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1. Introduction. A homogeneous scalar (continuous) polynomial on a Banach
space X is an application p : X ! R having the form pðxÞ ¼ Mðx; � � � ; xÞ where M is
a multilinear (continuous) map on X. Conversely to what happens in the linear set-
ting, multilinear forms or continuous polynomials are not usually continuous with
respect to the weak topology. Perhaps the simplest example is the bilinear form that
gives the inner product on a real Hilbert space (resp. the polynomial k � k2) which is
obviously not weakly sequentially continuous since the canonical basis is weakly
null.

Banach spaces in which all continuous multilinear forms (resp. polynomials) are
weakly sequentially continuous have been called in [8] M-spaces (resp. P-spaces). It
is not known if both classes coincide, although obviously M-spaces are P-spaces.
Still more restrictive is the class of the hereditarily M-spaces (resp. hereditarily
P-spaces): Banach spaces such that every subspace is an M-space (resp. a P-space).
Gonzalo and Jaramillo have shown in [19] that hereditarily P-spaces can be char-
acterized as those Banach spaces that do not contain normalized sequences admit-
ting lower p-estimates. (Recall that a sequence ðxnÞ is said to satisfy a lower p-
estimate [resp. an upper p-estimate] if for some constant C > 0 and every finite
sequence of scalars ð�nÞ one has k

P
�nxnk 	 Cð

P
j�nj

pÞ
1=p

Þ [resp. �].) Results in
[17,18] extend this characterization to multilinear forms showing that hereditarily
M- and hereditarily P-spaces coincide.

Recall that a space X is said to have an upper p-estimate if every weakly null
sequence contains a subsequence admitting an upper p-estimate. Reflexive spaces
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with upper p*-estimates have been called Wp-spaces in [10]. A Banach space X is
said to have the Dunford-Pettis property if the bilinear form on X� X* given by
ðx; f Þ ! fðxÞ is weakly sequentially continuous.

The M-spaces form a rather peculiar class: it contains the spaces with the
Dunford-Pettis property [23] as well as spaces admitting, for every p > 1, upper p-
estimates (since this prevents the existence of sequences with lower q-estimates).
Thus, spaces with the Dunford-Pettis property are M-spaces, while spaces having
upper p-estimates for all p > 1 are hereditarily M-spaces. It will be very useful to
consider also MN-spaces (i.e., Banach spaces in which every N-linear form is weakly
sequentially continuous).

The Dunford-Pettis property is stable under finite products, vector sums (see
[5]), complemented subspaces and preduals. On the other hand, Wp-spaces are stable
by finite products, vector sums (see [9]), subspaces and quotients. Nevertheless, an
example in [8] shows that the product of two M-spaces need not be an M-space.
Motivated by this, one should admit that the stability properties of the class of M-
spaces are, at least, intriguing.

The stability properties of the class of M-spaces, including those obtained in
this paper, can be summarized as follows:

1. Subspaces, quotients, duals or preduals of M-spaces need not be M-
spaces. To be an M-space is not stable by products, and thus this is not a three-
space property. Nevertheless, if E is an M-space then E� E is an M-space.

2. Complemented subspaces of M-spaces are M-spaces. Quotients of M-
spaces by subspaces not containing l1 are M-spaces.

3. If � is a Banach space with unconditional basis and �� E is an M-space
not containing l1 then �ðX Þ is an M-space. Alternatively, if either � or X has the
Dunford-Pettis property then �ðX Þ is an M-space. More precisely, the result is true
for MN-spaces. There exist examples of M-spaces � and X such that �ðX Þ is not an
M-space.

4. If E** is an M-space, then E is an M-space. The converse fails. However, if
E admits a certain local finite dimensional structure (in a sense to be made precise
later), say ðEnÞ, and l1ðEnÞ is an M-space then the ultrapowers of E (and therefore
all even duals of E) are M-spaces.

5. The projective tensor product E�� E of an M-space need not be an M-
space. This answers a question in [8].

The class of P-spaces has the same permanence properties, except that it is an
open question whether E� E has to be a P-space when E is a P-space.

2. Elementary stability properties. We pass to the proof of the results stated in 1
and 2. Since spaces with the Dunford-Pettis property (such as l1 or l1) are M-
spaces, while l2 is not, it is clear that subspaces and quotients of M-spaces are not
necessarily M-spaces. Nevertheless, it was established in [21, Prop. 2] that quotients
of reflexive P-spaces are P-spaces. An analogous result for P-spaces not containing
l1 (whose added difficulty is that one has to work with weakly Cauchy sequences
instead of weakly convergent sequences) appears also mentioned as a note added in
proof, while the proof is waived as ‘‘using Proposition 2.2 in [2]’’. Since the same is
true for M-spaces, let us state it as a lemma.
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Lemma 1. A multilinear form is weakly sequentially continuous if and only if it
transforms weakly Cauchy sequences into convergent sequences.

This immediately gives the following result.

Proposition 1. Quotients ofM-spaces by subspaces not containing l1 areM-spaces.

Proof. Let X be an M-space and let Q : X ! Z be a quotient map whose kernel
does not contain l1. By Lohman’s lifting [22] weakly convergent sequences in Z
admit subsequences which are images by Q of weakly Cauchy sequences in X and, by
Lemma 1, Z is an M-space. &

Tsirelson’s original space T* is an M-space since it admits, for all p < 1, upper
p-estimates. (See [11].) Moreover, its dual T has a basis that admits, for all q > 1,
subsequences having lower q-estimates, which allows the construction of non-weakly
sequentially continuous polynomials on T. This shows that neither the dual nor
predual of an M-space has to be an M-space.

Multilinear forms cannot, as a rule, be extended from a subspace Y of a Banach
space X to the whole space. When the multilinear forms on Y can be extended to
some M-space then also Y is an M-space. This, and the Aron-Berner extension of a
multilinear form to the bidual space, show that when the bidual X** is an M-space
then the space X is an M-space; it also shows that complemented subspaces of M-
spaces are M-spaces. The space c0ðl2ðnÞÞ has the Dunford-Pettis property and hence
it is an M-space, while its bidual l1ðl2ðnÞÞ contains a complemented copy of l2 (see
[5]) and thus it cannot be an M-space.

3. The basic stability problem. In [8] it was proved that neither the product nor
the tensor product of two M-spaces has to be an M-space. Nevertheless, the fol-
lowing result holds.

Lemma 2. If E is an M-space then E� E is an M-space.

Proof. An n-linear form on E� E can be thought of as nn n-linear forms on E:
this is consequence of the algebraic (hence topological in the projective norm
topology) isomorphism

On
i¼1

ðEi � EiÞ ¼
M

i1;���;in2f1;���;ng

ðEi1 � � � � � Ein Þ

and the fact that the space of m-linear forms on E is the dual space of the projective
tensor product ofm copies of E. The proof is completely straightforward after that. &

All this shows that the core of the difficulties for studying the stability of the
class of M-spaces lies in the existence of bilinear (multilinear) forms on E� F that
cannot be reduced to bilinear forms on either E or F. The following question
appeared while working in [8] and seems to be of great importance for the under-
standing of the structure of the M-spaces.
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Problem 1. Do M-spaces and P-spaces coincide?

Closely related, as we show next, is the following question.

Problem 2. Is E� E a P-space when E is a P-space?

Lemma 3. If all m-homogenous polynomials on Em are weakly sequentially con-
tinuous, then all m-linear forms on E are weakly sequentially continuous.

Proof. Let � : f1; � � � ;mg ! f1; � � � ;mg be an n-cycle (for instance, �ð jÞ ¼ jþ 1
and �ðmÞ ¼ 1). If M is an m-linear form on E then

M ðx1
i Þi¼1;���;m; � � � ; ðx

m
i Þi¼1;���;m

� �
¼

Xk¼m�1

k¼0

M x
�kð1Þ
1 ; x�

kþ1ð1Þ
�ð1Þ ; � � � ; x�

kþmð1Þ
�m�1ð1Þ

h i

defines an m-linear form on Em such that

M ðxiÞi¼1;���;m; � � � ; ðxiÞi¼1;���;m

� �
¼ mMðx1; � � � ; xmÞ:

The result easily follows after that. &

A closely related decomposition for polynomials can be found in [1]. A con-
sequence of Lemma 3 and Lemma 2 is that Problems 1 and 2 are equivalent.

Proposition 2. M-spaces and P-spaces coincide if and only if whenever E is a
P-space then E� E is a P-space.

Let us also remark that Dimant mentioned to us that Problem 2 can be shown
to be equivalent to the following one that Dimant and Zalduendo pose in [15].

Problem 3. Does the space of m-homogeneous polynomials on E have a basis if
and only if the space of m-linear forms on E has a basis?

4. Stability of vector sums. We pass to vector sums. Recall that given a Banach
space � with an unconditional basis ðenÞ the vector sum space �ðX Þ is defined as the
space of all sequences ðxnÞ 2 XN such that kðxnÞk�ðX Þ ¼ kðkxnkX Þk� < þ1 endowed
with the norm k � k�ðX Þ. It is a rather standard and usually interesting question to
study the stability of a given property under vector sums. The reader may peruse
[5,9], where it is proved that if both � and E have the Dunford-Pettis property (resp.
the hereditary Dunford-Pettis property) then so does �ðX Þ or [13], devoted to the
stability of the properties of containing lp or c0.

Let us fix some notation. LðE;F Þ means the space of all operators acting
between E and F, while KðE;F Þ denotes the space of all compact operators. Given
A1; � � � ;AN N-spaces, LN

ðA1 � � � � � ANÞ denotes the space of N-linear forms on the
product. LN

wscðA1 � � � � � ANÞ means the space of all weakly sequentially continuous
N-linear forms. When A1 ¼ � � � ¼ AN ¼ X then we shall simply write Lð

NX Þ.
The next lemma extends one of the main results of [12] concerning natural

tensor products with an lp-space; we think it has an independent interest.

84 J.M.F. CASTILLO, R. GARCÍA AND R. GONZALO
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Lemma 4. Let X be a Banach space and let � be a Banach space with unconditional
basis. Assume that X and � do not contain l1. Let Z be a Banach space. If
Lð�;ZÞ ¼ Kð�;ZÞ and LðX;ZÞ ¼ KðX;ZÞ; then Lð�ðX Þ;ZÞ ¼ Kð�ðX Þ;ZÞ

Proof. Let T : �ðX Þ ! Z be an operator and let ð fnÞn be a weakly null sequence
in �ðX Þ. Since �ðX Þ does not contain l1 (see [20]) it is enough to show that ðTfnÞ is
norm null in Z.

It is possible to decompose fn ¼ un þ vn with un having finite support and
lim kvnk ¼ 0. Hence, it is enough to show that lim kTunk ¼ 0. Let A1 be the support
of u1. We decompose un ¼ a1

n þ b1
n with a1

n and b1
n having disjoint supports and a1

n

having support contained in A1. Since LðX;Z Þ ¼ KðX;Z Þ the same happens with Xk

and therefore lim kTa1
nk ¼ 0. Let nð1Þ be such that kTa1

nð1Þk � 2�1. We repeat the
argument starting with unð1Þ and relabel. In this way we obtain a sequence of ele-
ments unðkÞ with supports Akþ1 such that unðkÞ ¼ aknðkÞ þ bknðkÞ in which aknðkÞ and bknðkÞ
have disjoint supports, aknðkÞ has support contained in Ak and kTaknðkÞk � 2�k. We
show that lim kTbknðkÞk ¼ 0, which concludes the proof. Observe that the vectors bknðkÞ
are disjointly supported and thus the sequence bknðkÞ can be considered the image of a
weakly null sequence ð�kÞ of � by some operator L : � ! �ðE Þ as we justify next in
detail. After that, TL : � ! Z is compact and therefore lim kTL�kk ¼ lim kTbknðkÞk ¼

0.
Let fi be norm one elements of X* chosen as follows. Let Bk be the support of

bknðkÞ. If i 2 Bk, then fiðb
k
nðkÞðiÞÞ ¼ kbknðkÞðiÞkX. The sequence ð fiÞi induces an operator

F : �ðE Þ ! � defined by FððxnÞnÞ ¼ ð fnðxnÞÞn, which is continuous since
kð fnðxnÞÞnk� � kðkxnkÞnk� ¼ kðxnÞnk�ðX Þ. Therefore, the sequence

FðbknðkÞÞ
	 


k
¼ ð0; :::; 0; kbknðkÞ minBkð ÞkX; � � � ; kb

k
nðkÞ maxBkÞð ÞkX; 0; � � �Þ

	 

k

is weakly null in �. We set �k ¼ FðbknðkÞÞ. The operator L : � ! �ðE Þ we are looking
for comes is as follows: for i 2 Bk,

Lðð�nÞnÞðiÞ ¼ �i
bknðkÞðiÞÞ

kbknðkÞðiÞÞkX

and 0 otherwise. The operator L is continuous since

kLðð�nÞnÞk�ðX Þ � kðj�njÞnk� � Kkð�nÞnk�;

where K is the unconditionality constant of �. Finally, it is clear that
LFðbknðkÞÞ ¼ bknðkÞ.

Since it has been proved that every subsequence of ðunÞn contains a further
subsequence whose image by T converges to 0, the same happens with the starting
sequence ðunÞn and the proof is complete. &

The following three lemmata clear the way for the proof of Theorem 1.

Lemma 5. Let V;W be Banach spaces. LðV;W�Þ ¼ KðV;W�Þ if and only if
LðW;V�Þ ¼ KðW;V�Þ:
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Proof. This is a consequence of the fact that an operator T : V ! W� is compact
if and only if T� : W�� ! V� is compact; and, since T� is weak*-to weak* con-
tinuous, T� is compact if and only if its restriction to the weak* dense part V is
compact. &

The proof of the following lemma is contained in [14, Theorem 3.1].

Lemma 6. If E is anMN-space and does not contain l1 then E�� � � �
N times

�� E does
not contain l1.

Lemma 7. If E and F do not contain l1, then all bilinear forms on E� F are weakly
sequentially continuous if and only if all operators E ! F� are compact.

Proof. Recall first that bilinear forms on E� F can be identified with operators
E ! F�. Hence, LðX;X�Þ ¼ KðX;X�Þ is sufficient to make all bilinear forms on X
weakly sequentially continuous. As for the necessity, a careful reading of the proof
of [8, Theorem 2.1] shows that if a bilinear form B 2 Lð

2X Þ is weakly sequentially
continuous then its associated operator 	 : X ! X� transforms weakly null sequences
ðxnÞ of X into bounded sequences ð	ðxnÞÞ of X* such that for every weakly null
sequence ðykÞ of X one has

lim
k!1

sup
n2N

j	ðxnÞðykÞj ¼ 0

(recall that Emmanuele [16] calls a bounded set A of X* an L-set if, for every weakly
null sequence (yk) of X, one has

lim
k!1

sup
a2A

jykðaÞj ¼ 0:

Thus, we have shown that (t(xn))n is an L-set. Emmanuele shows in [16] that when
X does not contain l1 the L-sets of X* are relatively compact; hence ð	ðxnÞÞn is a
relatively compact set, and the rest is routine. &

A deeper analysis of the role of Emmanuele’s L-sets in connection with weakly
sequentially continuous multilinear forms can be found in [7].

Theorem 1. Let X be a Banach space and let � be a Banach space with uncondi-
tional basis. Assume that X and � do not contain l1. If �� X is an MN-space, then
�ðX Þ is an MN-space.

Proof. We should keep in mind for the rest of the proof that �ðX Þ cannot con-
tain l1 as is proved in [20].

The case N ¼ 2 means to prove the implication

Lð�� X; �� � X�Þ ¼ Kð�� X; �� � X�Þ ) Lð�ðX Þ; �ðX Þ
�
Þ ¼ Kð�ðX Þ; �ðX Þ

�
Þ:

After Lemma 4 it is enough to show that Lð�; �ðX Þ
�
Þ ¼ Kð�; �ðX Þ

�
Þ and

LðX; �ðX Þ
�
Þ ¼ KðX; �ðX Þ

�
Þ. We prove the first equality. Let T : � ! �ðX Þ

� be an
operator. Since, by hypothesis, Lð�; ��Þ ¼ Kð�; ��Þ and LðX; ��Þ ¼ KðX; ��Þ, Lemma
4 yields Lð�ðX Þ; ��Þ ¼ Kð�ðX Þ; ��Þ. Therefore, T�j�ðX Þ is compact and, by Lemma 5,
so is T�. The argument with X is analogous.
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Assume that the case N� 1 has been already proved. To prove that �ðX Þ is an
MN-space is clearly sufficient to obtain

Lð�ðX Þ;LN�1
ð�ðX ÞÞÞ ¼ Kð�ðX Þ;LN�1

ð�ðX ÞÞÞ:

In view of Lemma 4 this is equivalent to obtaining simultaneously

Lð�;LN�1
ð�ðX ÞÞÞ ¼ Kð�;LN�1

ð�ðX ÞÞÞ
and

LðX;LN�1
ð�ðX ÞÞÞ ¼ KðX;LN�1

ð�ðX ÞÞÞ:

Consider for instance the second equality. By the induction assumption, �ðX Þ is
an MN�1-space and thus, by Lemma 6, �ðX Þ �� � � �

N�1 times
���ðX Þ does not contain l1.

Since L
N�1

ð�ðX ÞÞ ¼ �ðX Þ �� � � �
N�1 times

�� �ðX Þ

	 
�
, Lemma 7 asserts that the desired

equality is equivalent to showing that

L
N X� �ðX Þ

N�1
� �

¼ L
N
wsc X� �ðX Þ

N�1
� �

:

This is in turn equivalent to

L �ðX Þ;LN�1
ðX� �ðX Þ

N�2
Þ

� �
¼ K �ðX Þ;LN�1

ðX� �ðX Þ
N�2

Þ
� �

:

Once again Lemma 4 makes this equivalent to obtaining simultaneously

L �;LN�1 X� �ðX Þ
N�2

� �� �
¼ K �;LN�1 X� �ðX Þ

N�2
� �� �

and

L X;LN�1 X� �ðX Þ
N�2

� �� �
¼ K X;LN�1 X� �ðX Þ

N�2
� �� �

:

After repeating N-times this process of ‘‘shifting � and X to the left’’ one obtains
that the starting equality becomes equivalent to the 2N equalities

L
N
ðA1 � � � �

N�1 times
� ANÞ ¼ L

N
wscðA1 � � � �

N�1 times
� ANÞ

in which Ai means either X or �. Also this is implied by the hypothesis ‘‘�� X is an
MN-space’’. &

Corollary 1. Let X be a Banach space and let � be a Banach space with uncon-
ditional basis. Assume that X and � do not contain l1. If �� X is an M-space then
�ðX Þ is an M-space.

A question suggested by the previous proof (observe that the hypothesis of not
containing l1 is necessary) is as follows.

Problem 4. Assume that E�� E does not contain l1. Does LðE;ZÞ ¼ KðE;ZÞ
imply LðE�� E;ZÞ ¼ KðE�� E;ZÞ?

Let us show that the additional hypothesis about �� X in Proposition 1 cannot
be omitted. As we already mentioned, one of the main examples in [8] is a Lorentz
sequence space dðw; 1Þ such that both dðw; 1Þ and its natural predual d�ðwÞ are
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M-spaces while the canonical bilinear form on d�ðwÞ � dðw; 1Þ is not weakly
sequentially continuous (i.e., d�ðwÞ has not the Dunford-Pettis property). Since those
two spaces have symmetric basis, one can construct the vector sums dðw; 1Þðd�ðwÞÞ
and d�ðwÞðdðw; 1ÞÞ, which cannot be M-spaces.

We investigate now the role of the Dunford-Pettis property. The following
result shows that the example in [8] is ‘‘sharp’’.

Proposition 3. If X is an M-space and Y a space with the Dunford-Pettis prop-
erty, then X� Y is an M-space.

Proof. A bilinear form B on X� Y can be reduced to four elements:
� a bilinear form BX on X given by

BXðx; aÞ ¼ Bððx; 0Þ; ða; 0ÞÞ;

� a bilinear form BY on Y, given by

BYðy; bÞ ¼ Bðð0; yÞ; ð0; bÞÞ;

� a linear operator LX : X ! Y* given by

LXðxÞðbÞ ¼ Bððx; 0Þ; ð0; bÞÞ

and
� a linear operator LY : Y ! X* given by

LYðy; aÞ ¼ Bðð0; yÞ; ða; 0ÞÞ

in the form

B ðx; yÞ; ða; bÞð Þ ¼ BXðx; aÞ þ LXðxÞðbÞ þ LYðyÞðaÞ þ BYðy; bÞ:

Quite clearly, if ðxn; ynÞ; ðan; bnÞð Þn is a weakly null sequence in ðX� Y Þ�

ðX� Y Þ then Bððxn; ynÞ; ðan; bnÞÞ converges to zero: the sequence ðLXðxnÞðbnÞÞn tends
to zero since Y has the Dunford-Pettis property; analogously, identifying the points
in X with their canonical images in X**, one obtains that the sequence ðLYðynÞðanÞÞn
converges to zero; finally, the sequences ðBXðxn; anÞÞn and ðBYðyn; bnÞÞn converge to
zero since X and Y are M-spaces.

The proof for an m-linear form is analogous: let D be a set of indices 
 such that
there exists a decomposition ðx
; y
Þ of m in integers, including 0, such that
x
 þ y
 ¼ m. An m-linear form M on X� Y can be decomposed as M ¼

P

2DM


where M
 is a x
-linear form on X taking values on the space of y
-linear forms
on Y. Since finite products of spaces with the Dunford-Pettis property have the
Dunford-Pettis property and X is an M-space, reasoning as in Ryan’s proof [23]
and, following the pattern of the bilinear case, one can show that all the components
M
 are weakly sequentially continuous. &

When either � or X has the Dunford-Pettis property then not only the hypothesis
on �� X can be dropped, one can also discard the hypothesis of not containing l1.
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Theorem 2. Let � be a Banach sequence space with an unconditional basis and let
X be a Banach space. Assume that both � and X are M-spaces. If either � or X have
the Dunford-Pettis property then �ðX Þ is an M-space.

Proof. Assume that it is � which has the Dunford-Pettis property. We prove first
that bilinear forms on �ðX Þ are weakly sequentially continuous and then proceed by
induction.

Let B be a bilinear form on �ðX Þ and let ð fnÞn and ðgnÞn be weakly null sequences
in �ðX Þ. We follow the same notation as in Lemma 4. We start by writing
fn ¼ un þ vn and gn ¼ wn þ yn, where lim kvnk ¼ lim kynk ¼ 0 while un and wn have
finite support. Since

Bð fn; gnÞ ¼ Bðun;wnÞ þ Bðun; ynÞ þ Bðvn;wnÞ þ Bðvn; ynÞ;

it only has to be shown that lim kBðun;wnÞk ¼ 0. We decompose un ¼ a1
n þ b1

n and
wn ¼ c1n þ d1

n as in Lemma 4. This gives

Bðun;wnÞ ¼ Bða1
n; c

1
nÞ þ Bða1

n; d
1
nÞ þ Bðb1

n; c
1
nÞ þ Bðb1

n; d
1
nÞ:

Since X is an M-space, so are the finite products Xk. Since ðBð�; c1nÞÞn is a weakly
null sequence in �ðX Þ

�, its restriction to the finite product Xk in which the supports
of u1 and w1 are contained must be weakly sequentially continuous. Thus,

lim kBða1
n; c

1
nÞk ¼ 0:

It is therefore possible to obtain some index nð1Þ such that, for j 	 nð1Þ one has
kBða1

j ; c
1
j Þk � 2�1. Repeating the reasoning with unð1Þ and wnð1Þ, and then diagonaliz-

ing, we obtain a subsequence ðnðkÞÞk such that kBðaknðkÞ; c
k
nðkÞÞk � 2�k; and thus

lim kBðaknðkÞ; c
k
nðkÞÞk ¼ 0:

Let us relabel the sequences so that

Bðun;wnÞ ¼ Bðan; cnÞ þ Bðan; dnÞ þ Bðbn; cnÞ þ Bðbn; dnÞ;

where ðbnÞn and ðdnÞn are images of weakly null sequences, say ð�nÞn and ð�nÞn, of �
by some operators, say 	b and 	d. Moreover, the preceding argument shows that
there is no loss of generality in assuming that

limBðan; cnÞ ¼ 0:

Since ðanÞn and ðcnÞn are weakly null sequences in �ðX Þ, then ðBðan; 	dð�ÞÞÞn and
ðBð	bð�Þ; cnÞn are weakly null sequences in �� while ðBð	bð�Þ; 	dð�ÞÞÞn is a bilinear form
on �. The Dunford-Pettis property of � yields

limBðan; dnÞ ¼ limBðan; 	dð�nÞÞ ¼ 0;

limBðbn; cnÞ ¼ limBð	bð�nÞ; cnÞ ¼ 0;

limBðbn; dnÞ ¼ limBð	bð�nÞ; 	dð�nÞÞ ¼ 0:
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This concludes the proof that B is weakly sequentially continuous and �ðX Þ is
an M2-space when � has the Dunford-Pettis property.

The proof when X has the Dunford-Pettis property is analogous. In this case
one has to consider that Bð�; dnÞ and Bð�; cnÞ form weakly null sequences in �ðX Þ

�;
thus, when restricted to the finite products ðX�Þ

k they must transform weakly null
sequences into null sequences. This is what makes limBðan; cnÞ ¼ limBðbn; dnÞ ¼ 0.
The equality Bðbn; dnÞ ¼ Bð	bð�nÞ; 	dð�nÞÞ shows that the last sequence is described
by the action of a bilinear form on �, and must therefore converge to zero.

The proof for trilinear forms and, in general, the inductive step, can be easily
obtained recalling that, given an m-linear form M on a Banach space E and points
x; z 2 Em, one has the decomposition

Mðxþ zÞ ¼ MðxÞ þM1ðx; zÞ þMðzÞ;

where, for each x 2 E, M1ðx; zÞ is a sum of n-linear forms on E with 1 � n < m. &

It only remains to pose the following question.

Problem 5. Assume that �� X is an M-space. Is �ðX Þ an M-space?

The guess of the first author is that the answer is no, while the second author
conjectures a positive answer.

5. l1-sums and local structure. A rather more difficult case is that of l1-sums of
M-spaces. In general, no positive result can be expected since it was already men-
tioned that the l1-sum of finite dimensional Hilbert spaces contains a complemented
copy of l2 and thus it cannot be an M-space. Curiously enough, this is the same
example that shows that the bidual of an M-space need not be an M-space. We give
now a partial result connecting both results.

Given a sequence ðEnÞ of finite-dimensional normed spaces we say that a Banach
space E admits the family ðEnÞ as local structure if for some c > 0 every finite
dimensional subspace A � E is contained in some finite dimensional subspace B � E
that is c-isomorphic to some En.

Proposition 4. Assume that E has some local structure ðEnÞ. If l1ðEnÞ is an M-
space then all ultrapowers of E (and hence all even duals) are M-spaces.

Proof. Ultrapowers of E have the same local structure as E, and even duals of E are
1-complemented in some ultrapower. Now, let EU be an ultrapower of E and let Y be a
separable subspace ofEU .Necessarily,Y is contained in a subspaceofEU having the form
[jEnð jÞ (up to an isomorphism). Let us prove that [nEn is an M-space; this suffices.

Let ðxinÞn2N, 1 � i � r, be a finite number of normalized weakly null sequences in
[nEn. There is no loss of generality in assuming that xin 2 En, for all 1 � i � r. Let
m : [nEn ! R be an r-linear form. We define an r-linear form M : l1ðEnÞ ! R by
means of

M ðu1
nÞn; � � � ; ðu

r
nÞn

� �
¼ lim

UðnÞ
mðu1

n; � � � ; u
r
nÞ:
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For fixed 1 � i � r, the points vik 2 l1ðEnÞ defined by vikð j Þ ¼ 0 if j < k and
vikð jÞ ¼ xik if j 	 k have norm 1 and form a weakly null sequence, as is easily verified.
Since l1ðEnÞ is an M-space and Mðv1k; � � � ; v

r
kÞ ¼ mðx1

k; � � � ; x
r
kÞ, it follows that [nEn

is an M-space. &

Remark. We have proved slightly more than announced: every separable sub-
space of EU is contained in a separable M-subspace of EU .

6. Lack of stability by projective tensor products. The question of whether the
projective tensor product of two M-spaces has to be an M-space is implicit in [8],
where it is shown that the projective tensor product of two polynomially null
sequences need not be even weakly null. It is not hard to deduce from the results
presented there that the projective tensor product of two M-spaces need not be an
M-space. However, there remains the question of whether the tensor product
E�� E is an M-space when E is an M-space. A negative answer was shown to the
first author during the July 1999 Conference on Banach spaces at Murcia by I.
Villanueva. The following result can be deduced from the results in [3]. (See, in
particular Theorem 2.2 of [3].)

Proposition 5. Let K and S be two compact Hausdorff spaces. Then
CðKÞ �� CðSÞ is an M-space if and only if both K and S are scattered.

The key of the argument is to show (Lemma 2.1 in [3]) that the projective tensor
product of a weakly null and a bounded sequence in CðK Þ-spaces is still weakly null.
Now, if K is not scattered then there exists a quotient map q : CðK Þ ! l2; taking a
bounded sequence ð fnÞ in CðKÞ such that qð fnÞ ¼ en, the canonical basis of l2 and
taking a weakly null sequence ðgnÞ in CðS Þ and a bounded sequence ðg�nÞ in CðS Þ�

such that g�nðgnÞ ¼ 1 one gets that the 4-linear form C : CðK Þ � CðS Þ � CðK Þ�

CðS Þ ! R defined by Cð f; g; h; jÞ ¼
P

n qð f ÞðnÞg
�
nðgÞqðhÞðnÞg

�
nð jÞ induces a bilinear

form B : CðK Þ �p iCðS Þ � CðK Þ �� CðS Þ ! R that is not weakly sequentially con-
tinuous since Bðð fn � gnÞ; ð fn � gnÞÞ ¼ Cð fn; gn; fn; gnÞ ¼ 1.
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