CONGRUENCE COHERENT DOUBLE MS-ALGEBRAS

T. S. BLYTH and JIE FANG

Mathematical Institute, University of St Andrews, St Andrews KY16 9SS, Scotland

(Received 21 July, 1997; revised 7 March 1998)

Dedicated to the memory of Dr. Rodney Beazer (1946-1998).

If A is an algebra and ϑ is a congruence on A then A is said to be ϑ -coherent provided that, for every subalgebra B of A, if B contains some ϑ -class then B is a union of ϑ -classes. An algebra A is said to be congruence coherent if it is ϑ -coherent for every $\vartheta \in \text{Con}A$. This notion was investigated by Beazer [2] in the context of de Morgan algebras. Specifically, he showed that a de Morgan algebra is congruence coherent if and only if it is boolean, or simple, or the 4-element de Morgan chain. He also showed that if an algebra in the Berman class $\mathbf{K}_{1,1}$ of Ockham algebras is congruence coherent then it is necessarily a de Morgan algebra; and that a p-algebra is congruence coherent if and only if it is boolean. This notion has also been considered in the context of distributive double p-algebras by Adams, Atallah and Beazer [1] who showed that particular examples of congruence coherent double palgebras are those that are congruence regular (in the sense that if two congruences have a class in common then they coincide). In this paper[†] we extend the results of Beazer to the class of double MS-algebras.

We recall that an Ockham algebra (L; f) is a bounded distributed lattice L with a dual endomorphism f. An MS-algebra is an Ockham algebra $(L;^{\circ})$ in which $x \mapsto x^{\circ \circ}$ is a closure. A double MS-algebra is an algebra $(L;^{\circ},^{+})$ in which $(L;^{\circ})$ is an MS-algebra, $(L;^{+})$ is a dual MS-algebra, and the unary operations are linked by the identities $x^{+\circ} = x^{++}$ and $x^{\circ +} = x^{\circ \circ}$. For the basic properties of double MS-algebras we refer the reader to [3]. The variety of double MS-algebra is denoted by DMS. A fundamental congruence on a double MS-algebra is the relation Φ_{+}° defined by

$$(x, y) \in \Phi^{\circ}_{+} \Leftrightarrow x^{\circ} = y^{\circ}, x^{+} = y^{+}.$$

By [3, Theorem 13.4] a double MS-algebra is semisimple if and only if Φ°_{+} reduces to equality. Of considerable importance in a double MS-algebra L is the de Morgan subalgebra

$$S(L) = \{x \in L; x = x^{\circ \circ}\} = \{x \in L; x = x^{++}\} = \{x \in L; x^{\circ} = x^{+}\}.$$

THEOREM 1. If $L \in \mathbf{DMS}$ then the following statements are equivalent: (1) L is Φ°_+ -coherent; (2) L is semisimple.

Proof. (1) \Rightarrow (2): Supposing that (1) holds, we shall show that $[y]\Phi_+^\circ = \{y\}$ for every $y \in L$ whence Φ_+° reduces to equality and (2) follows.

First we observe that for every $y \in S(L)$ we have $[y]\Phi_+^\circ = \{y\}$. In fact, if $x \in [y]\Phi_+^\circ$ then $x^\circ = y^\circ$ and $x^+ = y^+$ whence $x^{\circ\circ} = y^{\circ\circ} = y = y^{++} = x^{++}$. Since $x^{++} \le x \le x^{\circ\circ}$ we deduce that x = y. Suppose now that $y \in L \setminus S(L)$ and consider the

[†]NATO Collaborative Research Grant 960153 is gratefully acknowledged.

subalgebra $\langle y \rangle$ that is generated by $\{y\}$. Since, for example, $\langle y \rangle \supset \{0\} = [0]\Phi_+^\circ$ it follows by (1) that $[y]\Phi_+^\circ \subseteq \langle y \rangle$. Suppose that $x \in [y]\Phi_+^\circ$, so that we have $x \in \langle y \rangle$ with $x^\circ = y^\circ$ and $x^+ = y^+$. If $x \in S(L)$ then, from the above, $[y]\Phi_+^\circ = [x]\Phi_+^\circ = \{x\}$ whence y = x and we have the contradiction $y \in S(L)$. Hence $x \notin S(L)$. Nevertheless, since $x \in \langle y \rangle$, it must be of the form $(y \land a) \lor b$ where $a, b \in S(L)$. Then $y^+ = x^+ = (y^+ \lor a^+) \land b^+$ so $y^+ \le b^+$ whence $y \ge y^{++} \ge b^{++} = b$. Then $x = (y \lor b) \land (a \lor b) = y \land (a \lor b)$ and so $x \le y$. Likewise, $y \le x$ and therefore x = y. Hence we conclude that in all cases $[y]\Phi_+^\circ = \{y\}$, as required.

(2) \Rightarrow (1): Since Φ°_{+} is equality when L is semisimple, this is trivial. \Box

The variety **DMS** of double MS-algebras intersects the variety of distributive double p-algebras in the variety **DS** of double Stone algebras. For such algebras we have the following summary.

THEOREM 2. For $L \in \mathbf{DS}$ the following statements are equivalent:

(1) L is congruence coherent;

(2) L is congruence regular;

(3) L is a trivalent Lukasiewicz algebra;

(4) *L* is a subdirect product of copies of the algebra SID_2 which consists of the 3element chain 0 < d < 1 with $d^\circ = 0$ and $d^+ = 1$.

Proof. (1) \Rightarrow (2): This follows by [1, Theorem 3.4] since L is of finite range.

 $(2) \Rightarrow (1)$: This follows by [1, Theorem 3.3].

 $(2) \Leftrightarrow (3)$: This follows by [4, Theorem 1] and the fact that, as observed in [3, page 206], the trivalent Lukasiewicz algebras are precisely the semisimple double Stone algebras.

 $(3) \Leftrightarrow (4)$: As observed in [3], the class of trivalent Lukasiewicz algebras is generated by the subdirectly irreducible algebra SID₂. \Box

Our objective now is to determine necessary and sufficient conditions for $L \in$ **DMS\DS** to be congruence coherent. For this purpose, we shall make use of the following general result.

THEOREM 3. Let $L \in DMS$ be congruence coherent. (1) If $\varphi \in ConL$ with $Ker \varphi \neq \{0\}$ then $(\forall a \in L) a^{\circ} \land a^{++} \in Ker \varphi$. (2) If $x, y \in L$ with $x \neq 0$ then $x^{\circ} \land y^{\circ} \land y^{++} \leq x^{\circ \circ}$.

Proof. (1) Suppose that $\varphi \in \text{Con}L$ is such that there exists $a \in L$ with $a^{\circ} \wedge a^{++} \notin \text{Ker} \varphi$. Let A be the sublattice of S(L) that is generated by $\{a^{\circ}, a^{+}, a^{\circ \circ}, a^{++}\}$. Observe that if $x \in A$ then $x^{\circ}, x^{+} \in A$ and that the smallest element of A is $a^{\circ} \wedge a^{++} \neq 0$. Consider the set $K = \{0, 1\} \cup \bigcup_{x \in A} [x]\varphi$. It is readily seen that K is a subalgebra of L and so, since L is congruence coherent, we have $\text{Ker} \varphi \subseteq K$. It now follows from the definition of K that $\text{Ker} \varphi = \{0\}$.

(2) If $x, y \in L$ with x > 0 then Ker $\vartheta(0, x) \neq \{0\}$ and so, by (1), we have $y^{\circ} \wedge y^{++} \in \text{Ker } \vartheta(0, x)$. It follows by [3, Theorem 14.1(8)] that $(y^{\circ} \wedge y^{++} \wedge x^{\circ}) \vee x^{\circ\circ} = x^{\circ\circ}$ and therefore $x^{\circ} \wedge y^{\circ} \wedge y^{++} \leq x^{\circ\circ}$. \Box

In what follows we shall make use of the subset

$$C(L) = \{ x \in L; x \land x^\circ = 0 \}.$$

In this connection, we note the following property:

$$L \in \mathbf{DS} \Leftrightarrow C(S(L)) = S(L).$$

If fact, by [3], an equational basis for **DS** is the identity $x \wedge x^\circ = 0$. Consequently, if S(L) = C(S(L)) then for every $x \in L$ we have $x^{\circ\circ} \wedge x^\circ = 0$ whence $x \wedge x^\circ = 0$ and therefore $L \in \mathbf{DS}$. The converse is trivial since if $L \in \mathbf{DS}$ then S(L) is boolean.

We shall also make use of the relation ϑ_a defined for each $a \in L$ by

$$(x, y) \in \vartheta_a \Leftrightarrow x \wedge a^{\circ \circ} = y \wedge a^{\circ \circ}, \quad x \vee a^{\circ} = y \vee a^{\circ}.$$

Clearly, $\vartheta_a \in \text{Con}L$.

THEOREM 4. If $L \in \mathbf{DMS}$ is congruence coherent and $a \in S(L) \setminus C(S(L))$ then Ker $\vartheta_a = \{0\}$.

Proof. Since $a \wedge a^{\circ} \neq 0$ we have $a \wedge a^{\circ} \notin \text{Ker } \vartheta_a$. But since $a \in S(L)$ we have $a \wedge a^{\circ} = a^{++} \wedge a^{\circ}$. It follows by Theorem 3(1) that Ker $\vartheta_a = \{0\}$. \Box

The following three technical results will lead us to our goal.

THEOREM 5. If $L \in \mathbf{DMS} \setminus \mathbf{DS}$ is congruence coherent then (1) $C(S(L)) = \{0, 1\};$ (2) L has at most two (complementary) fixed points.

Proof. (1) Suppose, by way of obtaining a contradiction, that $C(S(L)) \neq \{0, 1\}$. Let $x \in C(S(L)) \setminus \{0, 1\}$, so that we have $x = x^{\circ \circ} = x^{++}$ with $x \wedge x^{\circ} = 0$ and $x \vee x^{\circ} = 1$. Since by hypothesis $L \notin \mathbf{DS}$, we may choose $a \in S(L) \setminus C(S(L))$. By Theorem 3(2), we have $x^{\circ} \wedge a^{\circ} \wedge a \leq x^{\circ \circ} = x$ whence, since $x \wedge x^{\circ} = 0$, we obtain $x^{\circ} \wedge a^{\circ} \wedge a = 0$. It follows that $x^{\circ} \wedge a^{\circ} \in \operatorname{Ker} \vartheta_a = \{0\}$ by Theorem 4, and so $x^{\circ} \wedge a^{\circ} = 0$. Hence $a^{\circ} = a^{\circ} \wedge 1 = a^{\circ} \wedge (x \vee x^{\circ}) = a^{\circ} \wedge x$ and so $a^{\circ} \leq x$. Since $x^{\circ} \in C(S(L)) \setminus \{0, 1\}$, a similar argument produces $a^{\circ} \leq x^{\circ}$. Hence $a^{\circ} \leq x \wedge x^{\circ} = 0$ and we have the contradiction $a = a^{\circ \circ} = 1$.

(2) Let $\alpha, \beta \in \text{Fix } L$ be such that $\alpha \neq \beta$. If $\alpha \land \beta \neq 0$ then by Theorem 4 we have Ker $\vartheta_{\alpha \land \beta} = \{0\}$. Consider the subalgebra $\{0, \alpha \land \beta, \alpha \lor \beta, 1\}$. Since *L* is congruence coherent, we have $[\alpha \land \beta]\vartheta_{\alpha \land \beta} \subseteq \{0, \alpha \land \beta, \alpha \lor \beta, 1\}$. Since $\alpha, \beta \in [\alpha \land \beta, \alpha \lor \beta] = [\alpha \land \beta]\vartheta_{\alpha \land \beta}$, we must have $\alpha = \alpha \land \beta$ or $\alpha = \alpha \lor \beta$ whence the contradiction $\alpha \parallel \beta$. Hence we must have $\alpha \land \beta = 0$, whence $\alpha \lor \beta = 1$ and the result follows. \Box

THEOREM 6. Let $L \in \mathbf{DMS} \setminus \mathbf{DS}$ be congruence coherent. (1) If a° , $a^+ \in S(L) \setminus \{0, 1\}$ then $a \in S(L) \setminus \{0, 1\}$. (2) If $a \in S(L) \setminus \{0, 1\}$ then $a \leq a^\circ$ or $a^\circ \leq a$.

Proof. (1) By the hypothesis, Theorem 5(1) and Theorem 4, we have Ker $\vartheta_{a^\circ} = \{0\} = \text{Ker } \vartheta_{a^{++}}$. Since *L* is congruence coherent it follows that for every $x \in S(L)$ we have $[x]\vartheta_{a^\circ} \subseteq S(L)$ and $[x]\vartheta_{a^{++}} \subseteq S(L)$. Consequently, $a \lor a^\circ \in [a_\circ]\vartheta_{a_\circ} \subseteq S(L)$ and $a \land a \in [a^+]\vartheta_{a^{++}} \subseteq S(L)$. It follows that $a^{++} \lor a^\circ = a^{\circ\circ} \lor a^\circ$ and $a^{++} \land a^+ = a^{\circ\circ} \land a^+$, the latter giving $a^{++} \land a^\circ = a^{\circ\circ} \land a^\circ$. Since *L* is distributive, we deduce that $a^{++} = a^{\circ\circ}$ whence $a \in S(L)$.

(2) By Theorem 4 we have Ker $\vartheta_a = \{0\}$. Consider the subalgebra $\{0, a \land a^\circ, a \lor a^\circ, 1\}$. Since *L* is congruence coherent we have

 $[a]\vartheta_a, [a^\circ]\vartheta_{a^\circ} \subseteq \{0, a \land a^\circ, a \lor a^\circ, 1\}.$

Now since $[a]\vartheta_a = [a, a \lor a^\circ]$ and $[a^\circ]\vartheta_{a^\circ} = [a^\circ, a \lor a^\circ]$ we must have $a = a \land a^\circ$ or $a^\circ = a \land a^\circ$ whence $a ||a^\circ$. If $a < a^\circ$ then $[a, a^\circ] = [a]\vartheta_a \subseteq \{a, a^\circ\}$ whence $a \prec a^\circ$, and similarly if $a > a^\circ$ then $a \succ a^\circ$. \Box

THEOREM 7. Let $L \in \mathbf{DMS} \setminus \mathbf{DS}$ be congruence coherent. (1) If $a^\circ = 0$ and $a^+ \notin \{0, 1\}$ then $a^+ = a^{++} \prec a \prec 1$; (2) If $a^+ = 1$ and $a^\circ \notin \{0, 1\}$ then $0 \prec a \prec a^{\circ \circ} = a^\circ$.

Proof. We establish (1), the proof of (2) being dual.

Suppose then that $a^{\circ} = 0$ and $a^{+} \notin \{0, 1\}$, Then by Theorem 6(2) we have either $a^{+} \leq a^{++}$ or $a^{++} \leq a^{+}$. Now by the hypotheses we have $(a \wedge a^{+})^{+}$, $(a \wedge a^{+})^{\circ} \notin \{0, 1\}$ and so, by Theorem 6(1), we have $a \wedge a^{+} \in S(L)$ whence $(a \wedge a^{+})^{\circ} = (a \wedge a^{+})^{+}$. Thus $a^{++} = a^{+} \vee a^{++}$ and so we deduce that $a^{+} \leq a^{++}$.

Now $a \neq 1$ (since otherwise $a^+ = 0$); and if $a \leq x < 1$ then $x^\circ = 0 = a^\circ$, $x^+ \notin \{0, 1\}$, and $x^+ \leq a^+ \leq a^{++} \leq x^{++}$. Similar to the above, we have $x^+ \leq x^{++}$ whence it follows that $x^+ = a^+$. Since $\Phi_+^\circ = \omega$ we obtain x = a and consequently a < 1.

If now $a^{++} \le y < a$ then $y^+ = a^+ \notin \{0, 1\}$. Also, $y^\circ \notin \{0, 1\}$ (since $y^\circ = 0$ together with $\Phi_+^\circ = \omega$ gives y = a, and $y^\circ = 1$ gives $a^+ = 1$). It follows by Theorem 6(1) that $y \in S(L)$. Hence $y = y^{++} = a^{++} \le a$.

From the above we see that

$$(\star) \qquad a^+ \preceq a^{++} \prec a \prec 1.$$

Our objective now is to show that $a^+ = a^{++}$. For this purpose suppose, by way of obtaining a contradiction, that $a^+ \prec a^{++}$. Consider the congruence $\vartheta(a, 1)$. We show first that

$$\operatorname{Coker} \vartheta(a, 1) = \{a^{++}, a, 1\},\$$

noting that by [3, Theorem 14.1] we have

$$x \in \operatorname{Coker} \vartheta(a, 1) \Leftrightarrow (x \vee a^+) \wedge a^{++} = a^{++}.$$

Observe that, under the hypothesis, $a^+ \notin \operatorname{Coker} \vartheta(a, 1)$ and therefore $\vartheta(a, 1) \neq \iota$.

Suppose that $x \in \operatorname{Coker} \vartheta(a, 1)$ with $x \neq 1$. Then $x^+ \neq 0$ (since otherwise $x^{++} = 1$ whence x = 1) and $x^\circ \wedge a^{++} \leq x^+ \wedge a^{++} \leq a^+$ whence $x^\circ \neq 1$ and $x^+ \neq 1$. Moreover, x^+ is not a fixed point (since otherwise $\vartheta(a, 1) = \iota$). There are two cases to consider:

(1) $x^{\circ} = 0$.

In this case we can use an argument similar to the above to obtain

$$x \prec x^{++} \prec x \prec 1.$$

Since $a \prec 1$ we have $a \lor x = 1$ or $x \le a$.

Now if $a \lor x = 1$ then, writing $z = a^{++} \land x$, we have $z^{\circ} = a^{+} \notin \{0, 1\}$ and $z^{+} = a^{+} \lor x^{+}$. Clearly, $z^{+} \neq 0$; and $z^{+} \neq 1$ since otherwise we would have

 $x^+ \lor a^+ = 1 = x^{++} \lor a^+$ whence, by $(\star), x^+ \lor a^{++} = 1 = x^{++} \lor a^{++}$ and therefore $x^{++} \land a^+ = 0 = x^+ \land a^+$ and consequently, by distributivity, $x^+ = x^{++}$ which contradicts the fact that x^+ is not a fixed point. It follows by Theorem 6(1) that $z \in S(L)$. Consequently,

$$a^{++} = a^{++} \wedge 1 = a^{++} \wedge x^{\circ \circ} = (a^{++} \wedge x)^{\circ \circ} = z^{\circ \circ} = z = a^{++} \wedge x$$

and therefore $a^{++} \leq x$ which gives the contradiction

$$x = x \lor a^{++} \ge x^{++} \lor a^{++} = (x \lor a)^{++} = 1^{++} = 1.$$

Hence we must have $x \le a$. Since $x \prec 1$ it follows that x = a.

(2) $x^{\circ} \neq 0$.

In this case it follows by Theorem 6(1) that $x \in S(L)$. Also, by (\star), we have either $a \lor x = 1$ or $x \le a$.

Now if $a \lor x = 1$ then on the one hand $a^+ \lor x^+ = 0$ which gives $a^{++} \lor x = 1$. Since, by hypothesis, $x \in \text{Coker } \vartheta(a, 1)$ we have $(x \lor a^+) \land a^{++} = a^{++}$. Combining these observations, we obtain

$$1 = x \lor a^{++} = (x \lor a^{+}) \land (x \lor a^{++}) = x \lor a^{+}.$$

On the other hand, if we write $p = x \wedge a$ then $p^{\circ} = x^{\circ} \notin \{0, 1\}$. Also, $p^{+} = x^{+} \vee a^{+} \neq 1$ since otherwise we would have $1 = x^{+} \vee a^{+} = x \vee a^{+}$ which gives $0 = x \wedge a^{++} = x^{+} \wedge a^{++}$ and, by $(\star), 0 = x \wedge a^{+} = x^{+} \wedge a^{+}$. By distributivity, we deduce that $x^{++} = x = x^{+}$ which contradicts the fact that x^{+} is not a fixed point.

Thus we must have $x \le a$, whence $x = x^{++} \le a^{++}$. Consequently, $a^+ \le x \lor a^+ \le a^{++}$ and so, by (*), we have either $x \le a^+$ or $x \lor a^+ = a^{++}$.

Now $x \in \text{Coker } \vartheta(a, 1)$ and $x \leq a^+$ would give $a^+ \wedge a^{++} = a^{++}$, contradicting the basic hypothesis that $a^+ \prec a^{++}$.

Hence we must have $x \vee a^+ = a^{++}$ whence $x^+ \wedge a^{++} = a^+$. Now let $q = x \wedge a^+$. Clearly, $q \neq 1$; and $q \neq 0$ since otherwise $0 = x \wedge a^+ = x \wedge x^+ \wedge a^{++} = x \wedge x^+ = x \wedge x^\circ$ and we have the contradiction $x \in C(S(L)) = \{0, 1\}$. It follows from Theorem 4 that Ker $\vartheta_q = \{0\}$. Consider the subalgebra $K = \{0, a^+, a^{++}, 1\}$. Since L is congruence coherent we have $[a^+]\vartheta_q \subseteq K$. Observe now that $a^+ \wedge q = q$ and $q^\circ \geq a^{++} > a^+$, whence we have that $[q]\vartheta_q = [a^+]\vartheta_q$. It follows from these observations that $q = a^+$. Thus $x \wedge a^+ = a^+$ whence $x \geq a^+$ and consequently $x = x \vee a^+ = a^{++}$.

We conclude from the above that $\operatorname{Coker} \vartheta(a, 1) = \{a^{++}, a, 1\}$. Recalling the hypothesis that $a^\circ = 0$, consider the subalgebra $\langle a \rangle = \{0, a^+, a^{++}, a, 1\}$. This contains $\operatorname{Coker} \vartheta(a, 1)$ and so, since L is congruence coherent, must contain also $\operatorname{Ker} \vartheta(a, 1)$. Now we have

$$x \in \operatorname{Ker} \vartheta(a, 1) \Leftrightarrow (x \vee a^+) \wedge a^{++} = a^+ \wedge a^{++} = a^+$$

from which we see that $a^+ \in \text{Ker } \vartheta(a, 1)$. It follows that $\text{Ker } \vartheta(a, 1) = \{0, a^+\}$. Consider again the subalgebra $K = \{0, a^+, a^{++}, 1\}$. We have $\text{Ker } \vartheta(a, 1) \subseteq K$ but Coker $\vartheta(a, 1) \not\supseteq K$, in contradiction to the hypothesis that L is congruence coherent.

This contradiction shows that the assumption $a^+ \neq a^{++}$ cannot hold and that therefore $a^+ = a^{++}$ as required. \Box

The previous technical results come together in establishing the following:

THEOREM 8. Let $L \in DMS \setminus DS$ be congruence coherent. If L is not a de Morgan algebra then L is simple.

Proof. By hypothesis we have $L \neq S(L)$. We show first that $S(L) = \{0, 1\} \cup \text{Fix}L$. Suppose, by way of obtaining a contradiction, that there exists $a \in S(L)$ with $a \notin \{0, 1\} \cup \text{Fix}L$. By Theorem 6(2) we have either $a \prec a^\circ$ or $a^\circ \prec a$. Without loss of generality, we may assume that $a \prec a^\circ$. We show as follows that $a^\circ \prec 1$.

Suppose that $a^{\circ} \leq x < 1$. Then we have

$$0 \le x^{\circ} \le x^{+} \le a \prec a^{\circ} \le x^{++} \le x \le x^{\circ \circ} \le 1.$$
^(†)

Clearly x° , $x^{+} \notin \{1\} \cup \text{Fix}L$, and $x^{+} \neq 0$ (since otherwise $x^{++} = 1$ whence the contradiction x = 1). By Theorem 7(1) we deduce that $x^{\circ} \neq 0$ and then, by Theorem 6(1), that $x \in S(L)$. By Theorem 6(2) it follows that $x^{\circ} \prec x$ and then, by (†), that $x = a^{\circ}$.

A similar argument shows that $0 \prec a$, whence we see that

$$0 \prec a \prec a^{\circ} \prec 1. \tag{\dagger\dagger}$$

Now by the hypotheses there exists $b \in L \setminus S(L)$, and by Theorem 6(1) we have either $b^{\circ} = 0$ or $b^+ = 1$.

(1) $b^{\circ} = 0$.

In this case, by (††), we have $a \wedge b = 0$ or $a \wedge b = a$. The former gives the contradiction $a^{\circ} = 1$. The latter gives $a \leq b$ whence $a \leq b \wedge a^{\circ} \leq a^{\circ}$. Since $a = b \wedge a^{\circ}$ gives the contradiction $a^{\circ} = a^{\circ \circ} = a$, we must have $b \wedge a^{\circ} = a^{\circ}$ whence $b \geq a^{\circ}$ and therefore, by the above, $b = a^{\circ}$ or b = 1 whence the contradiction $b \in S(L)$.

(2)
$$b^+ = 1$$
.

In this case a similar argument shows that $0 \le b \le a$ whence the contradiction $b \in S(L)$.

The above observations therefore show that $S(L) = \{0, 1\} \cup FixL$ from which we deduce, using Theorem 5(2), that the de Morgan subalgebra S(L) is simple.

Now let $\varphi \in \text{Con}L$ such that $\varphi \neq \omega$ and let $(a, b) \in \varphi$ with a < b. Since, by Theorem 1, $\Phi^{\circ}_{+} = \omega$ we have either $a^{\circ} \neq b^{\circ}$ or $a^{+} \neq b^{+}$. Since S(L) is simple, we then have either $\vartheta(b^{\circ}, a^{\circ})|_{S(L)} = \iota|_{S(L)}$ or $\vartheta(b^{+}, a^{+})|_{S(L)} = \iota|_{S(L)}$. It follows that from this that $(0, 1) \in \vartheta(b^{\circ}, a^{\circ})$ or $(0, 1) \in \vartheta(b^{+}, a^{+})$ whence $\vartheta(a, b) = \iota$ and consequently L is simple. \Box

Since every simple double MS-algebra is trivially congruence coherent, we may combine Theorem 2, Theorem 8 and the results of Beazer [2] to obtain the following result.

THEOREM 9. $L \in \mathbf{DMS}$ is congruence coherent if and only if L is a trivialent Lukasiewicz algebra, or is simple, or is boolean, or is the 4-element de Morgan chain. \Box

REFERENCES

1. M. E. Adams, M. Atallah and R. Beazer, Congruence distributive double *p*-algebras, *Proc. Edinburgh Math. Soc. (2)* **39** (1996), 71–80.

2. R. Beazer, Coherent de Morgan algebras. Algebras Universalis, 24 (1987), 128-136.

3. T. S. Blyth and J. C. Varlet, Ockham algebras. (Oxford University Press, 1994).

4. J. C. Varlet, A regular variety of type (2,2,1,1,0,0). Algebras Universalis, **2** (1972), 218–223.