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Abstract

We synthetically create option contracts on a corporate bond index using CDX swaptions,
overcoming the limitations that stem from the lack of traded corporate bond options. Our
approach allows us to estimate forward-looking moments concerning the corporate bond
market in a model-free manner. By constructing an aggregate volatility measure and the
associated variance risk premium, we examine the role of volatility risk in the corporate bond
market. We highlight that the ex ante conditional second and higher moments we estimate
from synthetic corporate bond options carry important implications for credit risk models,
providing an extra basis for testing their validity.

|I. Introduction

The availability of stock index options with a wide range of moneyness has
brought about a significant breakthrough in understanding the dynamics of the
aggregate equity market. As exemplified by the VIX, the price data on these options
make it possible to estimate forward-looking moments concerning the equity
market in a model-free manner. Furthermore, stock options help us study investors’
risk preferences, which have direct implications for risk premia associated with the
equity market.
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Considering the utility of option contracts in the equity market, we expect
similar contracts in the bond market, which occupies an even larger portion of the
entire capital market. This is indeed the case for the Treasury market: Options on
Treasury futures are actively traded. However, this is not the case for the corporate
bond market: Neither options written on aggregate corporate bond indices nor
ones on corporate bond ETFs are actively traded with meaningful cross sections.
Corporate bonds are issued with various maturities, coupons, and embedded
provisions, which makes it difficult to trade standardized option contracts on an
aggregate price index. The lack of traded options poses a serious challenge to
examining the innate risk in the corporate bond market. Not surprisingly, the
behavior of the aggregate corporate bond market has received far less attention in
the literature, despite its large size and economic significance.

In this article, we develop a new tool to investigate the corporate bond market.
Using novel data on credit derivatives, we synthetically create options on a price
index of 5-year corporate bonds with floating coupons (namely, floating rate notes
(FRN5)). First, we exploit the fact that a defaultable FRN issued by a certain firm
can be replicated by the portfolio of a default-free FRN and a credit default swap
(CDS) contract that is exposed to the firm’s credit risk. This implies that under no
arbitrage, the price of the firm’s FRN can be inferred from the CDS pricing data. The
replicability of FRNs is an important advantage. Since CDS contracts are highly
standardized, we are able to create a cross section of synthetic FRNs whose coupons
and maturities are exactly identical. The same cannot be achieved using the bond
price data because the terms of the bonds that are issued and traded vary across
different firms.

We construct our synthetic corporate bond index as the average price of
synthetic FRNs issued by a large number of investment-grade firms. To capture
the risk of the aggregate corporate bond market, we choose the pool of firms in the
CDX North American Investment Grade index (in short, CDX). Since the CDX
represents 125 equal-weighted investment-grade single-name CDS contracts across
5 industrial sectors, it can serve as a good proxy for the average behavior of the
corporate bond market. Consequently, we show that the synthetic corporate bond
index can be expressed in terms of the quoted upfront fee for the CDX and the
cumulative loss from defaults in the CDX.

Then, we use the data on CDX swaptions. An important advantage of using the
CDX for our analysis is that its “calls” and “puts” are actively traded. These options
are called credit swaptions because they grant holders the right, not the obligation,
to enter into a 5-year CDX contract. A receiver swaption allows the holder to enter
into a contract as the protection seller, whereas a payer swaption allows the holder to
do so as the protection buyer. We show that using CDX swaptions, it is possible to
replicate call and put options on the 5-year synthetic corporate bond index, which
enable us to calculate various forward-looking moments in a model-free fashion.

One such example is the corporate bond VIX (CBVIX), which represents
the risk-neutral expectation of future 1-month volatility on our synthetic corpo-
rate bond index. Existing option-based volatility measures (such as the equity
VIX and the Treasury VIX) have attracted ample attention from academics and
practitioners alike, as volatility risk is a central and universal subject in modern
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finance irrespective of the market.! Despite the much earlier introduction of these
volatility indices, a volatility measure for the corporate bond market has been
missing due to the unavailability of corporate bond options. We fill this gap by
introducing the CBVIX.

The resulting CBVIX from Mar. 2012 to Sept. 2018 shows significant
time-series variations with a sample mean of 1.72%. The CBVIX is high when
the synthetic corporate bond index is low, implying asymmetric volatility in the
corporate bond market. Although its level is much lower compared to the equity
VIX, they fluctuate in a consistent manner with a correlation of 0.71. Although
both are based on bonds, the CBVIX and the Treasury VIX have a weaker corre-
lation of 0.44, showing similar yet distinct patterns.

Based on the CBVIX, we examine the role of variance risk in the corporate
bond market by constructing the monthly time series of the variance risk premium.
We find that most of the time, the corporate bond variance risk premium is positive
and shows substantial time variations. Furthermore, although the corporate bond
variance risk premium has negative contemporaneous correlations with bond and
equity returns, it positively predicts future bond and equity returns. The predict-
ability remains significant even when we control for the equity variance risk
premium. These robust empirical results suggest that the variance risk premium
in the corporate bond market captures an important source of systematic risk
shared by both bond and equity markets.

Our model-free option-based estimation is not limited to the second moment:
We further estimate higher-order moments of the corporate bond index and find
large magnitudes of skewness and kurtosis, especially during the eurozone debt
crisis. In addition, we nonparametrically estimate the distributions of the price
relative under the risk-neutral and physical measures and discover that they imply
a nonmonotonic U-shaped pricing kernel.

Importantly, the conditional moments we estimate from synthetic corporate
bond options provide extra grounds for testing the validity of credit risk models.
Particularly relevant are structural credit risk models: In such models, the firm’s
equity and bond dynamics both originate from the firm’s asset dynamics. Motivated
by this insight, we examine the relation between the equity VIX and the CBVIX
through the lens of a simple structural credit risk model. Specifically, we develop
and test a model implication that the ratio between the equity VIX and the CBVIX
should equal the price elasticity between the equity and the bond. Our estimation
reveals that the price elasticity well captures the relative magnitude of the 2 volatility
indices, upholding the simple economic intuition behind the model. Through this
exercise, we demonstrate that there are potentially many aspects of credit risk
models that can be studied using our synthetic options and the resulting forward-
looking conditional moments.

Overall, this article highlights the usefulness of CDX swaptions in studying
the corporate bond market. Unlike the equity and Treasury markets, the corporate
bond market lacks a cross section of traded options on an aggregate price index,

'The CBOE Volatility Index (so-called the VIX) represents the risk-neutral expectation of future
1-month volatility of the S&P 500. To avoid potential confusion, we refer to this index as the equity VIX.
The Treasury VIX represents the risk-neutral expectation of future 1-month volatility of 10-year maturity
Treasury note futures.
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which makes it difficult to analyze its behavior. We circumvent this problem by
replicating option contracts on our synthetic corporate bond index using CDX
swaptions. Equipped with these synthetic options, one can take advantage of a vast
array of option-based tools that the literature has developed for the equity and
Treasury markets and gain more insight into the corporate bond market.

Our article builds on prior studies that propose a model-free approach to
estimate the risk-neutral moments of future returns based on options. According
to Bakshi and Madan (2000), Carr and Madan (2001), and Bakshi, Kapadia, and
Madan (2003), we can span the risk-neutral expectation of a twice-differentiable
payoff function by using prices of out-of-the-money (OTM) European calls and
puts. In general, these articles apply this model-free approach to equity options
in order to study the properties of the equity market. Although we adopt similar
techniques, we instead apply them to synthetic bond index options to examine the
properties of the corporate bond market.

With the aid of the model-free option-based approach, we make a contribution
to the literature on the variance risk premium. Bollerslev, Tauchen, and Zhou (2009)
find that their constructed equity variance risk premium is significantly positive and
predicts future equity market returns.” Consistent with the findings in the equity
market, we obtain a positive variance risk premium in the corporate bond market,
which robustly predicts future bond and equity returns.

In the credit risk literature, credit derivatives have become increasingly impor-
tant instruments for understanding the underlying firm dynamics behind the high
credit spread in the data. For example, based on an estimation with CDS spreads,
Du, Elkamhi, and Ericsson (2019) emphasize the role of time-varying asset
volatility in resolving the credit spread puzzle.? Relatedly, Kelly, Manzo, and
Palhares (2018) create a credit-implied volatility surface from CDS spread data
via the Merton (1974) model and find a 3-factor structure in the surface. Whereas
these articles largely focus on asset volatility, our main interest is in extracting
bond market volatility.

Our article also relates to the extensive literature on corporate bond returns. In
this literature, empirical work is typically based on the time series and the cross
section of corporate bond returns. Fama and French (1993) stress the importance of
the default and term premia in explaining corporate bond returns.* As additional
examples, Bai, Bali, and Wen (2016) study the distributional characteristics of
historical corporate bond returns, and Bai, Bali, and Wen (2019) investigate the
cross-sectional determinants of corporate bond returns. Our article differs from
these articles in that we extract ex ante conditional moments using CDX swaptions.

CDX swaptions are similar to CDX tranches in that they are both derivative
contracts on the CDX. Prior to the subprime mortgage crisis, CDX tranches were

?Related articles in the literature include Coval and Shumway (2001), Bakshi and Kapadia (2003),
Carr and Wu (2009), Todorov (2010), Eraker and Wu (2017), and Ait-Sahalia, Karaman, and Mancini
(2018).

3The credit spread puzzle reflects the inability of structural credit risk models in explaining observed
credit spreads. See, for example, Eom, Helwege, and Huang (2004), Huang and Huang (2012), Feld-
hutter and Schaefer (2018), and Huang, Shi and Zhou (2019).

“See, also, Gebhardt, Hvidkjaer, and Swaminathan (2005), Lin, Wang, and Wu (2011), Acharya,
Amihud, and Bharath (2013), Jostova, Nikolova, Philipov, and Stahel (2013), Bongaerts, de Jong, and
Driessen (2017), and Choi and Kim (2018).
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much more actively traded than CDX swaptions and, therefore, received greater
attention in the empirical literature.’ However, the market for CDX tranches
abruptly went cold after the crisis: Investors became reluctant to trade collateralized
debt obligation products like CDX tranches because they were singled out for their
role in the crisis. The irony is that this opened up a new opportunity for CDX
swaptions. To hedge credit risk, investors started to rely more on CDX swaptions,
and as a result, their liquidity has drastically been improving since 2012. To the best
of our knowledge, this is the first article to make use of the information contained in
CDX swaptions whose importance in the credit market is on the rise.

The article proceeds as follows: Section II presents the methodology for
constructing our synthetic corporate bond index and its options. Section III
describes the pricing data on CDX and CDX swaptions. Section [V estimates
option-implied moments concerning the corporate bond market and conducts
empirical analysis. Section V discusses the implications of our results for credit
risk models. Section VI concludes.

II.  Constructing Options on a Corporate Bond Index

A. Synthetic Corporate Bond Index

We first synthetically create a price index for investment-grade corporate
bonds. Let PE 7) denote an equal-weighted price index, which consists of 7-maturity
corporate bonds issued by a cross section of investment-grade firms i€ {1,...,N}:

1 N
P,( >:7 E Pz(,t)'
i=1

Here, pr represents the time-f price of firm i’s bond, which is expressed as a
fraction of the bond’s face value (i.e., price per a dollar face value). Although
corporate bonds can be issued with various coupon structures and embedded pro-
visions, what truly sets them apart from government bonds is their credit risk expo-
sures. To focus on the credit component of the corporate bond market, we construct
our index with FRNs, which are immune to fluctuations in default-free interest rates.
Typically, FRNs pay quarterly coupons that are calculated as the sum of i) a default-
free benchmark interest rate, which resets every 3 months, and ii) a quoted margin,
which is an additional spread that remains fixed as compensation for credit risk.

An important benefit of working with FRNs is that their payoffs can be
replicated using CDS contracts (e.g., Duffie and Singleton (2003)). Selling protec-
tion on a firm’s standard CDS, which pays 1% coupons as the insurance premium,
together with investing in a default-free FRN exactly replicates the firm’s defaul-
table FRN with a 1% quoted margin. First, each coupon paid by the defaultable
FRN is reproduced by the sum of the coupon payment from the default-free FRN
(the benchmark interest rate) and the premium payment from the CDS contract

For example, Coval, Jurek, and Stafford (2009) and Collin-Dufresne, Goldstein, and Yang (2012)
debate about the mispricing of CDX tranches during the period preceded by the 2008 financial crisis.
Other empirical articles that concern CDX tranches are Longstaff and Rajan (2008), Seo and Wachter
(2018), and Choi, Doshi, Jacobs, and Turnbull (2019).
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(1%). Second, if the firm survives until maturity, the defaultable FRN expires and
pays out its face value. The same payoft is delivered by the replicating portfolio
because the default-free FRN contained in it matures at the same time with the same
face value. Lastly, in the event of the firm’s default, the defaultable FRN experi-
ences a loss. The replicating portfolio suffers an identical amount of loss due to the
protection sell position on the firm’s CDS contract.

Therefore, under no arbitrage, the price of the defaultable FRN Pg) should
equal the cost of implementing this replication strategy.® Purchasing a default-free
FRN costs a dollar, as its price remains close to its face value.” Entering into a
standard CDS contract also incurs a fee exchanged upfront. Combining the 2 costs,
it follows that
(M P =1-Ui(t,1+ 1),
where U, =U;(t,t + T) is the quoted upfront fee paid by the protection buyer to the
protection seller for firm i’s T-maturity CDS contract. Note that U;, can be negative.
In a standard investment-grade CDS, the coupon spread is fixed at 1%, not at the fair
market spread, so the upfront fee exchanged at the beginning of the contract settles
this difference. If the fair market spread is lower than 1%, the coupons that the
protection seller receives are too high compared to the fair level. Thus, the protec-
tion seller should make an upfront payment to the protection buyer, resulting in
a negative U,,. Appendix A provides further details on how CDS contracts are
quoted and traded.

The replicability of FRNs is a major advantage because CDS contracts are
highly standardized in terms of their coupons and maturities. Constructing a cor-
porate bond index directly using the bond price data is tricky; firms do not issue
bonds with identical coupons and maturities. Using the CDS data, however, we are
able to create a cross section of synthetic FRNs whose coupons and maturities are
exactly identical. Equation (1) implies that the synthetic corporate bond index is
computed as:

N N
(ry_ 1 (ry_,_1
) P! —NZPM —I—N;U,»(t,H—T).

i=1

From equation (2), we can see that P; ") can be replicated by purchasing a default-
free FRN with $1 face value and by taking protection sell positions on N single-
name CDS contracts, each of which has a notional value of $(3,).

How does our index evolve as time progresses? After a 7 period, the time
to maturity of the FRNs reduces to 7 —7, and the index becomes Pgr_ D=

®Although, in theory, this replication argument should always hold for every firm, the CDS-bond
basis significantly deviated from zero during the Great Recession period, which poses a puzzle (see, e.g.,
Bai and Collin-Dufresne (2019)). During our sample period, this basis is relatively small and stable. As
long as the basis is not too volatile, it should not bias our ex ante risk measures.

"This is because a default-free FRN pays coupons that exactly mirror the discount rates. The price of
a default-free FRN is exactly par at coupon reset dates. Even between two adjacent coupon reset dates,
the price is essentially par because the effective duration is less than 3 months regardless of bond
maturity.
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ﬁZfV: IPE’,T;), the average FRN price at time ¢+ 7. Each firm either survives or
defaults up until time ¢+ 7. If firm 7 survives, it follows from the same no-arbitrage
argument used in equation (1) that the firm’s FRN price becomes Pg;) =
1 = Ui(¢t+1,t+ T). If the firm goes into default, the value of the firm’s FRN simply

becomes P17 =1— L;, where L; denotes the firm’s loss rate given default. Hence,

Li+T
the index value at time ¢+ 7 is given by
(T—1) _ 1 1
3) P _N,Z [1—U,<(r+r,z+T)]+ﬁZ [1—L]
igD,, €Dy,
1 1
=1 _N,Z Uilt+1, t+T) _N.Z Li,
€Dy, i€y,

where D, , is the set of indices for the firms defaulted by time 7+ 7.

Equation (3) reveals that our synthetic corporate bond index varies due to two
reasons. First, each firm in the index might go into default, which causes the value of
the FRN to fall significantly from its face value. Second, even if the firm survives,
fluctuations in the firm’s default risk, which are reflected in variations in the firm’s
CDS upfront fee, can change the FRN price.

B. Selection of Index Constituents Using the CDX

To capture the aggregate behavior of the investment-grade corporate bond
market, it is important to choose a pool of firms that is representative of the entire
market. To this end, we exploit the CDX, a credit index that consists of 125 invest-
ment-grade debt obligations, evenly distributed across 5 different industrial sectors
(Consumer; Energy; Financial; Industrial; Technology, Media, and Telecommu-
nications). The CDX rolls on a semiannual basis every March and September to
ensure that it tracks the most liquid investment-grade entities and to keep the
maturity of the index roughly constant. When the new series, so-called “on-the-
run” series, is introduced, the previous series then becomes “off-the-run.” Most
importantly, among various credit derivatives, the CDX is the most popular with
the highest trading volume. For these reasons, we believe that the CDX can serve
as a good proxy for the average behavior of the credit market.

Although the CDX is an index that represents the average CDS spread of
125 firms, it is traded as an independent product whose quoted upfront fee, denoted
as Ucpx, is readily observable in the market. Since entering into a CDX contract as
the protection seller is essentially equivalent to taking equal-weighted protection
sell positions on all of the 125 single-name CDS contracts that comprise the index,
the synthetic corporate bond index PET) in equation (2) can simply be calculated as
follows:

lN
4 PO =1 ST Uit,t+T)=1— Ucpx(t,t +T).
) ; N; (t,t+T) cox(L,t+T)

The future index value Pt(i; ? in equation (3) can also be interpreted in the

context of the CDX. After a total of N ;1 . defaults, the CDX represents the average
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of the remaining N3, , =N — N¢ 1+ Tirms in the pool. Accordingly, the upfront fee for
the CDX is quoted to capture the average upfront fee for the surviving firms,

N;ﬂzz'wm Ui(t+7,t+T). This implies that equation (3) can be reformulated as

follows:

. NS,
Q) PEL =1- (%) Ucpx(t+71,t+T) — LepX, 141

where Lepx s4r = szeﬂ) L; is the cumulative loss of the CDX from defaults of

N¢.__ firms. In a nutshell, we are able to characterize the time-series evolution of our

corporate bond index from the upfront fee (Ucpx), the fraction of firms defaulted
N3, ./N), and the accumulated loss (Lcpx) from the CDX.

In the data, it is extremely rare to observe a case in which an investment-grade
entity goes into default within a short period of time. In fact, since the CDX was
introduced in 2003, there have been zero defaults in the CDX on-the-run series.®
In other words, once an investment-grade entity entered into a new on-the-run CDX
series, it survived for at least 6 months. This means that the realized time series
of our synthetic corporate bond index in the data has been entirely driven by
fluctuations in default risk, not the occurrence of defaults itself.

However, this does not mean that we can simply disregard future possible
realizations of defaults in the index. For instance, the expected loss of the index
from potential defaults can have a nonnegligible effect on ex ante or forward-
looking volatility of the index. The impact of default occurrences can play a more
significant role when it comes to risk-neutral volatility. Instances in which invest-
ment-grade firms default within a short period of time are likely to coincide with a
very bad economic state with high marginal utility, and, thus, it is possible that the
risk-neutral measure puts much more weight on such scenarios.

For this reason, the historical time series of the synthetic corporate bond index
alone cannot paint the whole picture of the investment-grade corporate bond
market. Instruments that can help are option contracts written on the future index
level, which we construct in Section II.C using CDX swaptions.

C. Synthetic Options

How do we obtain prices of call and })ut options written on the future level of
the synthetic corporate bond index, P, 4z 7 In this section, we show that they can
be obtained by making use of the time-f prices of CDX swaptions that expire at
time ¢+ 7.

CDX swaptions are credit swaptions that allow investors to enter into a CDX
contract in the future at a given upfront fee. A payer CDX swaption provides the
holder the right to enter into a (7 — 7)-maturity CDX contract after a t period from
today as the protection buyer (who “pays” insurance premiums) at a strike upfront
fee K. On the other hand, a receiver swaption provides the holder the right to enter
into the same contract as the protection seller (who “receives” insurance premiums).

8Two credit events did occur: Fannie Mae and Freddie Mac. However, these events were not
really defaults. These 2 companies were acquired by the government and became default-free entities
(i.e., conservatorship).
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These instruments are typically European-style options that can only be exercised at
maturity. Under our notation, 7 represents the time to maturity of CDX swaptions.

For simplicity, first consider a case in which no firm went into default by time
t + 7, the maturity date of CDX swaptions. A payer CDX swaption is only exercised
when the quoted upfront fee at maturity, Ucpx (¢ +7,¢+ T), is larger than the strike
Ky. This is because in this case, the holder can buy protection for paying a lower-
than-the-fair upfront fee. Specifically, the holder can lock in a positive payoff of
[Ucpx(t+1,64+ T) — Ky] at maturity: The holder pays Ky when exercising the
option to acquire a protection buy position, and receives Ucpx (¢ + 7,4+ T) when
immediately closing out this position by taking an opposite position (i.e., protection
sell position) at the market rate. In other words, the payoff of a payer swaption is
written as follows:

(6) VE%; e = max [Ucpx(t+7,t+T) —Ky,0], provided no defaults by time ¢ +1.

In contrast, a receiver CDX swaption is only exercised when the quoted upfront
fee at maturity is smaller than the strike because the holder can sell protection for
receiving a higher-than-the-fair upfront fee. The payoff of a receiver swaption is
expressed as follows:

@) Vggx’ e = max [Ky — Ucpx (t 47,4+ T),0], provided no defaults by time ¢+

It is important to note that the payoffs of CDX swaptions in equations (6) and
(7) are derived under the assumption that there were zero defaults by the expiration
date of CDX swaptions. What would happen at maturity if some firms in the CDX
went into default over the life of CDX swaptions? In such occasions, CDX swap-
tions provide so-called “front-end” protection. When a payer swaption is exercised,
the holder not only obtains the protection buy position on a CDX contract, but also
collects the protection payment regarding past defaults from the option writer.
When a receiver swaption is exercised, the holder should provide the option writer
the protection payment with regard to the previous defaults when receiving the
protection sell position.” Therefore, even when Ucpx (¢ + 7,2+ T) is smaller than
Ky, it is possible that a payer option is exercised and a receiver swaption is not, due
to front-end protection.

To be concrete, consider a scenario in which 5 out of the 125 firms (i.e., 4% of
the index) went into default before the exercise date. To simplify the example,
assume that each firm’s bond price after its default was 50% of the par value. This
means that the CDX as a whole experienced a loss 0f4% x (1 —0.5) =2%. Without
any defaults, the holder of a payer (receiver) CDX swaption would pay (receive) Ky
dollars and enter into a dollar CDX contract as the protection buyer (seller).
However, since 4% of the index was already defaulted in this example, the holder
enters into a CDX contract only with a notional amount of 96 cents. In addition, due
to the loss caused by the defaulted firms, the holder receives (pays) an immediate
compensation, or front-end protection, of 2 cents. We can mathematically formulate
these payoffs as follows:

°This front-end protection is contingent on options being exercised: If options are not exercised, the
protection payment is not made in either type of options.
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NS
V(Péll?)((, t4e T MAX [(;ﬁ) Ucpx(t+1,t+T) +Lcpx,ive —KU,O] >

NS
VES;I(, (47 = Max [KU — ( ]:}H) UCDx(t-‘rT,t-i- T) _LCDX,t+1,0:| s

where (N/(,’ is the fraction of firms that survived by the options’ maturity, and
Lcpx 1. 1s the cumulative loss of the CDX, consistent with the notation in
Section II.B. The 2 equations reduce to equations (6) and (7) when there are
no defaults, as Nj, =N and Lcpx, 4. =0.

These payoff structures clearly indicate that using CDX swaptions, it is
possible to replicate payoffs of hypothetical option contracts written on our syn-
thetic corporate bond index. Since equation (5) implies that

N3 .
<%> Ucpx(t+7,t+T)+ Lepx =1 —ng ),

the payoffs of CDX swaptions can be rewritten in terms of the synthetic corporate
bond index at time ¢+ 1:

®) Ve e =max | (1 —Ku) = PIL7.0),

© VESX, s = max [P = (1-K0).0].

Essentially, equation (8) establishes that each payer CDX swaption with strike Ky
has the same payoff as the European put option on the synthetic corporate bond
index with the corresponding strike Kp=1—Ky. Since the 2 options generate
identical payoffs at maturity, their prices at time ¢ should also be identical under
no arbitrage. Similarly, equation (9) demonstrates that the price of each receiver
CDX swaption with strike Ky should be the same as that of the European call option
on the synthetic corporate bond index with the corresponding strike Kp. In sum, the
prices of CDX swaptions enable us to directly acquire the prices of puts and calls
written on an aggregate price index for the corporate bond market, as long as we
adjust the strike dimension.

Ill. Data

We obtain the daily on-the-run CDX and CDX swaptions data from a major
investment bank. Our sample period is from Mar. 2012 to Sept. 2018, as CDX
swaptions started actively trading from 2012.' The CDX swaptions in our
sample are with a 1-month maturity (z=1/12). Once exercised, option contracts
deliver an on-the-run CDX contract that expires approximately 5 years from

1%For further information about the liquidity and trading volume of CDX swaptions, see Collin-
Dufresne, Junge, and Trolle (2021).
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FIGURE 1
Synthetic Corporate Bond Index

Figure 1 presents the daily time series of the 5-year constant maturity synthetic corporate bond index from Mar. 2012 to Sept.
2018. The index represents the average price of 125 synthetic floating rate notes, each of which is with a dollar face value.
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today (7=5)."" Accordingly, we set the maturity of our synthetic corporate bond
to 5 years. Figure 1 plots the time series of the 5-year constant maturity synthetic
corporate bond index during our sample period.

In the market, CDX swaptions are quoted in terms of Black-implied volatil-
ities: For each swaption, the volatility term in the Black formula (provided in the
Supplementary Material) is backsolved to match its market price, and the resulting
volatility is called Black-implied volatility. This is simply the market practice for
quoting credit swaptions, which has nothing to do with the validity of the Black
model. In the Supplementary Material, we describe the derivation of the Black
formula in detail. It is worth noting that the Black model concerns nonstandard
credit swaptions. As discussed in Section II.C, when standard credit swaptions are
exercised, the holder enters into a standard CDS contract with a 1% fixed coupon
spread and instead receives/pays the strike upfront fee Ky. In contrast, when
nonstandard credit swaptions are exercised, the holder enters into a traditional/
nonstandard CDS contract at a given strike coupon spread, say Ks, with zero
upfront payment. Therefore, under the Black model, the moneyness of credit
swaptions is expressed in terms of Kg, not Ky.

The Black-implied volatilities in our sample are for at-the-money (ATM) and
OTM CDX swaptions across a wide range of strike coupon spreads K. Specifi-
cally, for each day, strike spreads are from 65% to 135% of the 1-month forward
CDX spread with 5% intervals. Graph A of Figure 2 calculates the average Black-
implied volatilities from the data across different moneyness values (in terms of
Ks). The graph shows a positive volatility skew: The higher the moneyness, the
higher the implied volatility. This is consistent with economic intuition. A right-
skewed spread distribution corresponds to a left-skewed bond price distribution,
indicating a negative volatility skew for our bond index. Graph B of Figure 2
displays the daily time series of the implied volatilities at the 65%, 100%
(i.e., ATM forward), and 135% moneyness values.

"n fact, the maturity of each on-the-run CDX series experiences small variations from 5.25 years
(when it is first introduced) to 4.75 years (when it becomes off-the-run). For computational simplicity,
we assume that the maturity of the CDX is always 5 years.
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FIGURE 2
Data on CDX Swaptions

Figure 2 displays the pricing data on CDX swaptions. Graph A calculates the average Black-implied volatilities from the data
across various moneyness values. Graph B plots the daily time series of the Black-implied volatilities at the 65%, 100%, and
135% moneyness values. The sample period is from Mar. 2012 to Sept. 2018.
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We convert the Black-implied volatilities from the data into CDX swaption
prices using the Black formula. We also convert each strike coupon spread Kg into
the corresponding strike upfront fee Ky; it is calculated as the CDX upfront fee
when the CDX spread is K's.'? Through this entire process, for each day, we are able
to collect the cross section of CDX swaption prices across various strike upfront
fees. To signify that CDX swaption prices depend on the strike upfront fee Ky, we
denote the time-# CDX swaption prices as Vggg(,t(r;KU) and V%gy(’t(r;KU). Using
the prices of CDX swaptions, we finally obtain the prices of puts and calls written
on the synthetic corporate bond index, which are denoted as VPUT(z;Kp) and
VEALL (7: Kp). As we discuss in Section I1.C, they can be found from CDX swaption
prices based on the following mapping:

ViV (z:Kp) =V ipx,(t:Ku),

V,CALL(r;Kp) = V%SL(T;KU), where the strike price Kp=1—Ky.

2To be concrete, Ky = [Ks —0.01] x II(K's ), where we define I1(Ks), by slight abuse of notation, as
the risky PVO1 when the CDX term structure is flat at Kg.
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IV. Option-Implied Risk in the Corporate Bond Market

Equipped with the prices of the synthetic options constructed in Section II, we
estimate the forward-looking conditional moments of the synthetic corporate bond
index. This allows us to study aggregate risk in the corporate bond market in a
model-free fashion. We first examine the role of variance risk in the corporate bond
market by creating an aggregate corporate bond volatility index and estimating the
associated variance risk premium (Section [V.A). We also consider higher-order
moments such as risk-neutral conditional skewness and kurtosis (Section IV.B).
Taking a further step, we construct the physical and risk-neutral densities of
our corporate bond index and examine their implications for the pricing kernel
(Section I'V.C).

A. Variance Risk

1. Corporate Bond VIX

We create a model-free volatility index for the corporate bond market, which
we call the CBVIX. Similar to the “equity” VIX, the CBVIX measures the risk-
neutral expectation of future 1-month volatility on the 5-year synthetic corporate
bond index. For the remainder of this article, we assume that 7=1/12 and T =35.
Since there is no ambiguity, we drop the superscripts from P,(T) and Pg;’) and
denote them as P, and P;., to simplify the notation. For the sake of brevity, the
term “bond index” refers to our 5-year synthetic corporate bond index.

As the first step, we calculate the risk-neutral expectation of the realized log
bond index variance over the next month:

t+t
EXRV, . ]=E® [ / d[log P]u} ,
t

where Q represents the risk-neutral measure and [logP], refers to the quadratic
variation of the log bond index up to time u. We calculate this risk-neutral expec-
tation using calls and puts under the assumption that the bond index follows an Ito
process, as in the case of the equity VIX.!* In Appendix B, using the general
spanning formula in Bakshi and Madan (2000) and Carr and Madan (2001), we
show that the risk-neutral expectation of the bond index variance is expressed as
follows:
F /PUT (.. o yCALL (.
(10)  EP[RV,pi=2¢"" </ VfT(;’K)dlw “Ki@cm),
0

Fy

where 7 is the risk-free rate and F; is the r-maturity forward price of the bond
index. Since this quantity is calculated using options, it is often referred to as
implied variance. We also use this term throughout the article. Following other
volatility indices, the CBVIX is expressed in annualized percentage volatility:

13 An extensive literature discusses the calculation of the VIX. Examples include, but are not limited
to, Dupire (1994), Neuberger (1994), Carr and Madan (1998), Britten-Jones and Neuberger (2000),
Jiang and Tian (2005), and Carr and Wu (2006).
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FIGURE 3
Corporate Bond VIX

Figure 3 presents the daily time series of the CBVIX from Mar. 2012 to Sept. 2018. At each point in time, the CBVIX represents
the risk-neutral expectation of future 1-month volatility on the 5-year synthetic corporate bond index.
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Figure 3 plots the resulting time series of the CBVIX during our sample period.
The average CBVIX is at 1.72%. Considering that the average ATM Black-implied
volatility for CDX swaptions is 42% (see Figure 2), this may sound too small at
first glance. However, a simple back-of-the-envelope calculation suggests that
the level of the CBVIX is sensible. With the average CDX spread of 97 basis
points, the 42% Black-implied volatility (i.e., 42% spread volatility) corresponds
to 97 x 0.42 =40 basis point fluctuations in the CDX spread on average. This, in
turn, corresponds to less than 5 x 40,/10,000=2% fluctuations in the bond index
because 5-year coupon bonds have a duration shorter than 5 years. In fact, the
small magnitude of the CBVIX is not surprising for two reasons. First, the CBVIX
is based on corporate bonds with floating rate coupons, which are immune to
interest rate fluctuations unlike fixed-coupon bonds. Second, the CBVIX mea-
sures the bond index volatility, which is much smaller than individual bond
volatilities due to diversification.

Nevertheless, we can see from Figure 3 that the CBVIX has significant time
variations. It fluctuates from 0.80% to 5.38%, depending on the market condition.
The beginning of the sample corresponds to the post Great Recession period.
During this period, the CBVIX maintained a high level, reflecting fears of the
eurozone debt crisis. The CBVIX started to decline as uncertainty reduced after the
European Central Bank took an aggressive measure to support eurozone countries.
The reduced level of the CBVIX started to rise again from mid-2014. Besides the
resurfacing of the Greek government debt issue, China’s economic slowdown
resulted in the turmoil of global financial markets, and, as a result, the CBVIX
increased to almost 4% in Feb. 2016. Yet, the steady recovery of the U.S. economy
stabilized the financial market and pushed the CBVIX to a lower level during 2016
and 2017. Despite minor spikes due to events such as Brexit in June 2016 and the
presidential election in Nov. 2016, the CBVIX reached 1% by the end of 2017.
Although the CBVIX temporarily went up as high as 2.5% in Feb. 2018 when high
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FIGURE 4
Comparison with Other Volatility Indices

Figure 4 contains side-by-side comparisons of the time series of the CBVIX with that of the equity VIX and that of the Treasury
VIX, from Mar. 2012 to Sept. 2018. The solid blue lines represent the CBVIX, and the dotted red lines represent the equity VIX
(Graph A) and the Treasury VIX (Graph B). When plotted, the original Treasury VIX is scaled by 2 so that the Treasury VIX and
the CBVIX are based on bonds that have roughly the same duration. All time series are in terms of annual percentage volatility.

Graph A. The Equity (S&P 500) VIX

(] s

N

Annual Volatility (%)

Il Il Il Il
2013 2014 2015 2016 2017 2018

o

Graph B. The Treasury VIX
6 T T

Annual Volatility (%)

Il Il Il
2013 2014 2015 2016 2017 2018

inflation concerns caused the stock market to plummet, it quickly returned to a
lower level between 1% and 2%.

By comparing Figure 3 with Figure 1, we can clearly see that the level of the
index negatively comoves with the CBVIX. In the data, the 2 time series exhibit a
negative correlation of —0.89. This implies that a positive shock to the CBVIX
tends to be associated with a negative shock to the aggregate bond price, creating
asymmetric volatility.'* This finding can be explained as the volatility feedback
effect, which is well documented in the stock market.'> If volatility risk is priced, a
higher level of volatility induces investors to demand a higher premium for holding
corporate bonds, which leads to lower corporate bond prices.

Graph A of Figure 4 compares the time series of the CBVIX with that of the
equity VIX. We can see that the CBVIX has a much smaller magnitude compared to

Specifically, regressing excess corporate bond returns on contemporaneous changes in the CBVIX
results in a negative slope coefficient with high significance. This result is robust, controlling for changes
in the equity VIX and the Treasury VIX as well as for excess equity market returns and excess long-term
Treasury returns.

13See French, Schwert, and Stambaugh (1987), Campbell and Hentschel (1992), Bekaert and Wu
(2000), and Bollerslev, Litvinova, and Tauchen (2006) for more details.
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the equity VIX. During our sample period, the average equity VIX is 14.86%,
which is roughly 9 times larger than the average CBVIX. This is intuitive because
the bond is a senior claim on a firm’s income or asset, whereas the equity is a
residual claim. Thus, when shocks to the firm arrive, the bond should respond
to them with less sensitivity. Despite a substantial difference in their levels, the
CBVIX and the equity VIX show fairly similar patterns: They fluctuate in a
consistent manner, peaking or dipping around the same times. In line with this,
these 2 volatility indices are correlated at 0.71. Such a strong association between
the 2 volatility indices is expected through the lens of a structural credit risk model
where both bond and equity dynamics originate from the same source: the firm’s
asset dynamics. In Section V, we further investigate the consistency between the
CBVIX and the equity VIX with the aid of such a model.

In Graph B of Figure 4, we also plot the time series of the Treasury VIX
together with the CBVIX. The Treasury VIX reflects the expected volatility of
10-year Treasury note future prices under the risk-neutral measure. To facilitate
comparison with the CBVIX, which is based on a 5-year bond, we first divide the
Treasury VIX by 2. This allows us to roughly approximate the Treasury VIX that
corresponds to a 5-year maturity because the duration of 5-year Treasury notes is
roughly half of the duration of 10-year Treasury notes.'® In the beginning of the
sample, the scaled Treasury VIX exhibits a lower level and a lower variability
compared to the CBVIX. Although the eurozone debt crisis heavily influenced the
corporate bond market, it had a limited impact on the Treasury market because
U.S. government bonds were regarded as the safest asset. However, the Treasury
VIX doubled in June 2013, when Ben Bernanke alluded that the Federal Reserve
may reduce the size of quantitative easing policies. From this point in time, the
Treasury VIX consistently showed a higher magnitude than the CBVIX, reflecting
higher uncertainty regarding “tapering” and postcrisis monetary policies.

The average scaled Treasury VIX is 2.54% in our sample. That is, compared
with the equity VIX, the Treasury VIX has a level much closer to the CBVIX. This
is intuitive because both the CBVIX and the Treasury VIX are based on bonds
whose volatilities are much smaller than stocks. However, in terms of patterns, the
CBVIX has a weaker correlation with the Treasury VIX (0.44) compared to that
with the equity VIX. Considering that the CBVIX measures the future volatility of
FRNs, which are insensitive to interest rate risk, such a small correlation is reason-
able because Treasury notes are sensitive to interest rate risk alone. Nonetheless, the
2 volatility indices are still correlated because the level of interest rates is directly
and indirectly associated with the level of credit risk in the economy.

2. Realized Variance Measure

Whereas the implied variance is estimated using options, the realized variance
is estimated using the realized time series of the bond index. Specifically, we
construct the monthly realized variance measure RV, between times ¢ and

'The (modified) duration is a price sensitivity measure with respect to parallel shifts in the yield
curve. Thus, if the duration is half, the price volatility should also be approximately half. Of course, this
approximation ignores second- and higher-order effects of parallel shifts as well as the effects of
nonparallel shifts, such as changes in the slope and curvature of the yield curve.
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t+1 by tracking the daily levels of the bond index whose maturity starts out as
5 years at time ¢. To simplify our computation, we assume that each monthly horizon
corresponds to 22 trading days, and that each interval between 2 adjacent trading
days is =1/22. Then, following French et al. (1987), our realized variance mea-
sure is estimated as the sum of squared daily log price relatives of the bond index,
adjusted for the first-order autocorrelation:'’

22 21
RV 1= prz+5” +2 ZP;+5n "Pri-5(n+1)>

n=1 n=1

Prion

where p, ., 5, = log (m>

Figure 5 shows the daily time series of our realized variance measure together
with the model-free implied variance. Note that the value of RV, _;. . is displayed at
time ¢ + 7 (not time £) because this realized variance is observed at time 7 4 7. That is,
the value plotted at time tis RV;_,_,, the realized variance from time ¢ — 7 up to time
t. We multiply the 2 time series by 10* in order to express them in monthly
percentage squared terms, consistent with the literature.

Figure 5 reveals that the time series of the realized variance has a fairly similar
pattern compared to the implied variance. More importantly, we can see that the
level of the implied variance is considerably higher than the realized variance for the
majority of our sample period. The daily average of the implied variance in our
sample is 0.28, whereas that of the realized variance is 0.19. To gauge how large this
difference is, we express the 2 variables in annual percentage volatility terms: The
average implied volatility (i.e., CBVIX) is 1.72%, whereas the average realized
volatility is 1.35%. In other words, the implied volatility of the bond index is 30%

FIGURE 5
Implied and Realized Variance Measures

Figure 5 plots the time series of the model-free implied variance measure (the solid blue line) and that of the realized variance
measure (the dotted red line), from Mar. 2012 to Sept. 2018. The implied variance measure is estimated using call and put
options on the synthetic corporate bond index. The realized variance measure is estimated from daily log price relatives of the
synthetic corporate bond index, following French et al. (1987). Both time series are expressed in monthly percentage squared
terms.
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'In the case of the stock market, it is well known that the realized variance can be accurately
estimated using high-frequency (typically, S-minute) time series (e.g., Andersen, Bollerslev, Diebold,
and Labys (2003), Andersen, Fusari, and Todorov (2015)). Unfortunately, high-frequency data on the
CDX are not available.
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higher than its realized counterpart, on average. The large gap between the implied
variance and the realized variance suggests that variance risk is significantly priced
in the corporate bond market.

3. Variance Risk Premium

To quantitatively assess the importance of variance risk in the corporate bond
market, we construct the monthly time series of the corporate bond variance risk
premium, which is defined as the difference between the risk-neutral and physical
expectations of future bond index variance:

(11) VRP, =EX[RV, 11o] —EV[RV —s1d).

The monthly time series of the risk-neutral expectation in equation (11) is
simply obtained by extracting the implied variance series on the last day of each
month. In contrast, constructing the monthly time series of the physical expectation
is subject to various approaches. For example, Bollerslev et al. (2009) assume a
unit-root process for the realized variance so that the previous month’s realized
variance serves as a proxy for the physical expectation of the upcoming month’s
realized variance. Drechsler and Yaron (2011) run a linear forecast model where
the realized variance is projected onto the lagged realized variance and the lagged
implied variance. Finally, Zhou (2018) additionally suggests methods based on a
moving average and on an autoregressive model. In our article, we estimate the
physical expectation in equation (11) as the exponentially weighted average of
the last 12 monthly realized variances. As Zhou (2018) discusses, this smoothing
method is simple as it does not require parameter estimation.

Table 1 contains the summary statistics for the variables used in our empir-
ical analysis. The first 3 variables are the variance risk premium, implied vari-
ance, and realized variance in the corporate bond market. The next 3 variables are
the corresponding variables in the equity market.'® The last 2 variables are the
monthly percentage excess log returns on the bond index and on the CRSP value-
weighted index.'? The resulting sample consists of 79 months from Mar. 2012 to
Sept. 2018. In the Supplementary Material, we provide a further description of
these variables.

Table | shows that the corporate bond variance risk premium is positive on
average and is substantially time-varying. Furthermore, it has negative contempo-
raneous correlations with bond and equity market returns. These characteristics are
similar to those of the equity variance risk premium. Given that the literature finds
that the equity variance risk premium predicts future equity returns, a natural
question that follows is: Can the corporate bond variance risk premium predict
future bond returns? Moreover, is it also capable of predicting future equity returns?
What is the joint predictability of the two variance risk premium measures?

Although our sample is relatively short with 79 monthly time series, it is
still possible to run predictability regressions to address the previously mentioned
questions. First, we investigate the predictability of 1-month ahead bond market

'¥We obtain these 3 variables from Hao Zhou’s web page.
1“Returns on the synthetic corporate bond index include not only capital gains/losses but also coupon
payments.
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TABLE 1
Descriptive Statistics for Predictability Regressions

Table 1 reports descriptive statistics for the variables used in our empirical analysis. The first 3 variables pertain to the
corporate bond market: namely, the corporate bond variance risk premium (CB VRP), the corporate bond implied variance
(CB IV), and the corporate bond realized variance (CB RV). The next 3 variables are the corresponding variables in the equity
market: the equity variance risk premium (Equity VRP), the equity implied variance (Equity IV), and the equity realized variance
(Equity RV). The last 2 variables are the monthly percentage excess log returns on the synthetic corporate bond index (log Rg)
and the monthly percentage excess log returns on the CRSP value-weighted index (log RZ). Panel A lists the summary
statistics, and Panel B lists the correlations

Panel A. Summary Statistics

N Mean Median Std. Dev. Skew. Kurt. AR(1)

CB VRP 79 0.03 0.00 0.12 1.80 7.86 0.24
CB IV 79 0.26 0.21 0.17 2.02 9.51 0.59
CBRV 79 0.19 0.13 0.19 1.63 5.03 0.26
Equity VRP 79 9.59 9.01 6.36 -0.14 4.73 —0.09
Equity IV 79 20.06 16.78 9.99 2.03 8.98 0.39
Equity RV 79 10.47 7.08 10.50 3.38 17.73 0.38
log R (%) 79 0.12 0.13 0.36 0.10 6.15 -0.13
log R (%) 79 1.12 117 2.83 —0.42 3.29 -0.16
Panel B. Correlations

CB VRP CB IV CB RV Equity VRP Equity IV Equity RV log Ry
CB VRP -
CBIV 0.68 -
CBRV 0.24 0.61 -
Equity VRP 0.27 0.39 0.02 -
Equity IV 0.71 0.70 0.42 0.24 -
Equity RV 0.52 0.43 0.39 -0.38 0.81 -
log R (%) —0.66 -0.36 —0.04 -0.26 —0.53 -0.34 -
log R (%) —0.60 —0.41 —0.14 -0.16 —0.67 —0.54 0.77

returns based on the corporate bond variance risk premium as well as other variance-
related variables, as shown in Table 2.%° From column 1, we can see that higher
levels of the corporate bond variance risk premium significantly predict higher
future returns over the next month. The slope coefficient is 0.79 with a ¢-statistic of
2.86. In other words, a 1-standard-deviation increase in the corporate bond variance
risk premium (i.e., 0.12) leads to a roughly 0.12 x 0.79 = 0.1% point higher bond
return the next month. This regression generates a sizable adjusted R* over 6%.

Moreover, higher levels of the corporate bond implied variance and realized
variance also predict larger future bond returns, as can be seen in columns 2 and 3 of
Table 2. The coefficients are roughly similar in size and are highly significant. In the
case of the corporate bond implied variance, it generates an even higher adjusted
R? of 9.42%. The fact that both the implied and realized variances predict future
returns is unique to the bond market. In the equity market, as Bollerslev et al. (2009)
document, the variance risk premium predicts future equity returns, but the implied
and realized variances do not, which we also confirm in our sample. The fact that
all 3 variance-related variables in the corporate bond market predict future bond
returns suggests that variance risk is an important source of risk that drives bond
returns.

Column 4 of Table 2 indicates that the equity variance risk premium predicts
future bond returns, despite the significance level only being marginal (#-stat

20Note that all standard errors in Tables 2 and 3 are corrected according to Newey and West (1987)
with 4 lags.
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TABLE 2
Bond Return Predictability

Table 2 presents the results of predictability regressions of 1-month ahead bond market returns. Predictor variables include
variance-related variables in the corporate bond market (the corporate bond variance risk premium, the corporate bond
implied variance, and the corporate bond realized variance) and the corresponding variables in the equity market (the equity
variance risk premium, the equity implied variance, and the equity realized variance). The dependent variable is the monthly
percentage excess log returns on the synthetic corporate bond index. All standard errors are Newey-West corrected with
4 lags.

Excess Return on the Synthetic Corporate Bond Index

4 2 s 4 5 _5 7 8
Intercept 0.09 —0.06 0.02 0.02 0.03 0.12 0.03 —0.08
(2.26) (—1.03) (0.45) (0.26) (0.43) (3.03) (0.36) (—1.01)
CB VRP 0.79 0.71
(2.86) (2.03)
CBIV 0.68 0.63
(3.39) (2.56)
CBRV 0.51
(2.98)
Equity VRP 0.01 0.01 0.00
(1.68) (0.86) (0.46)
Equity IV 0.00
(1.02)
Equity RV 0.00
(0.03)
Adj. R? (%) 6.33 9.42 6.19 1.94 0.11 —1.31 6.33 8.55

of 1.68). The slope coefficient is 0.01, implying that a 1-standard-deviation increase
in the equity variance risk premium (i.e., 6.36) leads to a 0.01 x 6.36 = 0.06%
higher bond return the next month, approximately half compared to the corporate
bond variance risk premium. This predictive regression has an adjusted R> of around
2%, which is also smaller than that of the corporate bond variance risk premium.
The equity implied and realized variances do not predict future bond returns: Their
coefficients are insignificant, as shown in columns 5 and 6.

We also run multiple regressions to assess the joint predictability of our vari-
ables of interest. In column 7 of Table 2, we enter the corporate bond variance risk
premium and the equity variance risk premium into the same regression.’! The
result shows that the 2 slope coefficients are both positive. However, the corporate
bond variance risk premium remains significant with a #-statistic of 2.03, whereas
the equity variance risk premium becomes insignificant with a #-statistic of 0.86.
Comparing this regression with the simple regression solely based on the corporate
bond variance risk premium (column 1), the addition of the equity variance risk
premium does not alter the adjusted R>. This shows that although the equity
variance risk premium itself predicts bond returns, when the corporate bond
variance risk premium is present, it does not add any extra predictive power.
We can observe a similar pattern in column 8 when the corporate bond implied
variance and the equity variance risk premium are entered into the same regression.

Now, we turn to the predictability of equity returns. Consistent with prior
studies, we find that higher levels of the equity variance risk premium predict higher

2We find that the predictability power of the corporate bond variance risk premium is robust to
controlling for other bond return predictors such as the default spread.
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TABLE 3
Equity Return Predictability

Table 3 presents the results of predictability regressions of 1-month ahead equity returns. Predictor variables include
variance-related variables in the corporate bond market (the corporate bond variance risk premium, the corporate bond
implied variance, and the corporate bond realized variance) and the corresponding variables in the equity market (the equity
variance risk premium, the equity implied variance, and the equity realized variance). The dependent variable is the monthly
percentage excess log returns on the CRSP value-weighted index. All standard errors are Newey-West corrected with
4 lags.

Excess Return on the CRSP Value-Weighted Index

_ 2 38 4 5 6 7 8
Intercept 0.92 0.21 0.98 0.00 0.46 1.23 0.07 -0.33
(2.96) (0.45) 2.71) (0.00) (0.84) (4.25) 0.11) (—0.53)
CB VRP 5.35 4.10
(3.52) (2.31)
CBIV 3.37 2.05
(2.39) (1.17)
CBRV 0.56
(0.40)
Equity VRP 0.11 0.09 0.09
(2.35) (1.71) (1.74)
Equity IV 0.03
(1.19)
Equity RV —0.01
(—-0.62)
Adj. R? (%) 4.33 2.99 —1.17 5.33 —0.06 —1.06 7.19 5.44

equity returns the next month, whereas higher levels of the implied and realized
variances do not. This is summarized in columns 4—6 of Table 3. What we newly
discover and add to the literature is that the corporate bond variance risk premium
also predicts future equity returns. For instance, column 1 shows that the corporate
bond variance risk premium has a positive slope coefficient of 5.35. This implies
that a 1-standard-deviation increase in the corporate bond variance risk premium
leads to a 5.35 x 0.12 = 0.64% point higher equity return the next month. The
adjusted R? is fairly high at 4.33%. While the corporate bond implied variance also
predicts future equity returns (column 2), the corporate bond realized variance does
not (column 3), with a #-statistic of only 0.40.

We examine the equity return predictability based on the corporate bond
variance risk premium or the corporate bond implied variance, controlling for the
equity variance risk premium. In column 8 of Table 3, when the corporate bond
implied variance is entered into the same regression with the equity variance risk
premium, it becomes insignificant. This is the exact opposite of what we observed
with the bond return predictability: The equity variance risk premium is driven out
by the corporate bond implied variance when predicting future bond returns. In
contrast, as can be seen in column 7, when we put the two variance risk premium
measures from both markets into the same regression, they both remain statistically
significant (with the corporate bond variance risk premium at 5% and the equity
variance risk premium at 10%). The 2 variables jointly generate high predictive
power with an adjusted R of 7.19%.

In sum, Tables 2 and 3 consistently find that the corporate bond variance risk
premium positively predicts future returns in both markets. This result signifies that
variance risk in the corporate bond market captures an important source of system-
atic risk, shared not only by the bond market but also by the equity market.
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B. Higher-Order Risk

Having studied variance risk in the corporate bond market, the natural next
step is to examine the significance of higher-order moments, such as skewness and
kurtosis. Again, we exploit the general spanning formula to estimate risk-neutral
conditional higher-order moments using option prices on the bond index. In
Appendix B, we show that the nth order noncentral moment of the future price
relative is determined as follows:

P

F n —1e'rt F, 0
=<Ft> frn= e P,,)e < / VPUT (2 K)K"2dK + / V,CALL(T;K)K“dK).
t t 0 Fy

Note that this formula is distinct from the one in Bakshi, Kapadia, and Madan
(2003): Whereas Bakshi, Kapadia, and Madan (2003) consider the moments of the
log price relative, we consider the simple price relative. For the detailed derivation,
refer to Appendix B. Once we estimate the first 4 noncentral moments of the price
relative based on the equation previously mentioned, the risk-neutral conditional
skewness and kurtosis are calculated as follows:

P ]
SKEW,( ;: ) = |:m3,t_3m],tm2,t+2m?,t:|/|:m2,t_m%,l:| 2:
Pt+r _ 2 2 2
KURT, )= My, —4my s, + 6my mo  —3ma, / my,—my,| .
t

In Figure 6, the solid blue lines represent the time series of the risk-neutral
conditional return skewness (Graph A) and excess kurtosis (Graph B). For com-
parison, the dotted red lines plot the corresponding time series, calculated under the
lognormal assumption. If the conditional distribution indeed follows a lognormal
distribution, the solid blue lines and the dotted red lines should be close.

As can be seen in Figure 6, the lognormal assumption generates nearly zero
(but slightly positive) skewness and excess kurtosis. This is clearly not the case in
the data. First of all, the actual skewness values are substantially negative over the
entire sample. The conditional skewness is, on average, —1.76, fluctuating between
—3.94 and —0.42. Furthermore, the actual excess kurtosis values far exceed 0 with a
mean of 5.41. Especially in the early part of the sample, the risk-neutral excess
kurtosis goes even beyond 15, implying an extremely fat-tailed distribution. In sum,
we can conclude that risk-neutral conditional distributions of the price relative are
highly skewed to the left and are heavily fat-tailed, which set them far apart from a
lognormal distribution.

C. Implied Pricing Kernel

Going even further, we now turn to distributions of the price relative, which are
affected not just by the first 4 moments, but by all moments. We follow Ait-Sahalia
and Duarte (2003) to nonparametrically estimate densities of the price relative.
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FIGURE 6
Higher Moments of the Synthetic Corporate Bond Index

Figure 6 depicts the higher moments of the price relative of the synthetic corporate bond index, from Mar. 2012 to Sept. 2018.
The solid blue lines represent the time series of the 1-month risk-neutral conditional skewness (Graph A) and excess kurtosis
(Graph B). The dotted red lines represent the corresponding time series of skewness and kurtosis under lognormality.
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Specifically, we first solve the optimization problem under conic constraints, as
proposed in Dykstra (1983), to ensure that option prices are arbitrage-free across
different strike values.””> As Breeden and Litzenberger (1978) and other subsequent
studies show, the risk-neutral density can be calculated as the second-order partial
derivative of the call price with respect to the strike. Since we are interested in the
price relative P, ./ P, rather than the future index level P, ., we normalize the price
of each call option and its strike by the current index level P,. Then, the density of
the price relative is calculated as follows:

& VSALL (r;m)
om? ’

(12) SR (m)=e"r
where VSALL(7;m) is the normalized price of a z-maturity call option whose
moneyness is m. The second-order partial derivative in equation (12) is estimated
by running a locally linear regression.”?

22For the details of the algorithm, see Dykstra (1983) and Ait-Sahalia and Duarte (2003).
ZThe locally linear estimator of the second-order partial derivative is provided in Appendix B of
Ait-Sahalia and Duarte (2003).
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FIGURE 7
Risk-Neutral, Physical, and State-Price Densities

Figure 7 shows the results from our nonparametric density estimations. The solid blue line and the dotted red line indicate the
physical and risk-neutral density functions of the 1-month price relative of the synthetic corporate bond index, respectively.
Both density functions are estimated with the normal kernel and a bandwidth of 0.50%. The dashed green line represents the
state-price density, which is the ratio between these 2 functions.
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Whereas the approach of Ait-Sahalia and Duarte (2003) can be used to
generate conditional densities by only choosing options from certain dates, our
main objective is to obtain the unconditional, or average, density over our sample
period. We therefore apply their estimation methodology to average normalized
option prices.”* The dotted red line in Figure 7 shows the resulting risk-neutral
density function with the normal kernel and a bandwidth of 0.50%.

We also estimate the density of the price relative under the physical measure.
Using the daily time series of the price relative, which is calculated according to
equations (4) and (5), we run kernel density estimation. The solid blue line in
Figure 7 shows the resulting physical density function based on the normal kernel
with a bandwidth of 0.50%.

Finally, we estimate the implied pricing kernel (or state-price density) pro-
jected on the 1-month future price relative as the ratio between the risk-neutral and
physical densities. We overlay the resulting pricing kernel with a dashed green line
in Figure 7.

Comparing the solid blue line and the dotted red line, it is apparent that the risk-
neutral distribution has a larger variance. Furthermore, it is more skewed to the left
and exhibits fatter tails on both sides, compared to the physical distribution. More
importantly, as the future price moves away from its mode, the physical density
converges to 0 much faster than the risk-neutral density does, which makes the ratio
between the risk-neutral and physical densities sharply rise in both directions. As a
result, we can observe that the state price density is U-shaped.

Prior studies such as Rosenberg and Engle (2002) consistently document
a nonmonotonic or U-shaped pricing kernel, when projected on the future stock

Z4Specifically, for each moneyness, we take the time-series average of normalized option prices.
Since moneyness values of available options do not coincide every day, we use cubic spline interpola-
tion. Note that aside from using average option prices, an alternative way to obtain the unconditional
distribution is to run the estimation based on all available options during our sample period. This is
computationally very challenging due to the conic-constrained optimization problem.
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market return.”> This finding is not limited to the stock market. Li and Zhao (2009),
Song and Xiu (2016), and Christoffersen, Jacobs, and Pan (2022) discover similar
patterns of the pricing kernel using options on interest rates, the VIX, and crude
oil prices, respectively. Using options on the synthetic corporate bond index, we
confirm that this pattern also exists in the corporate bond market.

V. Implications for Credit Risk Models

The ex ante risk measures we estimate from synthetic options not only help
understand the behavior of the corporate bond market, but also provide important
implications for credit risk models. So far, the validity of these models mainly relied
on their abilities to match the level of credit spreads in the data. The conditional
second and higher moments constructed in our article can serve as extra grounds for
assessing the dynamics of credit risk models.

In line with this, of particular interest is a structural credit risk model (e.g.,
Merton (1974)), in which a default event occurs when the firm’s asset value falls
below a certain threshold. The firm’s floating-coupon bond is a senior claim
whose value is entirely driven by the firm’s credit risk, and the equity is a residual
claim whose payoff resembles a call option on the firm’s asset. Therefore, in
such a model, both bond and equity dynamics endogenously arise from the firm’s
asset dynamics.

Based on this insight, we examine the relation between the CBVIX and the
equity VIX using a simple structural credit risk model. Section IV.A established that
the CBVIX and the equity VIX are highly correlated. Can a model then tell us
something about their relative magnitude? For each firm ie{l,...,N}, let 4;;
denote the firm’s asset dynamics, which follow a Geometric Brownian motion:

dA;
e/l ='[[;4dt —+ o; [P[dBm,t + 1 _p%dB[’[] 5

it
where o; represents the asset volatility. The firm’s diffusive risk decomposes into
the systematic Brownian motion B,,, and the idiosyncratic Brownian motion B;,.
The coefficient p; captures the loading on the systematic component. All Brownian
motions are independent of one another.

Under this structural setup, the equity price becomes a function of the asset:
E;;=E;(A;i;). Similarly, the floating-coupon bond price P;, is expressed as P;(A4;;).
Then, it follows from Ito’s lemma that

dE; A;
41,t :ﬂfdl+E;(A[,t>E,_l’t0'i |:pdem,t+ 1 —p?dBi,;] 5

it it

dP; 4
L =P dt+ Pi(4;,) S 0| pidBos + 1/ 1 — p2dBi,| .
Py " Py ’ ’

ZThere is an extensive literature that examines the properties of the pricing kernel estimated based
on equity index options. Examples include Ait-Sahalia and Lo (1998), Jackwerth (2000), Chabi-Yo,
Garcia, and Renault (2007), Bakshi, Madan, and Panayotov (2010), Chabi-Yo (2012), and Christoffersen,
Heston, and Jacobs (2013).
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These equations imply that the firm’s equity and bond volatilities are
4

of, =E, (4i) Fro; and o, :PQ(A,-,,)%@, respectively. Note that the two firm-level
volatilities are unaffected by p;. Individual firm securities are affected by the total
risk, regardless of whether it is from a systematic or idiosyncratic source.

However, when it comes to the volatilities of the equity and bond indices, p;
becomes relevant due to diversification. For parsimony, we consider a homoge-
neous pool of ex ante identical firms. If the number of firms in the index is large
(i.e., N — ), we can show that the equity and bond index volatilities are given by

UfNDEX,t =E; (Ai,l)%o-ipi and O—{)NDEX,t =P (Ai,t)%aipr
it it

Although the equity and bond index volatilities depend on p;, the previously
mentioned expressions indicate that their ratio does not. In fact, taking this ratio
cancels out the direct effects from the asset dynamics and results in:

oinoexs  EN(Aif) Py dEi, Py

(13) Oinexe _ Ei(dir) Pis _ dEis Pis.
onoexs Pi(4id) Eiy  dPis Eiy

That is, under our model, the ratio between the two index volatilities should
equal the elasticity of the equity price with respect to the bond price.?®

Equation (13) provides an implication that is directly testable. This is because
both sides of the equation are measurable. The data counterparts of ofypey, and
J%DEXJ are the equity VIX and the CBVIX, respectively.”” Thus, for each day, the

left-hand side of equation (13) can be estimated as the ratio between the equity VIX
and the CBVIX. The price elasticity term on the right-hand side of equation (13) can
be estimated from the past time series of the equity index and the bond index. For
each day, we estimate the elasticity as the slope coefficient from regressing the
log equity index on the log bond index over the past 63 days (i.e., approximately,
3 months).

Figure 8 compares the resulting time series of the equity VIX divided by the
CBVIX (solid blue line) and that of the estimated price elasticity (dotted red line).
Notably, the 2 time series show very similar levels. The time series average of the
volatility ratio is 9.20, whereas that of the price elasticity is 7.95. Put differently, the
estimated price elasticity suggests that the equity VIX should be roughly 8 times
larger than the CBVIX, when it is 9 times larger in the actual data. This result
implies that the levels of the 2 volatility indices are fairly compatible even through
the lens of a simple structural credit risk model.

Although the relative magnitude is well captured, the correlation between the
2 time series is moderate at 35%. Nevertheless, we observe that the price elasticity
(which is estimated based on the 3-month rolling window) tracks the index volatility
ratio reasonably well. In particular, the estimated elasticity is able to capture the sharp

6This relation still holds in an extended model where the firm’s asset dynamics are subject to
idiosyncratic jumps.

*"We implicitly assume that the CDX and the S&P 500 are based on the same pool of firms, although
their index constituents are not exactly identical. Collin-Dufresne et al. (2021) find that this assumption
is relatively harmless.
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FIGURE 8
Ratio Between the Equity VIX and the Corporate Bond VIX

Figure 8 examines the relative magnitude of the equity VIX and the corporate bond VIX (CBVIX). The solid blue line plots the
time series of the ratio between the equity VIX and the CBVIX. The dotted red line plots the time series of the elasticity of the
equity price with respect to the bond price, which should equal the volatility ratio under our simple structural credit risk model.
The sample period is from Mar. 2012 to Sept. 2018.
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increase in the volatility ratio in mid-2015 as well as around the end of 2017. This is
quite impressive, considering that our exercise is completely “out-of-sample.”

As a precaution, the fact that our simple model can match the ratio between the
equity VIX and the CBVIX does not preclude the possibility of a model failure in
other dimensions. Our exercise simply shows that the CBVIX provides additional
grounds for testing various aspects of a credit risk model. In addition to the CBVIX,
which captures the second corporate bond moment, higher-order moments can also
be useful for testing much more sophisticated structural credit risk models. For
instance, conditional skewness and kurtosis may help us identify relative contri-
butions of diffusive risk vs. jump risk to the credit spread. All in all, our exercise,
together with other potential analyses that are beyond the scope of this article,
demonstrates the usefulness of the ex ante risk measures estimated from synthetic
corporate bond options.

VI. Conclusion

The credit derivatives market experienced a setback during the subprime
mortgage crisis. For example, the trading volume of tranche products decreased
significantly, as they were stigmatized for instigating the crisis. Ironically, this
provided an opportunity for CDX swaptions: Market participants began to actively
use CDX swaptions to hedge credit risk in place of tranche products.

Our article highlights the utility of CDX swaptions whose trading volume has
steadily been rising. CDX swaptions enable us to obtain prices of option contracts
written on an aggregate corporate bond index. Based on these option prices, we
create the CBVIX, a model-free volatility measure for the corporate bond market.
We further estimate the corporate bond variance risk premium, which reveals how
much compensation investors demand to take variance risk in the corporate bond
market. Our model-free option-based analysis extends beyond the second moment:
Synthetic bond index options make it possible to investigate higher-order condi-
tional moments as well as whole probability distributions. We demonstrate that our
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estimation results have major implications for credit risk models and allow us to
assess their validity.

In this article, our findings are based on 1-month CDX swaptions. However,
swaptions with longer maturities (such as 3 months and 6 months) also trade in the
market, and they can be used to study the term structure of risks in the corporate
bond market. We can further extend our analysis to the market for speculative grade
bonds by exploiting swaptions on the CDX North American High Yield index. We
plan to explore these dimensions in future research.

Appendix A. Single-Name CDS Contracts

A single-name CDS contract transfers the credit risk of a certain reference entity
from one party to another. In the event of the reference entity’s default (more generally, a
credit event), the protection seller should either undertake a defaulted bond from the
protection buyer at par (physical settlement), or directly make up for the loss of the
protection buyer by paying the difference between the par value and the market value of
the defaulted bond (cash settlement). In return, the protection buyer periodically pays an
insurance premium to the protection seller until a credit event occurs or until the CDS
contract matures, whichever comes first.

In Apr. 2009, the International Swap and Derivatives Association introduced the
Standard North American Contract (SNAC) in an attempt to standardize CDS trans-
actions and facilitate central clearing. The most distinctive feature of the SNAC is that
the coupon spread for an investment-grade CDS is always set to be 1%.%® Since the
coupon spread is fixed, market fluctuations are instead captured by the upfront fee
exchanged between the 2 involved parties at the beginning of the contract.

To illustrate this, let S;,=S;(¢,¢ + T) denote the T-maturity fair market CDS spread
for firm 7 at time ¢+ We define II;,=T1;(¢,¢+ T) as the time-¢ present value of a risky
annuity that pays a series of unit coupons until maturity or firm i’s default, whichever
occurs first. Under a traditional/nonstandard contract, the coupon spread is determined
as the CDS spread, and, therefore, the present value of future premium payments equals
S;+ x I;;. In contrast, under a standard contract, the present value of future premium
payments is 0.01 x IT; , because the coupon spread is fixed at 1%. This discrepancy is
resolved by an upfront fee U;, = U,(¢,t+ T) paid by the protection buyer to the protec-
tion seller at time #:

U,"t +0.01 x Hi,t :Si,t X Hi,t-

In sum, under the SNAC, the protection seller enters into a standard CDS contract
by receiving the quoted upfront fee from the protection buyer.

Appendix B. Spanning Formulas Based on Option Prices

Bakshi and Madan (2000), Carr and Madan (2001), and Bakshi, Kapadia, and
Madan (2003) show that the risk-neutral expectation of a twice-differentiable payoff
function H (-) can be spanned by prices of European calls and puts. Expanding H (P; )
around the forward price F,=E?[P, ] results in

Z8The coupon spread is fixed at 5% for speculative grade entities.

ssaud Aissaaun abpuguied Aq auluo payslignd 9600002206012z005/£101°01/610°10p//:sdny


https://doi.org/10.1017/S0022109022000096

Chen, Doshi, and Seo 1323

(B-1) EQ[H(PH-TH =H(F)) +EO[H,(FL‘)(PH—1 —F,)]

=0

Fy 00
+err ( / H"(K)VV (t.K)dK + / H"(K)V M (1K) dK).
0

t

The forward price is calculated as F,=P,e"/* — C;,,, where C,, is the accrued
coupon from the index between times ¢ and ¢+ z. Although the coupon is paid out at
time ¢ + 7, this quantity is known at time ¢ it is calculated based on the coupon rate that
is reset at time 7.

B.1. CBVIX

By setting H(P,.) = log (P;./F,), equation (B-1) implies that

P F, VPUT(T'K) © VCALL(T‘K)
Q t+t _ 7T > >
(B-2) Et |:10g (T):| =—¢/ (/O tTdK'i‘/F tTdK):

t t

because H''(K)= — 1/K?. By assuming that the price process follows an Ito process,
the left-hand side of equation (B-2) equals

1 t+t
E2[logP, ] — logF,= _EE? {/ d[logP]u} .
t

Therefore, it follows that

t+t F, 1/PUT /.. 0 77CALL /...
copvix=£2| [ apogp] | =2 ([ BK) gy [FVE)
t t p u o KZ K2 5

t

which provides us the expression in equation (10).

B.2. Risk-Neutral Noncentral Moments

We consider the case in which H(P,,.) = (P,1./F;)". In this case, it follows that
H"(K)=n(n—1)K""2/F". By plugging the expressions for 7 (P,,) and H"(K) into
equation (B-1), we obtain

P . n — 17t F, 0
E?Kl;—t) }:1 +%( /0 K" 2T (1K) dK + /F Kn_thCALL(‘[;K)dK)A
t t

Multiplying both sides of this equation by (F,/P;)" generates the expression for
the nth order noncentral moment.

Supplementary Material

To view supplementary material for this article, please visit http://doi.org/
10.1017/S0022109022000096.
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