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If A is an algebra and ¢ is a congruence on 4 then A is said to be ¥-coherent
provided that, for every subalgebra B of A, if B contains some -class then B is a
union of ¥-classes. An algebra 4 is said to be congruence coherent if it is ¥-coherent
for every © € ConA. This notion was investigated by Beazer [2] in the context of de
Morgan algebras. Specifically, he showed that a de Morgan algebra is congruence
coherent if and only if it is boolean, or simple, or the 4-element de Morgan chain.
He also showed that if an algebra in the Berman class K;; of Ockham algebras is
congruence coherent then it is necessarily a de Morgan algebra; and that a p-algebra
is congruence coherent if and only if it is boolean. This notion has also been con-
sidered in the context of distributive double p-algebras by Adams, Atallah and
Beazer [1] who showed that particular examples of congruence coherent double p-
algebras are those that are congruence regular (in the sense that if two congruences
have a class in common then they coincide). In this paper we extend the results of
Beazer to the class of double MS-algebras.

We recall that an Ockham algebra (L; f) is a bounded distributed lattice L with a
dual endomorphism f. An M S-algebra is an Ockham algebra (L;°) in which x+>x°°
is a closure. A double MS-algebra is an algebra (L;°,") in which (L;°) is an MS-
algebra, (L;%) is a dual MS-algebra, and the unary operations are linked by the
identities xT° = x™* and x°* = x°°. For the basic properties of double MS-algebras
we refer the reader to [3]. The variety of double MS-algebras is denoted by DMS. A
fundamental congruence on a double MS-algebra is the relation @< defined by

(x,9) € @ & x° =)°, xt =",

By [3, Theorem 13.4] a double MS-algebra is semisimple if and only if ®S reduces to
equality. Of considerable importance in a double MS-algebra L is the de Morgan
subalgebra

S(Ly={xeLix=x"})={xeLix=x"}={xe L x°=x*}.

THEOREM 1. If L € DMS then the following statements are equivalent.
(1) L is @S -coherent,
(2) L is semisimple.

Proof. (1)=>(2): Supposing that (1) holds, we shall show that [y]®3 = {y} for
every y € L whence ®9 reduces to equality and (2) follows.

First we observe that for every y € S(L) we have [y]®} = {y}. In fact, if
x € [y]®3 then x°=)° and x* =yp* whence x°° =)°° =y =yp** =x**. Since
xt*T < x < x°° we deduce that x = y. Suppose now that y € L\S(L) and consider the

fNATO Collaborative Research Grant 960153 is gratefully acknowledged.

https://doi.org/10.1017/50017089599971033 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089599971033

290 T. S. BLYTH AND JIE FANG

subalgebra (y) that is generated by {y} Since, for example, (y) D {0} = [0]®] it
follows by (1) that [y]®S C (y). Suppose that x € [y]®<, so that we have x € (y) with
x° =y°and x* = y*. If x € S(L) then, from the above, [y]®$ = [x]®]. = {x} whence
y = x and we have the contradiction y € S(L). Hence x ¢ S(L). Nevertheless, since
x € {y), it must be of the form (y Aa)Vv b where a,b € S(L). Then y™ =xt =
Tva ) AbTsoyT <bt whence y >yt > bt =b. Thenx=(yVbh)A(aVh) =
yA(aVvb)and so x < y. Likewise, y < x and therefore x = y. Hence we conclude
that in all cases [y]®} = {y}, as required.
(2)=(1): Since @7 is equality when L is semisimple, this is trivial. []

The variety DMS of double MS-algebras intersects the variety of distributive
double p-algebras in the variety DS of double Stone algebras. For such algebras we
have the following summary.

THEOREM 2. For L € DS the following statements are equivalent:

(1) L is congruence coherent,

(2) L is congruence regular;

(3) L is a trivalent Lukasiewicz algebra;

(4) L is a subdirect product of copies of the algebra SID, which consists of the 3-
element chain 0 <d < 1 withd®° =0 and d* = 1.

Proof. (1)=(2): This follows by [1, Theorem 3.4] since L is of finite range.

(2)=(1): This follows by [1, Theorem 3.3].

(2)<(3): This follows by [4, Theorem 1] and the fact that, as observed in [3, page
206], the trivalent Lukasiewicz algebras are precisely the semisimple double Stone
algebras.

(3)<(4): As observed in [3], the class of trivalent Lukasiewicz algebras is gen-
erated by the subdirectly irreducible algebra SID,. []

Our objective now is to determine necessary and sufficient conditions for L €
DMS\DS to be congruence coherent. For this purpose, we shall make use of the
following general result.

THEOREM 3. Let L € DMS be congruence coherent.
(1) If ¢ € ConL with Ker ¢ # {0} then (Ya € L)a° A a™t € Ker .
(2) If x,y € L with x # 0 then x° A y° A yT+ < x°°,

Proof. (1) Suppose that ¢ € ConL is such that there exists a € L with
a® ANatt € Kerp. Let A be the sublattice of S(L) that is generated by
{a°,a",a°,a™"}. Observe that if x € 4 then x°, x" € A and that the smallest ele-
ment of A is a® A at™ # 0. Consider the set K = {0, 1} U |, ,[x]e. It is readily seen
that K is a subalgebra of L and so, since L is congruence coherent, we have
Ker ¢ C K. It now follows from the definition of K that Ker ¢ = {0}.

(2) If x,y e L with x >0 then Ker®0, x) # {0} and so, by (1), we have
¥ Ayttt e Ker(0, x). It follows by [3, Theorem 14.1(8)] that (3° A y*t A x°)
vx°°® = x°° and therefore x° A 1° A T < x°°. [

In what follows we shall make use of the subset

CLy={xeL;xAnx"=0}.
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In this connection, we note the following property:
L eDS & C(S(L)) = S(L).

If fact, by [3], an equational basis for DS is the identity x A x° = 0. Consequently, if
S(L) = C(S(L)) then for every x € L we have x°° A x° = 0 whence x A x° =0 and
therefore L € DS. The converse is trivial since if L € DS then S(L) is boolean.

We shall also make use of the relation 9, defined for each ¢ € L by

oo __ (oo} o __ ©
’ a - ’ v - .
(x,y) €V xNna yAa xXVa=yva

Clearly, ¢, € ConL.

THEOREM 4. If L € DMS is congruence coherent and a € S(L)\C(S(L)) then
Ker ¢, = {0}.

Proof. Since a Aa° # 0 we have a A a® & Ker9,. But since a € S(L) we have
ana® =att Aa. It follows by Theorem 3(1) that Ker 9, = {0}. [

The following three technical results will lead us to our goal.

THEOREM 5. If L € DMS\DS is congruence coherent then
(1) C(S(L)) = {0, 1};
(2) L has at most two (complementary) fixed points.

Proof. (1) Suppose, by way of obtaining a contradiction, that C(S(L)) # {0, 1}.
Let x € C(S(L)\{0, 1}, so that we have x=x°°=x"" with xAx°=0 and
x Vv x° = 1. Since by hypothesis L ¢ DS, we may choose a € S(L)\C(S(L)). By The-
orem 3(2), we have x° Aa° Aa < x°° =x whence, since x A x° =0, we obtain
x*ANa®° Aa=0. It follows that x° Aa° € Kerd, = {0} by Theorem 4, and so
x°Aa®=0. Hence a°=a°Al=a°A(xVx°)=a"Ax and so a° <x. Since
x° € C(S(L)\{0, 1}, a similar argument produces a° < x°. Hence ¢° < x A x° =0
and we have the contradiction a = a¢°° = 1.

(2) Let «, B € Fix L be such that « # 8. If @ A B # 0 then by Theorem 4 we have
Ker ¢4,p = {0}. Consider the subalgebra {0, aAB,aVvp, l}. Since L is congruence
coherent, we have [a A Bl9anp € {0, A B,V B, 1}. Since a,BelanB,aV =
[a A Bl9anp, Wwe must have « =a A B or o« =« vV f whence the contradiction o B.
Hence we must have a A 8 = 0, whence o vV 8 = 1 and the result follows. ]

THEOREM 6. Let L € DMS\DS be congruence coherent.
(D) If a°, at € S(L\{0, 1} then a € S(L)\{0, 1}.
(2) If a € S(L)\{0, 1} then a < a° or a° <X a.

Proof. (1) By the hypothesis, Theorem 5(1) and Theorem 4, we have
Ker ¢, = {0} = Ker ¢,++. Since L is congruence coherent it follows that for every
x € S(L) we have [x]9, CS(L) and [x]d.,++ € S(L). Consequently, aVa® e
[a.]9. € S(L) and a A a € [at]9,++ € S(L). It follows that a™ v a° = a°° v ¢° and
at™ Aat =a°° A a', the latter giving atT A a° = a°° A @°. Since L is distributive, we
deduce that ™ = a°° whence a € S(L).

(2) By Theorem 4 we have Kerd, ={0}. Consider the subalgebra
{0,ana® ava®,1}. Since L is congruence coherent we have
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[a]®g, [a° 19 € {0,ana’,aV a®, 1}.

Now since [a]t, = [a, a V a°] and [a°]9 = [a°, a vV a°] we must have a =a A a° or
a®° = a A a° whence affa°. If a < a° then [a, a°] = [a]P, C {a, a°} whence a < a°, and
similarly if @ > a° then a > a°. []

THEOREM 7. Let L € DMS\DS be congruence coherent.
(D Ifa®=0and at €{0,1} thena™ =a*t <a < 1;
Q) Ifat =1anda® € {0, 1} then 0 < a < a°° = a°.

Proof. We establish (1), the proof of (2) being dual.

Suppose then that @° = 0 and a™ ¢ {0, 1}, Then by Theorem 6(2) we have either
at < a™ or att < a*. Now by the hypotheses we have (a A a*)", (a A at)® & {0, 1}
and so, by Theorem 6(1), we have a A a* € S(L) whence (a A a™)° = (a A a*)". Thus
at™ =at v at and so we deduce that a™ < g™

Now a#1 (since otherwise a™ =0); and if a<x <1 then x°=0=2a°,
xt ¢{0,1}, and x™ <a" <a™™ < x™t. Similar to the above, we have x* < x**
whence it follows that x* = a*. Since ® = w we obtain x =a and consequently
a<1.

If now a*tt <y < a then y* =at ¢ {0, 1}. Also, y° ¢ {0, 1} (since y° = 0 toge-
ther with @3 = w gives y = a, and y° = 1 gives a* = 1). It follows by Theorem 6(1)
that y € S(L). Hence y = y™ =a™ < a.

From the above we see that

*  at=<dt<a<l.

Our objective now is to show that a™ = a'™". For this purpose suppose, by way of
obtaining a contradiction, that a™ < a™. Consider the congruence ¥(a, 1). We show
first that

Coker ¥(a, 1) = {a**,a, 1},
noting that by [3, Theorem 14.1] we have
x e CokerXa, ) & (xva)rnatT =a'.

Observe that, under the hypothesis, at ¢ Coker ¥(a, 1) and therefore 9(a, 1) # .
Suppose that x € Coker¥(a, 1) with x # 1. Then xT #0 (since otherwise
xtT =1 whence x = 1) and x° Aa™ < xT Aa™ < a' whence x° # 1 and xt # 1.
Moreover, x* is not a fixed point (since otherwise ¥(a, 1) = ¢). There are two cases to
consider:
(1) x° =0.
In this case we can use an argument similar to the above to obtain

x<xt<x<1.
Since a < 1 wehaveavx=1orx<a.

Now if av x=1 then, writing z=a"" Ax, we have z° =a' ¢{0,1} and
zt =at vxt. Clearly, zt #0; and z' #1 since otherwise we would have
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xtvat=1=x" va" whence, by (x),x"VatT =1=x""va™ and therefore
xtT Aat =0=x% Aa" and consequently, by distributivity, x* = x** which con-
tradicts the fact that x* is not a fixed point. It follows by Theorem 6(1) that
z € S(L). Consequently,

At =at Al =a"tAX =@ A= =z=a"T Ax

and therefore a** < x which gives the contradiction

x=xvat>x"tvat=(xvaett=1""=1.

Hence we must have x < a. Since x < 1 it follows that x = a.

(2) x° £0.
In this case it follows by Theorem 6(1) that x € S(L). Also, by (%), we have either
avx=1orx<a.

Now if a vV x =1 then on the one hand a' v x™ = 0 which gives a*™* Vv x = 1.
Since, by hypothesis, x € Coker (a, 1) we have (x Va™) A a™ = a**. Combining
these observations, we obtain

l=xvat=xva)a(xva ) =xva'.

On the other hand, if we write p=xAa then p°=x°¢{0,1}. Also,
pT =xT va' # 1 since otherwise we would have 1 = x* v a™ = x v at which gives
0=xAa™ =x"Aa"™ and, by (x),0 =xAa" =xT Aa". By distributivity, we
deduce that x*™ = x = x™ which contradicts the fact that x* is not a fixed point.

Thus we must have x<a, whence x=x"" <a™. Consequently,
at < xva't <a™ and so, by (x), we have either x < a* or x Va" =a't.

Now x € Coker ¥(a, 1) and x < a* would give at A a™t = at™", contradicting
the basic hypothesis that at < a*™.

Hence we must have x vV a™ = a™ whence x™ Aa™™ =a". Now let g = x A a™.
Clearly, g #1; and g # 0 since otherwise 0 =xAa" =xAxt AaTT =xAxT =
x A x° and we have the contradiction x € C(S(L)) = {0, 1}. It follows from Theorem
4 that Kerd, = {0}. Consider the subalgebra K = {0,a",a™", 1}. Since L is con-
gruence coherent we have [a"]9, € K. Observe now that a" Ag=g¢ and
q° > a** > a*, whence we have that [¢]9, = [a*]9,. It follows from these observa-
tions that g=a'. Thus xAat=at whence x>a" and consequently
x=xVat=a't.

We conclude from the above that Coker®(a, 1) = {a*,a, 1}. Recalling the
hypothesis that ¢° = 0, consider the subalgebra (a) = {0,a™, a**, a, 1}. This con-
tains Coker ®¥(a, 1) and so, since L is congruence coherent, must contain also
Kerd(a, 1). Now we have

xeKerda, 1) xva)rnat=a ra™ =at

from which we see that a* € Ker ¥(a, 1). It follows that Ker#(a, 1) = {0, a*}. Con-
sider again the subalgebra K ={0,a",a*", 1}. We have Kerd(a,1) S K but
Coker ¥(a, 1) 2 K, in contradiction to the hypothesis that L is congruence coherent.
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This contradiction shows that the assumption a® # a* cannot hold and that
therefore a* = a™ as required. [

The previous technical results come together in establishing the following:

THEOREM 8. Let L € DMS\DS be congruence coherent. If L is not a de Morgan
algebra then L is simple.

Proof. By hypothesis we have L #S(L). We show first that
S(L) = {0, 1} U FixL. Suppose, by way of obtaining a contradiction, that there exists
a € S(L) with a € {0, 1} U FixL. By Theorem 6(2) we have either a < ¢° or a° < a.
Without loss of generality, we may assume that a < a°. We show as follows that
a® < 1.

Suppose that ¢° < x < 1. Then we have

0<x°<xT<a<da<xFT<x<x°<l. )

Clearly x°, x* ¢ {1} UFixL, and x* # 0 (since otherwise x*™ = 1 whence the con-
tradiction x = 1). By Theorem 7(1) we deduce that x° # 0 and then, by Theorem
6(1), that x € S(L). By Theorem 6(2) it follows that x° < x and then, by (), that
X =ada°.

A similar argument shows that 0 < a, whence we see that

0<a<a <1. (1)

Now by the hypotheses there exists » € L\S(L), and by Theorem 6(1) we have
either »° =0 or b™ = 1.

(1) b° =0.
In this case, by (11), we have a A b =0 or a A b = a. The former gives the contra-
diction @° = 1. The latter gives a < b whence a < b A a° < a°. Since a = b A a° gives
the contradiction a° = a°° = a, we must have b A @° = a° whence b > ¢° and there-
fore, by the above, b = a° or b = 1 whence the contradiction b € S(L).

Q) bt =1.
In this case a similar argument shows that 0 < b < a whence the contradiction
b e S(L).

The above observations therefore show that S(L) = {0, 1} U FixL from which we
deduce, using Theorem 5(2), that the de Morgan subalgebra S(L) is simple.

Now let ¢ € ConL such that ¢ # w and let (a, b) € ¢ with a < b. Since, by The-
orem 1, 5 = w we have either a° # b° or a* # b*. Since S(L) is simple, we then
have either 9(b°, a°)|g) = sy or Hb*, a*)|gr) = tlsq) It follows that from this
that (0, 1) € 9(b°, a°) or (0, 1) € ¥(b*, a*) whence ¥(a, b) = and consequently L is
simple. [J

Since every simple double MS-algebra is trivially congruence coherent, we may
combine Theorem 2, Theorem 8 and the results of Beazer [2] to obtain the following

result.

THEOREM 9. L € DMS is congruence coherent if and only if L is a trivialent Luka-
siewicz algebra, or is simple, or is boolean, or is the 4-element de Morgan chain. []
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