1 � ñ(X)

1
q kfkp, where 1

p + 1
q ≥ 1.

PROPOSITION 3.2. For 1 � p Ú 1 and f , g 2 Lp(X,ñ),Z
(�1,x)

f Ł g(u) dñ(u) ≥
Z

(�1,x)
f (u) dñ(u)

Z
(�1,x)

g(u) dñ(u).

As noted in the introduction a measure ñ 2 M+(X) has a decomposition, ñ ≥ ñc + ñd,
where ñc is continuous, ñd discrete and both are in M+(X). We make Lp(X,ñc) into a
commutative Banach bimodule over Lp(X,ñ). So for f 2 Lp(X,ñ) and g 2 Lp(X,ñc) we
define right and left actions,

f Ð g(x) ≥ g Ž f (x) ≥ g(x)
Z

(�1,x)
f (u) dñ(u).

Now
Z

X

þþþþþg(x)
Z

(�1,x)
f (u) dñ(u)

þþþþþ
p

dñc(x) �
Z

X
jg(x)jp

 Z
X
jf (u)j dñ(u)

!p

dñc(x)

� Ckfkp
ñ kgkp

ñc

where C ≥ 1 if p ≥ 1 and C ≥ ñ(X)
p
q if p Ù 1, by Proposition 3.1. Thus Ð and Ž are

bounded bilinear maps from respectively Lp(X,ñ) ð Lp(X,ñc) and Lp(X,ñc) ð Lp(X,ñ)
into Lp(X,ñc). Also for f , g 2 Lp(X,ñ) and h 2 Lp(X,ñc) we have by Proposition 3.2,

(f Ł g) Ð h(x) ≥
Z

(�1,x)
f (u) dñ(u)

Z
(�1,x)

g(u) dñ(u)h(x)

≥
Z

(�1,x)
f (u) dñ(u)(g Ð h)(x) ≥ f Ð (g Ð h)(x).

Similarly h Ž (f Ł g) ≥ (h Ž f ) Ž g. Finally for f , h 2 Lp(X,ñ) and g 2 Lp(X,ñc),

(f Ð g) Ž h(x) ≥
Z

(�1,x)
f (u) dñ(u)g(x)

Z
(�1,x)

h(u) dñ(u) ≥ f Ð (g Ž h)(x).

Hence Lp(X,ñc) is in this way a commutative Banach bimodule over Lp(X,ñ).
Now let i: Lp(X,ñ) �! Lp(X,ñc) take the equivalence class containing f to the equiv-

alence class containing f . Then i(f Łg)(x)�
�
i(f )Žg + f Ð i(g)

�
(x) ≥ f (x)g(x)ñ(fxg). Since

ñ(fxg) Ù 0 for at most countably many x 2 X, we have that i(f Łg) ≥ i(f )Žg+ f Ð i(g) and
i is a bounded derivation. If ñc is non-zero it will be non-zero on a compact subset K of
X. The characteristic function of K is in Lp(X,ñ) and so i will be non-zero. This proves
one half of
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136 T. D. BLACKMORE

THEOREM 3.3. For a totally ordered semigroup X and ñ 2 M (X), with continuous
part ñc, the totally ordered semigroup algebra Lp(X,ñ) is WA if and only if ñc � 0.

PROOF. We need to prove that if ñc � 0 then Lp(X,ñ) is WA. Now if ñc � 0 then ñ
will be concentrated on the countable set P ≥ fx 2 X : ñ(fxg) Ù 0g. Thus, denoting the
point mass at x 2 X by x also, it is enough to show that D(x)(y) ≥ 0 for all derivations
D from Lp(X,ñ) to its dual and all x, y 2 P. If x � y 2 P, then x Ł y ≥ ñ(fxg)y and
the derivation equality, gives that ñ(fyg)D(x)(z) ≥ 0. Hence D(x)(z) ≥ 0 whenever
x � z 2 P. Putting x ≥ y ½ z 2 P gives that D(x)(z) ≥ 0 for x ½ z also.

4. The bounded derivations from L1(X,ñ) to L1(X,ñ). As noted in the prelimi-
naries, weak amenability is normally studied by considering bounded derivations from a
Banach algebra into its dual. Following the construction given in [1] the derivation from
Lp(X,ñ) into Lp(X,ñc) displayed in the last section gives rise to bounded derivations
from Lp(X,ñ) into its dual, Lq(X,ñ), of the form,

Dï(f )(g) ≥ ï
�
g Ð i(f )

�
≥
Z

X
ï(x)f (x)

Z
(�1,x)

g(u) dñ(u) dñc(x)

for each ï 2 Lq(X,ñc), f , g 2 Lp(X,ñ).
In this section we show that all the bounded derivations from L1(X,ñ) into L1(X,ñ)

are of this form. Similarly to [8] we are able to write a bounded derivation as a double
integral.

Thus we start with an arbitrary bounded derivation D: L1(X,ñ) ! L1(X,ñ). Then
defining Λ

�
(f , g)

�
≥ D(f )(g) gives a bounded bilinear map from L1(X,ñ) ð L1(X,ñ)

to C. This then ‘extends’ to a bounded linear functional (which we also denote Λ) on
L1(X,ñ)
̂L1(X,ñ). Now by Grothendieck’s well-known result this tensor product is iso-
metrically isomorphic to L1(X ð X, ñ ð ñ), so that Λ can be thought of as being in
L1(X ð X, ñ ð ñ). Then

D(f )(g) ≥ Λ
�
(f , g)

�
≥ Λ(f 
 g) ≥

Z
X

Z
X

Λ
�
(x, y)

�
f (x)g(y) dñ(x) dñ(y).

Hence for f , g, h 2 L1(X,ñ),

D(f Ł g)(h) ≥
Z

X

Z
X

Z
(�1,x]

Λ
�
(x, y)

�
h(y)f (x)g(u) dñ(u) dñ(x) dñ(y)

+
Z

X

Z
X

Z
(�1,x)

Λ
�
(x, y)

�
h(y)g(x)f (u) dñ(u) dñ(x) dñ(y)

and we have similar expressions for D(f )(g Ł h) and D(g)(f Ł h).
Now taking c Ú d � a Ú b the derivation equality implies thatZ

[d,a]
h(u) dñ(u)

Z
[a,b)

Z
(c,d)

Λ
�
(x, y)

�
g(x)f (y) dñ(x) dñ(y) ≥ 0

for all f , g, h 2 L1(X,ñ) (consider f , g, h vanishing almost everywhere outside of [a, b),
(c, d) and [d, a] respectively). Thus

(1) if ñ([d, a]) Ù 0 then Λ
�
(x, y)

�
≥ 0 almost everywhere on (c, d) ð [a, b).
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We wish to show that this implies that Λ is zero almost everywhere on the set L ≥
f(x, y) 2 Xð X : x Ú yg. In doing this we need to take care near the diagonal and so we
define M ≥ f(x, y) 2 L : (x, y) Â≥ ;g (note we are using (x, y) to denote a point in X ð X
and an interval in X), and N ≥ f(x, y) 2 L : (x, y) ≥ ; and ñ(fyg) Ù 0g. We note that
these sets are measurable and that Ln(M[N) has measure zero. It is straightforward using
(1) to find an open neighbourhood of each point of M and N on which Λ is zero almost
everywhere. For example take (x, y) 2 M such that there is u 2 (x, y) with (x, u) Â≥ ;,
say v 2 (x, u). Then if (x, v) and (v, u) are empty we have ñ(fvg) Ù 0 and we can take
(c, v) ð (v, u) (or [x, v) ð (v, u) if x is minimal) as our neighbourhood. If (v, u) Â≥ ; then
ñ([v, u]) Ù 0 and our neighbourhood can be taken to be (c, v) ð (u, b). Finally for this
example if (x, v) Â≥ 0 take w 2 (x, v), then v 2 (w, u) so that ñ([w, u]) Ù 0 and our
neighbourhood can be taken to be (c, w) ð (u, b).

The existence of such neighbourhoods of each point and the compact regularity of ñ
then means that Λ is zero almost everywhere on L which implies that

(2)
Z

X

Z
(�1,y)

Λ
�
(x, y)

�
f (x)g(y) dñ(x) dñ(y) ≥ 0

and so

D(f )(g) ≥
Z

X

Z
[y,1)

Λ
�
(x, y)

�
f (x)g(y) dñ(x) dñ(y)(3)

≥
Z

X

Z
(�1,x]

Λ
�
(x, y)

�
f (x)g(y) dñ(y) dñ(x).

Next taking f , g and h to be zero outside of [a, b), [d, a] and (c, d] respectively, the
derivation equality together with (2) and the easy fact that if ñ(fxg) Ù 0 then Λ(x, x) ≥ 0,
imply that

Z
(c,d]

Z
[a,b)

Z
[d,a]

Λ
�
(x, y)

�
g(u)f (x)h(y) dñ(u) dñ(x) dñ(y)

≥
Z

(c,d]

Z
[a,b)

Z
[d,a]

Λ
�
(x, u)

�
g(u)f (x)h(y) dñ(u) dñ(x) dñ(y)

and so defining Λ̄
�
(y, u, x)

�
≥ Λ

�
(x, y)

�
� Λ

�
(x, u)

�
, we have

(4) Λ̄
�
(y, u, x)

�
≥ 0 almost everywhere on (c, d] ð [d, a] ð [a, b).

Again considering separate cases it is straightforward, using (4), to find an open neigh-
bourhood of each point of f(y, u, x) 2 XðXðX : y Ú u Ú xg on which Λ̄ is zero almost
everywhere.

Thus using the compact regularity of ñ again we get
Z

X

Z
(�1,x)

Z
(y,x)

Λ̄
�
(y, u, x)

�
f (u)g(y)h(x) dñ(u) dñ(y) dñ(x) ≥ 0

for all f , g, h 2 L1(X,ñ) which implies that

(5)
Z

(�1,x)

Z
(y,x)

Λ̄
�
(y, u, x)

�
f (u)g(y) dñ(u) dñ(y) ≥ 0
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for almost all x 2 X. Let R be the set of measure zero for which (5) does not hold
for x 2 R. Then for x Û2 R there is a set Rx of measure zero for which whenever y 2
(�1, x) nRx,

R
(y,x) Λ̄

�
(y, u, x)

�
f (u) dñ(u) ≥ 0. Then for x Û2 R, y 2 (�1, x) nRx, there is

a set R(x,y) of measure zero for which whenever u 2 (y, x) n R(x,y), Λ̄
�
(y, u, x)

�
≥ 0, that

is Λ
�
(x, y)

�
≥ Λ

�
(x, u)

�
.

We now defineï from X to C, a measurable bounded almost everywhere function. We
first define it on X n R and for now assume that X has not got a minimal element. Then
ñ
�
(�1, x)

�
Ù 0 for all x 2 X nR and there is yx 2 (�1, x) nRx with ñ([yx, x)) Ù 0. For

x 2 XnR putï(x) ≥ Λ
�
(x, yx)

�
and Ux ≥

n
u 2 (�1, x)nR : ï(u) Â≥ Λ

�
(x, u)

�o
. Then Ux

is measurable and we show that it has measure zero. Take K to be a compact subset of Ux

which then has a minimal element k and a maximal element k0. Since ñ
�
(�1, k)

�
Ù 0

there is y 2 (�1, k) n Rx (so that ñ
�
(y, x)

�
Ù 0). Then we have

Λ
�
(x, u)

�
≥ Λ

�
(x, y)

�
for all u 2 (y, x) n R(x,y)

and

Λ
�
(x, u)

�
≥ Λ

�
(x, yx)

�
for all u 2 (yx, x) n R(x,yx).

Taking ux 2 (y, x)\ (yx, x) n (R(y,x)[R(x,yx)) gives ï(x) ≥ Λ
�
(x, ux)

�
≥ Λ

�
(x, y)

�
and thus

ï(x) ≥ Λ
�
(x, u)

�
for all u 2 (y, x) n R(x,y) and so certainly for u 2 [k, k0] n R(x,y). Thus K

and hence Ux has measure zero. Associating with ï its element in L1(X,ñ) then gives

Z
X

Z
(�1,x)

Λ
�
(x, y)

�
f (x)g(y) dñ(y) dñ(x) ≥

Z
X

Z
(�1,x)

ï(x)f (x)g(y) dñ(y) dñ(x)

for all f , g 2 L1(X,ñ).
If X has a minimal element, x0 say, then put X0 ≥ Xnfx0g. If ñ(fx0g) ≥ 0 then X0 has no

minimal element so that ï can be defined as above on X0 and extended to X arbitrarily. If
x0 is such thatñ(fx0g) Ù 0 then defineï byï(x) ≥ Λ

�
(x, x0)

�
. Since x0 Û2 Rx for any x 2 R

we have ï(x) ≥ Λ
�
(x, y)

�
for all y 2 (x0, x)nR(x,x0) and hence for all y 2 (�1, x)nR(x,x0 ).

Thus (3) together with the fact that Λ
�
(x, x)

�
≥ 0 if ñ(fxg) Ù 0 implies that

D(f )(g) ≥
Z

X

Z
(�1,x)

ï(x)f (x)g(y) dñ(y) dñ(x).

Finally again using the derivation equality, this time with functions f , g and h vanish-
ing outside of fag, fag and [c, a) respectively, it can be seen that if ñ(fag) Ù 0 then the
map y 7! Λ

�
(a, y)

�
is zero almost everywhere on compact subsets of (�1, a) and hence

on (�1, a). Thus

Z
X

Z
(�1,x)

Λ
�
(x, y)

�
f (x)g(y) dñ(y) dñd (x) ≥ 0,

where ñd is the discrete part of ñ. Thus we have,
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THEOREM 4.1. For X a totally ordered semigroup and ñ 2 M (X), the bounded
derivations from L1(X,ñ) into L1(X,ñ) are of the form

D(f )(g) ≥
Z

X

Z
(�1,x)

ï(x)f (x)g(y) dñ(y) dñc (x)

where ï 2 L1(X,ñ).

REMARK 4.2. Reversing the order of integration in the statement of Theorem 4.1
gives that D(f )(y) ≥

R
(y,1) ï(x)f (x) dñc(x) for almost all y. Thus D maps L1(X,ñ) into the

space of bounded continuous functions from X to C.

5. The bounded derivations from Lp([0, 1], m) into its dual for 1 � p Ú 1.
Throughout this section m will denote Lebesgue measure on [0, 1] and we write dx for
dm(x). We denote the monomial x 7! xn by xn, so that 1 ≥ x0. In this section we de-
scribe the bounded derivations from Lp([0, 1], m) into its dual, Lq([0, 1], m), for all rele-
vant p. This gives as a corollary the bounded derivations from Lp(X,ñ) into its dual for
all compact X and continuous ñ. Central to the last section was that to a bounded linear
map T from L1(X,ñ) into L1(X,ñ) is associated a Λ 2 L1(X ð X, ñ ð ñ) for which
T(f )(g) ≥

R
X
R

X Λ
�
(x, y)

�
f (x)g(y) dñ(x) dñ(y), for all f , g 2 L1(X,ñ). For p Ù 1 no sim-

ilar map may exist for bounded linear maps from Lp(X,ñ) into its dual. It is finding a
map to play the role that ï played in the last section that is the main problem here. We
proceed with a series of lemmas. In the statements of these D is a bounded derivation
from Lp([0, 1], m) into Lq([0, 1], m).

LEMMA 5.1. For l, n 2 N0, D(xl)(xn) ≥ l+n+1
n+1 D(1)(xl+n).

PROOF. The proof is a straightforward proof by induction on l.
For the rest of this section if f 2 Lp(X,ñ), then F will denote the function x 7!R

(�1,x) f (u) dñ(u) and if f is equal almost everywhere to a differentiable function then we
denote the derivative of the differentiable function in the equivalence class containing f
by f 0.

LEMMA 5.2. For polynomials f and g, D(f )(g) ≥ D(1)
�
(fG)0

�
.

PROOF. We have for l 2 N0 and r 2 N,

D(xl)
�
(xr)0

�
≥ rD(xl)(xr�1) ≥ (l + r)D(1)(xl+r�1) ≥ D(1)

�
(xl+r)0

�
.

Thus for a polynomial g we have D(xl)(g0) ≥ D(1)
�
(xlg)0

�
� g(0)D(1)

�
(xl)0

�
. Since a

polynomial h can be written as the derivative of another polynomial g for which g(0) ≥ 0
we get D(xl)(h) ≥ D(1)

�
(xlH)0

�
. The result follows since D, D(1) and differentiation are

linear maps.

LEMMA 5.3. Define † by †(x) ≥ xD(1)(x). Then there exists í 2 Lq([0, 1], m) such
that † is equal almost everywhere to a function, õ, for which õ(x) ≥

R x
0 í(u) du and

õ(1) ≥ 0.

PROOF. We show that any function,ß, satisfying
þþþR1

0 ß(u)f 0(u) du
þþþ � Kkfkp for some

K 2 R and all polynomials f , satisfies the conclusion of the lemma. Under the initial
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condition on ß, f 7!
R1
0 ß(u)f 0(u) du is a bounded linear functional on the polynomials,

which then has a continuous linear extension to a function, û say, in Lq([0, 1], m). Hence

Z 1

0
ß(u)f 0(u) du ≥

Z 1

0
û(u)f (u) du

for all polynomials f . Put I equal to the absolutely continuous function given by I(x) ≥R x
0 û(u) du. Integrating by parts gives,

I(1)f (1) ≥
Z 1

0
û(u)f (u) du +

Z 1

0
I(u)f 0(u) du ≥

Z 1

0

�
ß(u) + I(u)

�
f 0(u) du,

for all polynomials f . Since changing a polynomial by a constant does not effect its
derivative we get then that I(1) ≥ 0 and

Z 1

0
ß(u)f 0(u) du ≥

Z 1

0

�
�I(u)

�
f 0(u) du

for all polynomials f . Hence ß(u) ≥ �I(u) ≥
Ru
0 �û(u) du.

We now need to show that † as defined in the statement satisfies the condition
given on ß above. This follows since Lemma 5.2 and the product rule give D(f )(1)
≥ D(1)

�
(xf )0

�
≥ D(1)(xf 0)+D(1)(f ) for all polymonials f so that

þþþR1
0 D(1)(u)uf 0(u) du

þþþ �
2kDk kfkp.

LEMMA 5.4. For polynomials f and g, there exists a ï such that D(f )(g) ≥R1
0 ï(u)f (u)G(u) du and ïG 2 Lq([0, 1], m).

PROOF. Let † and õ be as in the statement of Lemma 5.3. Define û(x) ≥ õ(x)Ûx for
x 2 (0, 1] and let ûn be the restriction of û to [ 1

n , 1]. Then ûn is absolutely continuous
and so we can integrate by parts to get,

(6)
Z 1

1
n

ûn(x)(fG)0(x) dx ≥ ûn(1)f (1)G(1) � ûn

�1
n

�
f
�1

n

�
G
�1

n

�
�
Z 1

1
n

û0n(x)fG(x) dx.

Now ûn(1) ≥ 0 for each n and writing G(x) ≥ xh(x) for some polynomial h we have
ûn( 1

n )f ( 1
n )G( 1

n ) ≥ õ(1
n )f ( 1

n )h( 1
n ) ! 0. Also since each ûn is differentiable almost ev-

erywhere on [ 1
n , 1], û is differentiable almost everywhere on [0, 1], and the product rule

gives õ0(x) ≥ xû0(x) + û(x) for almost all x 2 [0, 1]. Now õ0 and û can both be regarded
as elements of Lq([0, 1], m) and so x 7! xû0(x) can also, and in particular it is integrable.
Then since fh is bounded,

R1
0 û

0(x)fG(x) dx ≥
R 1

0 û
0(x)xf (x)h(x) dx is finite and so the RHS

of (6) converges to it. Similarly the finiteness of
R 1

0 û(x)(fG)0(x) dx will ensure that the
LHS of (6) will converge to it. Hence we have

D(f )(g) ≥ D(1)
�
(fG)0

�
≥
Z 1

0
û(x)(fG)0(x) dx ≥

Z 1

0
�û0(x)fG(x) dx.

Thus we put ï ≥ �û0. We know that x 7! xû0(x) is in Lq([0, 1], m) and so again writing
for a polynomial g, G(x) ≥ xh(x) for some polynomial h, we get that ïG 2 Lq([0, 1], m)
for each polynomial g.
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Now for a Borel measurable function ï, a sufficient condition that

(7) D(f )(g) :≥
Z 1

0
ï(x)f (x)G(x) dx

defines a bounded derivation from Lp([0, 1], m) into Lq([0, 1], m) is that there is K 2 R
such that for all g 2 Lp([0, 1], m), ïG 2 Lq([0, 1], m) and kïGkq � Kkgkp. We denote
the set of all such Borel measurable ï by L(p). In extending Lemma 5.4 to apply to all
f , g 2 Lp([0, 1], m) we show that ï being in L(p) is also a necessary condition for (7) to
define a bounded derivation.

THEOREM 5.5. For 1 � p Ú 1, a map D from Lp([0, 1], m) into its dual is a bounded
derivation if and only if there is ï 2 L(p) with

D(f )(g) ≥
Z 1

0
ï(x)f (x)

Z x

0
g(y) dy dx

for all f , g 2 Lp([0, 1], m).

PROOF. The ‘if’ part follows from the discussion before the statement. So we start
with D, a bounded derivation from Lp([0, 1], m) into Lq([0, 1], m) and let ï be as in the
statement of Lemma 5.4. Now for a sequence of polynomials (fn) converging to f in
Lp([0, 1], m), we have for polynomials g,þþþþþ

Z 1

0
ï(x)G(x)

�
fn(x) � f (x)

�
dx
þþþþþ � kïGkq kfn � fkp ! 0

so that D(f )(g) ≥
R1

0 ï(x)f (x)G(x) dx for all f 2 Lp([0, 1], m) and polynomials g.
We next show that ïG 2 Lq([0, 1], m) for all g 2 Lp([0, 1], m). So fix g 2 Lp([0, 1], m)

and let (gn) be a sequence of polynomials tending to g. Now for l 2 N,
R1

1
l
jï(x)jq dx Ú 1,

so that for f 2 Lp([0, 1], m),þþþþþ
Z 1

1
l

ï(x)f (x)
�
G(x) �Gn(x)

�
dx

þþþþþ �
Z 1

1
l

jï(x)f (x)j dx kgn � gkp ! 0

as n !1. Therefore putting fl ≥ fü[ 1
l ,1] and Il(f ) ≥

R1
1
l
ï(x)f (x)G(x) dx, we have

D(fl)(g) ≥ lim
n!1

D(fl)(gn) ≥ lim
n!1

Z 1

1
l

ï(x)f (x)Gn(x) dx ≥ Il(f ).

Thus, since fl tends to f in Lp([0, 1], m), it follows that Il(f ) tends to D(f )(g) as l ! 1.

Now Il is a bounded linear function on Lp([0, 1], m) with norm
�R 1

1
l
jï(x)G(x)jq dx

� 1
q .

Thus the Banach-Steinhaus theorem together with Fatou’s lemma gives that ïG 2
Lq([0, 1], m). It then follows that Il(f ) will converge to

R1
0 ï(x)f (x)G(x) dx for each f 2

Lp([0, 1], m). Finally kïGkq � kDk kgkp and ï 2 L(p).
In [2] it was shown that if X is a compact totally ordered semigroup and ñ a continu-

ous measure then Lp(X,ñ) is isomorphic to Lp([0, 1], m). Thus, for such X and ñ, defining
L(X,ñ, p) to be the set of Borel measurable functions ï for which ïG 2 Lq(X,ñ) and
kïGkq � Kkgkp for some K 2 R and all g 2 Lp(X,ñ), we have an immediate generali-
sation of the theorem.
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COROLLARY 5.6. If X is a compact totally ordered semigroup and ñ a continuous
measure in M (X) then for 1 � p Ú 1 the bounded derivations from Lp(X,ñ) into
Lq(X,ñ) are of the form

D(f )(g) ≥
Z

X
ï(x)f (x)

Z x

�1

g(y) dñ(y) dñ(x)

for some ï 2 L(X,ñ, p).

We finish by remarking that L(X,ñ, 1) can be identified with L1(X,ñ) and so we
have another proof of the results of the last section in the case that X is compact and ñ
continuous. (The role that the function which is identically 1 played in this section means
it is not likely that the techniques used here could be used to prove the results of the last
section in their full generality.) A more intrinsic description of L(p) in the cases p Ù 1
does not seem as tractable. Certainly x 7! ï(x)x

1
q being in Lq([0, 1], m) is a sufficient

condition on ï for it to be in L(p) and x 7! ï(x)x
1
q +è being in Lq([0, 1], m) for each è Ù 0

is a necessary condition for ï to be in L(p). Whether more than this can be said we do
not know.
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