Review article

Should yoghurt cultures be considered probiotic?

Francisco Guarner1*, Gabriela Perdigon2, Gérard Corthier3, Seppo Salminen4, Berthold Koletzko5 and Lorenzo Morelli6

1Digestive System Research Unit, University Hospital Vall d’Hebron, Barcelona, Spain
2Centro de Referencia para Lactobacilos (Cerela), Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Argentina
3Institut National de la Recherche Agronomique, Unite Ecologie Physiologie Systeme Digestif, Jouy-en-Josas, France
4Food Development, Health Biosciences Program, Functional Foods Forum, University of Turku, Finland
5University of Munich, Metabolic Diseases and Nutrition, Munich, Germany
6Universita Cattolica Del Sacro Cuore (UCSC), Fac Agraria Istituto Microbiologia, Piacenza, Italy

(Received 8 July 2004 – Revised 17 January 2005 – Accepted 17 January 2005)

Probiotics are live micro-organisms that when administered in adequate amounts confer a health benefit on the host. Consumption of yoghurt has been shown to induce measurable health benefits linked to the presence of live bacteria. A number of human studies have clearly demonstrated that yoghurt containing viable bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii sp. bulgaricus) improves lactose digestion and eliminates symptoms of lactose intolerance. Thus, these cultures clearly fulfil the current concept of probiotics.

Probiotics: historical evolution of the concept

The origin of the term ‘probiotic’ is credited to Werner Kollath as related in a publication by the German scientist Ferdinand Vergin.

* Corresponding author: Dr Francisco Guarner, fax + 34 93489 4456, email fguarnera@medynet.com

British Journal of Nutrition (2005), 93, 783–786 DOI: 10.1079/BJN20051428
q The Authors 2005

https://doi.org/10.1079/BJN20051428
Kollath proposed the term ‘Probiotika’ to designate ‘active substances that are essential for a healthy development of life’. The Greek meaning of the term (‘for life’) is opposed to ‘antibiotics’ (‘against life’), at that time a very well recognized ‘hit’ of science. In a paper published in *Science* a few years later, Lilly & Stillwell (1965) described probiotics as substances secreted by one micro-organism that stimulate the growth of another. Other US scientists later used the term probiotic with the same meaning: factors that stimulate growth (Sperti, 1971; Nutini *et al.* 1982). However, Parker (1974) made a different use of the term, which was applied to describe animal feed supplements specifically designed to improve health. He introduced a new definition: ‘organisms and substances which contribute to intestinal microbial balance’. The success of the new concept is mainly due to the subsequent work of Roy Fuller in Reading (UK), who revised Parker’s definition by removing the reference to ‘substances’. Thus, a probiotic is ‘a live microbial feed supplement which beneficially affects the host animal by improving its intestinal microbial balance’ (Fuller, 1989). The concept was also applicable to human nutrition and medicine (Fuller, 1991). This definition stressed the importance of viable microbial cells as an essential requirement, but kept the concept restricted to a particular mechanism of action: improvement of the intestinal microbial balance, as in Parker’s definition. Shortly thereafter, Havenaar & Huis In’t Veld (1992) broadened the definition to include the microflora of other habitats different from the intestinal, such as the upper respiratory tract or the urogenital tract. Probiotics are ‘a mono- or mixed culture of live microorganisms which applied to animal or man, affects beneficially the host by improving the properties of the indigenous microflora’. Remarkably, the concept was still restricted to micro-organisms able to influence the indigenous microbial balance.

The notion of probiotic as introduced by Fuller was attractive and successful. Subsequent scientific approaches aimed at the identification of the ideal probiotic, and discussed the characteristics and properties required for a micro-organism to qualify as a probiotic. Many scientific publications and reviews listed a series of essential requirements to be checked by *in vitro* methods in the screening of micro-organisms with a probiotic value. It was suggested that only strains shown to possess these essential traits should be tested *in vivo*. The list of essential requirements based on theoretical considerations included the following:

1. Human origin (as a token of safety for human use);
2. Resistance to gastric acidity and bile toxicity (these properties would predict good survival during gastrointestinal transit);
3. Adhesion to gut epithelial cells (as a requirement for successful colonization *in vivo* – the term colonization describes the ability of a particular bacteria strain to permanently establish in the host over time without the need for periodic reintroduction of the bacteria; see Bezkorovainy, 2001);
4. Production of antimicrobial substances or bacteriocins (for pathogen antagonism);
5. Ability to modulate immune responses and ability to influence metabolic activities of faeces (for prevention of colon cancer).

Several bacteria strains successfully qualified by passing through all the *in vitro* tests, and thus received the ‘full title’ of being a probiotic, in some cases without any proof of a beneficial health effect demonstrated in human studies. On the other hand, most recent scientific developments have challenged the validity and usefulness of the suggested criteria for a full definition of probiotic. For instance, the Nissle *Escherichia coli* strain, isolated in 1917 for therapeutic purposes in the pre-antibiotic era, is not resistant to acid or bile toxicity. This strain is given in enteric-coated capsules and has proved useful for the prevention and treatment of human disease in well-designed human studies (see for instance the *Lancet* paper on a clinical trial in ulcerative colitis; Rembacken *et al.* 1999). There is no proof so far that supports or substantiates the claim linking human origin and safety for human use, or human origin and efficiency in human studies. It is also well known that many pathogens exert their deleterious effect through adhesion to gut epithelial cells (Hoepelman & Tuomanen, 1992), and again this fact has cast some doubts about the meaning of this property by itself in the definition of a strain as probiotic (Du sluzeau, 2002).

Taken together, these observations suggested that the proposed list of *in vitro* properties could no longer be accepted as criteria for definition of a probiotic. Most common views about the *in vitro* tests for probiotics among the scientific community are well reflected in the report by the Joint Food and Agriculture Organization/World Health Organization Working Group (2002):

‘*In vitro* tests are useful to gain knowledge of strains and the mechanism of the probiotic effect. However, it was noted that the currently available tests are not fully adequate to predict the functionality of probiotic microorganisms in the human body. It was also noted that in vitro data available for particular strains are not sufficient for describing them as probiotic. Probiotics for human use will require substantiation of efficacy with human trials.’

Hence, *in vitro* studies are and will be a very useful tool for the selection of bacteria for a particular probiotic use, but are not essential requirements for a strain to qualify as a probiotic. In addition to this consensus about the *in vitro* tests, some important evidence obtained in human studies has challenged Fuller’s concept of probiotics. First, many bacteria able to transit alive through the entire human gastrointestinal tract are devoid of a measurable health effect, and second, a persistent change in the indigenous flora by consumption of a probiotic has never been demonstrated (Bezkorovainy, 2001). According to these observations, inducton of changes in the indigenous flora should not be considered as a primary target of probiotics. Thus, newer definitions of the probiotic concept have omitted the need to induce changes in the microbial balance, as health benefits can be produced through other mechanisms as well.

The current concept of probiotics

Definitions proposed in recent years are listed below.

1. ‘Oral probiotics are living micro-organisms, which upon ingestion in certain numbers, exert health benefits beyond inherent basic nutrition’. LABIP consensus definition (Guarn & Schaafsma, 1998).
3. ‘Live microorganisms which when administered in adequate amounts confer a health benefit on the host’. Definition by the Joint Food and Agriculture Organization/World Health...
Should yoghurt cultures be considered probiotic? 785

Organization Working Group (2002). The International Scientific Association for Probiotics and Prebiotics recently adopted this definition (Reid et al. 2003).

(4) ‘Probiotic bacteria are live food supplements which benefit the health of the consumer’, as defined in the legal proposal by the European Commission referred to earlier.

All these definitions require that the term probiotic should only be applied to microbes administered alive having a demonstrated beneficial effect (Reid et al. 2003). The similarities between these new definitions clearly reflect the consensus of scientists all over the world on this issue. The concept is now open to many different applications in a large variety of fields relevant for human and animal health. The concept is generic and covers many different aspects that may be addressed by specific strains.

Yoghurt cultures are probiotic

According to current scientific concepts, yoghurt cultures are probiotics if a beneficial physiological effect can be obtained by consumption of the live cultures and the benefit has been substantiated appropriately in human studies.

All *S. thermophilus* and most *L. bulgaricus* strains have a high lactase activity (Sanders et al. 1996). It is well recognized that yoghurt consumption improves lactose digestion and eliminates symptoms of lactose intolerance. The physiological effects have been clearly demonstrated in a large number of human studies in which consumption of yoghurt (with live cultures) has been compared with consumption of a pasteurized product (with heat-killed bacteria; Gilliland & Kim, 1984; Savaiano et al. 1984; McDonough et al. 1987; Dewit et al. 1988; Lerebours et al. 1989; Pochart et al. 1989; Marteau et al. 1990; Varela-Moreiras et al. 1992; Rizkalla et al. 2000; Labayen et al. 2001; Pelletier et al. 2001). All studies have shown better lactose digestion and absorption in subjects who consumed yoghurt with live cultures, as well as reduction of gastrointestinal symptoms. The benefit on lactose absorption was also demonstrated in healthy subjects without lactose maldigestion (Rizkalla et al. 2000). All these studies highlight the essentiality of live bacteria for the beneficial effect on lactose digestion (not excluding that other beneficial effects can be due to non-viable bacteria). There are no major scientific discrepancies on this issue fully established by human intervention studies.

The functional properties of yoghurt are consistent with further evidence obtained in important ancillary studies that confirmed viability and metabolic activity of yoghurt bacteria in the human intestine (Martini et al. 1987; Pochart et al. 1989; Marteau et al. 1990), as well as in *in vivo* animal models (Lick et al. 2001; Drouault et al. 2002). Yoghurt bacteria can also be detected in faeces of human subjects consuming yoghurt (Brigidi et al. 2003; Callegari et al. 2004).

Yoghurt is also being used in the management of acute diarrhoeal disorders, as recommended by World Health Organization (1995). This recommendation is based on the traditional approach in many countries all over the world, as well as on evidence gained in human intervention studies (Boudraa et al. 1990, 2001). Yoghurt feeding in children with acute watery diarrhoea decreased stool frequency and shortened the duration of diarrhoeal episodes (Boudraa et al. 2001).

Other studies have addressed the role of yoghurt on the immune system. Yoghurt consumption may enhance the immune response particularly in immunocompromised populations, such as the elderly (Meydani & Ha, 2000). The role of yoghurt in the modulation of the immune system was further demonstrated by Van de Water et al. (1999) in a randomized controlled trial with human subjects. Long-term consumption of yoghurt, as compared with either the same product heat-treated after fermentation or exclusion of yoghurt products from the diet during the length of the study (1 year), was associated with a significant decrease in allergic symptoms.

In agreement with the demonstration of probiotic efficacy, several consensus documents have acknowledged the probiotic nature of yoghurt cultures. These include the report of the Joint Food and Agriculture Organization/World Health Organization Working Group (2002), the International Scientific Association for Probiotics and Prebiotics workshop consensus document (Reid et al. 2003), the *Lancet* review on gut flora in health and disease (Guarner & Malagelada, 2003) and the official web page of the Ministry of Agri-culture and Agri-Food in Canada (http://www.agr.gc.ca/food/nif/FAQs.html#categories).

Conclusions

The concept of ‘probiotic’ has evolved to a simple and straightforward notion: probiotics are ‘live micro-organisms which when administered in adequate amounts confer a health benefit on the host’. Consumption of yoghurt has been shown to induce measurable health benefits linked to the presence of live bacteria, as compared with products with heat-killed bacteria. Thus, yoghurt starter cultures clearly fulfill the current concept of probiotics at least for its beneficial effect on lactose digestion *in vivo*. Some yoghurt cultures were shown to induce other health benefits such as reduction in severity and duration of acute diarrhoea, or prevention of allergic disorders. Whether all yoghurt cultures can lead to these health benefits may require further substantiation.

Conflict of interest

F. G. is a member of the Beneo Scientific Committee sponsored by Orafti (Tienen, Belgium). L. M. served as coordinator of a research project ‘Detection in faecal samples of yoghurt cultures’, which was co-funded by the Groupe Danone (Paris, France). B. K. serves as the coordinator of a multi-centre research project ‘Childhood Obesity – Programming by Infant Nutrition’, funded by the European Commission (QLK1-2001-00389) and co-funded by the Groupe Danone (Paris, France). S. S. is holder of the Bristol-Myers Squibb Foundation Unrestricted Nutrition Research Grant.

References

Downloaded from https://www.cambridge.org/core, IP address: 54.70.40.11, on 15 Jun 2018 at 19:59:00, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1079/BJN20051428