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RELATIVE RELATION MODULES OF FINITE GROUPS

by MOHAMMAD YAMIN

(Received 4th January 1990)

Let £ be a free product of a finite number of cyclic groups, and S a normal subgroup of £ such that E/S = G
is finite. For a prime p, S = S/S'S]> may be regarded as an FpG-module. Whenever £ is a free group, § is called
a relation module (modulo p); in general we call S a relative relation module (modulo p). Gaschutz, Gruenberg
and others have studied relation modules; the aim of this paper is to study relative relation modules.

1980 Mathematics subject classification (1985 Revision): 16A26 and 2OCO5.

1. Introduction

Throughout the paper, let p be a (fixed) prime, Fp the field of p elements, G a finite
group of order n generated by X = {gb 1 ^ i ̂  d}, Gf the cyclic subgroup of G of order nt

generated by g, and E( a cyclic group of order m,, where m, = fe1n,, l^fe.^oo. Suppose
that fe(<oo and pjfki if i^d, S^d, and fc,= oo or p\kt if 3+l^i^d. Let £ be the free
product of the £,, 1 ^ i fL d; and S the kernel of the natural epimorphism of E onto G.

S=S/S'SP, regarded as an FpG-module via conjugation in £, is called a relation
module (modulo p) when £ is a free group. In general S will be called a relative relation
module (For convenience, reference to p is being dropped). We remark that our notion
of relative relation module is different from that discussed in [5]. Gaschutz [2];
Gruenberg [3] and [4], and others have studied relation modules. In this paper, along
the lines of Gruenberg's theory of relation modules, we study exact sequences,
decomposition and comparison of relative relation modules.

Crucial to our study is the relationship between relation and relative relation
modules, which enables us to establish an exact sequence: S is embedded in the direct
sum of the augmentation ideals of the FpG,- induced to G, 1 gig(5, and a free module of
rank d—5; the resulting factor module is isomorphic to the augmentation ideal of ¥pG.
Another exact sequence is established in which S, when <55;1, is embedded in a free
module of rank d — 1. These exact sequences are established in Section 2.

In Section 3 we discuss the structure of S. When p is coprime to \G\, relative relation
modules are easily described; our attempts in the non-coprime case have been only
partially successful however. Whenever p\\G\ but p^lG,!, l^i^S; we say that p is
semi-coprime to \G\ (with respect to X). In the coprime and semi-coprime cases, a
characterisation, including a criterion for counting projective summands, of S is given.
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Given a decomposition S^P($) © N(§), where P(§) is FpG-projective and N(§) contains
no projective summand, P(§) is called the projective part and N(§) the non-projective
part of S. In the semi-coprime case, N(§) is nonzero and indecomposable (and also
isomorphic to N(§) of the case when £ is a free group). Nothing is predictable in the
non semi-coprime case, N(§) may be zero or decomposable (and may not even be a
homomorphic image of N(§) of the case when £ is a free group). The author [9] has
shown that § is non-projective and indecomposable in the case when G is a p-group, X
is a minimal generating set of G and d — d.

In Section 4 we compare various relative relation modules. Two relative relation
modules, isomorphic as Fp-spaces, are rarely isomorphic as G-modules; that is, § not
only depends on G,p and d but also on the mapping of £ to G. In cases when one
relative relation module is embedded into another it does not necessarily mean that the
bigger module splits over the smaller; however there are some known cases when it does
happen.

2. Relative relation modules and associated exact sequences

Let F be a free group freely generated by {/•, l^i^d} and consider

1->K->F^G->1 (2.1)

and

1 - S - £ ^ G -> 1 (2.2)

where fin=gi = ei^/, l g i g d . Let R and S be the corresponding relation and relative
relation modules of G determined by n and ^.

The natural epimorphism <j>:F-*E defined by fi<k = ei, l^i^d, induces an epimor-
phism ^.F/R'R"^E/S'SP such that (f,R'R')$ = elS'Sp, 1 gigd. If Q denotes the kernel of
<j>, and 8 the restriction of $ to R, then it may be checked that

0->e->K-^S-»0 (2.3)

is FpG-exact, and that

Q = <(/"' f?'f)R'Rp; feF.izizsy

Let B = ©?=i bftpG, a free module with {bb 1 g igd} as an FpG basis. By the embedding
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theorem of Magnus [5], F/R'RP may be embedded into the semidirect product of B and
G such that f,R'Rp->(gt,bi), l^i^d. This together with (2.3) gives:

Lemma 2.4. Let 7] be the trivial irreducible submodule of b,FpG; generated by
f 1)- Then

(2.5)

where 8 is as defined above, is exact, and Q = ©?= t Tf

Corollary 2.6.

Proof. By O. Schreier the rank of the free group R is equal to n(d —1) + 1, which is
also equal to the dimension of R. As dim Tf = («/«;), the result follows from (2.5).

Note 2.7. If ffi; = n, for 1 g i ^ <5, and m, = oo for <5 + 1 ^ i ̂  d, then by the Kurosh
subgroup theorem ([7, Cor. 4.9.1, p. 243]) S is a free group. In this case the rank of S
equals the dimension of S given by Corollary 2.6.

Proposition 2.8. (Gaschiitz [2]). Given the free presentation (2.1), then

O-^Qi^g^O (2.9)
1 = 1

is FpG-exoct, where g denotes the augmentation ideal of FpG, and n is determined by

The sequence (2.9) is called the relation sequence (modulo p) of G determined by (2.1).
We have:

Proposition 2.10. Given (2.2) then the sequence, which we will call the relative relation
sequence,
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» d

(2.11)

is $pG-exact, where g,- denotes the augmentation ideal ofbfi.G,, and \ji is determined by

Proof. The result follows by an application of the 3 x 3 lemma to the diagram

Tf iT?

where

(i.b,x)z='£bfel-\)x,+
\ i = i / i = i i=a

, x,6F,G.

Next suppose that 5 ^ 1 , consider the diagram
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0 0 0

0 > M

b,f,G

Fp — 0

437

where

Z
.=i

i = i

Let L be the kernel of k, p the augmentation, M the kernel of /? and a the restriction
of \x to L. The 3 x 3 lemma yields:

Proposition 2.12. Suppose that <5^ 1, and let L be a free module of rank d— 1. Then

t
lT?£ Fp^0 (2.13)

is ¥pG-exact, where a and /? are as described above.

It may be noted that, if 5 = 0, S being a relation module cannot be embedded into a
free module of rank d—\.
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3. Structure of relative relation modules

An application of Maschke's Theorem to the relative relation sequence (2.11) yields:

Proposition 3.1. Suppose that pJfn. Then

S@g = ®g? © b,FpG.
i = l i = 3 + l

Since g and gf contain no trivial submodules in the coprime case, S contains exactly
d—S copies of the trivial module ¥p.

Both Tf and gf are projective, precisely when pXni- Finiteness of G allows us to
treat a projective module as injective, and vice versa (see, [1, Theorem (52.3), p. 421]).
From (2.5), we have

Lemma 3.2. Suppose that pJ(nh l^i^d. Then

For a module V, we define <j>V to be the smallest submodule of V such that V/(j)V is
completely reducible. Equivalently, (j> V is the intersection of all maximal submodules of
V. We say that p is semi-coprime to n (with respect to X) if p\n but pj(nh lgi^(5.
Gaschiitz's theorem ([4, Theorem 2.9, p. 9]) and Lemma (3.2) yield:

Proposition 3.3. Suppose that p is semi-coprime to n. Let

p

be an ¥pG —exact sequence, where V and W are projective modules, with Kerg = <̂ W and
J^<pV Then

and J is a non-zero, non-projective and indecomposable module.

The Krull-Schmidt theorem may be applied to simplify the isomorphism of (3.1) and
(3.3) in various cases. For example, when <5=0, Proposition (3.1) and (3.3) reduce to
Gaschutz's theorem ([4, Theorem 2.7, p. 8, Theorem 2.9, p. 9]).

Of course, the non-projective part N(S) of S in the semi-coprime case is non-zero and
indecomposable, as well as isomorphic to N(R). None of these properties of N(§) hold
for the non semi-coprime case.

(It should be noted that, in all the examples of this and the next section, we consider
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only those relative relation modules, the middle term of whose relative relation
sequences do not contain any free direct summand (that is when 5 = d)).

Example 3.4. Let G = S3, p = 2 and X = {g1,g2], where g\=g\ = \- We know that
F2S3 has only two distinct principle indecomposable modules, one of them being
irreducible. Then it follows that S is isomorphic to the irreducible two dimensional
module and so N(S) = {0}.

Example 3.5. Let G = S4, p = 3, X = {gug2}, where g\=g\ = 1. We know (see [8, Ex.
18.5, p. 153]) that F3S4 has precisely four principal indecomposable modules each of
dimension three; two of them are irreducible. The other two, using (2.9), in applying
(3.3) to obtain N(R), give that dimJV(R) = l. Since the dimension of S is five (see
Corollary (2.6)), therefore the dimension of N(§) is either two or five. In any case, N(§)
cannot be a homomorphic image of N(R).

In view of remark (4.9) below, N(§) in the non semi-coprime case can be
decomposable.

A suitable characterisation of N(S), and so one of S in general, remains unknown,
however when G is a p-group and X is a minimal generating set for G, S turns out to be
non-projective and indecomposable, which is discussed by the author in [9].

4. Comparison of relative relation modules

Let Xl — {gh l^i^d^ and X2 = {hh l^i^d2) be two generating sets of G, and
consider the resulting relative relation sequences

0 - St - © g? © b$pG 4 g - 0. (4.1)

and

O - > S 2 - 0 h p © b;FpG^g->0 (4.2)

where S, = S,-/S;Sf, i = 1,2. Whenever 5,=0, we shall identify S, with £,.
An application of Schanuel's Lemma ([3, Lemma 11, p. 162]) to (4.1) and (4.2),

together with the Krull-Schmidt theorem on putting 8l=52 = 0 gives:

Proposition 43 (Gaschiitz [3]). If dx ^d2, then R2 = ̂ i © ̂ > where L is a free module
o/rank d2—di.

The analogous result for relative relation modules is far from being true, which we
analyse in this section. The following example shows that St and S2 may not be
isomorphic even if there is an automorphism of G mapping X^ onto X2. (Recall that in
all examples we suppose that S = d).
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Example 4.4. Let G = Zq x Zq, where q is an integer greater than one,

Xi = {gug2},X2 = {go,g2}, where g0 =gig2.

Case (i). pJ(q. By Lemma (3.2) and Proposition (4.3)

Since the action of <gt> is trivial on T? but non-trivial on T%, St and S2 cannot be
isomorphic as G-modules. As both Sx and S2 are projective, we also conclude that
under the hypotheses the projective parts of two relative relation modules may not be
isomorphic.
Case (ii) P = q>2. Let x = (fr1-fc2)(g1-l)(g2-l) and y = (boZb2)(go-l)(g2-l). It can
be shown that Sj as an FpG-module is generated by x, and S2 by y. If there exists any
¥PG isomorphism, 9 say, of St to S2, then x9 = ya, for some aeFpG. As a can be
expressed as a sum of an element of g (which is generated by {(gi — l),(g2 — 1)}) and an
element of Fp, we have

ya = <xy+y{gl-\)ay+y{g2-\)a2, oceFp, aua2efpG.

Since ya must be a generator of S2, we must have <x#0. If fc = (gi — I)p~i{g2-I)
p~2,

then using the commutativity of FPG,

(xb)6 = ayb (as ( g , - l ) ' = 0)

which is a non-zero element. But xb=0, and so 9 cannot be an isomorphism. It may
also be noted that both Sj and S2 are non-projective (and indecomposable), as (by
(2.13)) both are embedded in the unique principal indecomposable module Fp(ZpxZp).
Thus the non-projective parts of two relative relation modules may not be isomorphic
as well.

We have:

Proposition 43. Suppose that dl=d2=d and 5l=d2 — 6. Let x be a fixed element of G
such that (hi') = (giy, l^i^S. Then S^S^

Proof. Clearly ft, = (#?<)* for some integer af such that <g?'> = G,, l^i^d. Therefore,
it suffices to prove the result in two cases, namely
(i) When /!,=#?', 1 ^i^S, and (ii) when h—gf, 1 g/g<5.
Case (i). Clearly hf = gf, l^i^d; and so it is enough to show that $, and \j/2 coincide
onhp. For, ifa,eFpG,
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and so, §l^§2.
Case (ii). Let A be the FpG-isomorphism of FpG given by a->xa, and consider

g

where K is the restriction of A given by (ht — 1) -»(gj — l)x, l ^ i ^d ; and £ is so defined
that its restriction to hf and b,FpG coincide with the restriction of A given by
bi(ht — 1)-»biigt — l)x and bj-»bf:>c, respectively. Then ^1 = ^2K, and so the existence of
an isomorphism of S2 to Su namely the restriction of £, is immediate.

It is not known whether there is an isomorphism between St and S2 if w e only
suppose that the elements of Xt and X2 are pairwise conjugate to each other. However,
this is true in the semi-coprime case and follows from Schanuel's Lemma because the
middle terms of (4.1) and (4.2) become projective.

For the rest of the section, suppose that X2 = X1 u {g0}, 82 = 8l +1. We prove:

Lemma 4.6. St is a submodule of S2, and

Proof. Let V = @>
iLigf

of $2 to V coincide; and so,
?Iil + i&ilFpG, and W = gf. Clearly,

2r\V = S1. Moreover,
and the restriction

therefore the sum of SJSi and K/Sj is a direct sum. Since dim(S2/S1

dim((K© W)/^); therefore

t e v/Si =(v e
The Krull-Schmidt theorem now gives the required result.

The following example shows that S2 need not split over S,.

Example 4.7. Let G = Z2xZ2, p = 2,

Note that

and X2 = {gQ,gug2} (where

)» is an element of gg. Let yt =
y2=(*i+*2)fei + l)te2 + l) and y3 =

o(^if2)tei itei )te2 )- It may be verified that yi,y2,y3 is an Fp-linearly
independent subset of S2, and so must be a basis, because dimS2 = 3. It is easy to check
that the space spanned by y2>y3 is the (unique) maximal submodule of S2, and so §2

must be indecomposable.

Finally we prove:
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Proposition 4.8. Suppose that either go e -^ i or else p does not divide the order o/<go>.
Then S2 = S

Proof. Suppose that gosX^ We suppose without loss of generality that go=£i- Let
K = (£)f=1gf ©?=a+1ft,FpG. Let tj1 be the identity isomorphism of V, and r\2 the
epimorphism of V © go to V such that the restriction of r\2 to V and go is the identity
isomorphism. Then $x =i]\§2 and §2 = i]i§\. Now as in the proof of Schanuel's Lemma
([3, Lemma 11, p. 162]), we may deduce the result by applying Krull-Schmidt theorem.

When p/f|<ifo)|> the result is obvious because go is projective.

It is not known whether S2 splits over S, and go if we only suppose that g0 is a
conjugate of an element of Xt in G.

Remark 4.9. If in Proposition 4.8 we suppose that G is a p-group and goeXl, then
N(S2)^N(S1)®g°, because go being embedded in FpG, is non-projective. This substan-
tiates our earlier claim that the non-projective part of a relative relation module can be
decomposable.
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