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TORSION POINTS ON ELLIPTIC CURVES DEFINED
OVER QUADRATIC FIELDS

M. A. KENKU anp F. MOMOSE

Let & be a quadratic field and E an elliptic curve defined over k.
The authors [8, 12, 18] [23] discussed the k-rational points on E of prime
power order. For a prime number p, let n = n(k, p) be the least non
negative integer such that

E (k) = ker(p™: E—> E)k) C E.
m=0

for all elliptic curves E defined over a quadratic field & ({15]). For prime
numbers p < 300, p =~ 151, 199, 227 nor 277, we know that n(k, 2) = 3 or
4, n(k,3) =2, n(k,5) =n(k,7) =1, n(k,11) = 0 or 1, n(k, 18) = 0 or 1, and
n(k, p) = 0 for all the prime numbers p = 17 as above (see loc. cit.). It
seems that n(k, p) = 0 for all prime numbers p > 17 and for all quadratic
fields k. In this paper, we discuss the N-torsion points on E for integers
N of products of powers of 2,3,5,7,11 and 13. Let N >1 be an integer
and m a positive divisor of N. Let X,(m, N) be the modular curve which
corresponds to the finite adélic modular group

I'im,N) = {(‘cz s)eGLz(Z‘)la——lzc—Z’OmodN, bzd—lEOmodm},

where Z = lim, Z/nZ. Then X,(m, N) is defined over Q((,), where {, is
a primitive m-th root of 1. Put Y,(m, N) = X, (m, N)\{cusps}, which is the
coarse moduli space (/Q({,)) of the isomorphism classes of elliptic curves
E with a pair (P,, Py) of points P, and P, which generate a subgroup
~ ZlmZ X Z|NZ, up to the isomorphism (— 1);: E ~ E. For m =1, let
X(N) = X1, N), '(N) =TI, N)and Y,(N) = Y,(1, N). For the integers
N = 2% 11 and 13, X(N) are hyperelliptic and n(k, 2), n(k, 11) and n(k, 13)
depend on %k [23] (3.3). Our result is the following.

TaEOREM (0.1). Let N be an integer of a product of powers of 2,3, 5,
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7,11 and 18, let m be a positive divisor of N. If X,(m, N) is not hyperelliptic
(i.e. the genus g(m, N) + 0 and (m, N) # (1,11), (1,13), (1,14), (1.15), (1,16),
(1,18), (2,10) nor (2,12)), then Y,(m, N)k) = ¢ for all quadratic fields k.

For prime numbers p > 17, it seems that Y,(p)(k) = ¢ for all quadratic
fields k [23]. With Theorem (0.1), we may conjecture that the torsion sub-
group of E(k) (k = a quadratic field) is isomorphic to one of the following

groups:
&(m, N)

ZINZ for 1< N<L10 or N =12 0
Z|2Z X Z|2nZ  for 1< n <4 0
Z/3n X Z[3nZ  for n=1 or 2 with k= QW — 3) 0
Z|AZ X Z|AZ with & = Q(W—=1) 0

or
ZINZ for N =11, 14 or 16
ZINZ for N =13, 16 or 18
Z[2Z X Z|2nZ for n=5 or 6 1.

For (m, N) = (1,14), (1,15), (1,18), (2,10) and (2,12), we give examples of
quadratic fields k& such that Y,(m, N)(k) = ¢ (2.4), (2.5) (see also [23] (3.3)).

The proof of Theorem (0.1) consists of two parts. One is a study on
the Mordell-Weil groups of jacobian varieties of some modular curves
(1.4), (1.5). The other is a similar discussion as in [8, 12, 13] [23]. Suppose
that there is a k-rational point x on Y,(m, N) for a pair (m, N) as in (0.1).
Then x defines a rational function g (/@) on a subcovering X: X,(m, N)—
X —-X,(N), whose divisor (g) is determined by x. Using the methods as
in [8, 12, 13] [23], we show that such a function does not exist and get
the result. It will be proved in Section 2 for m = 1 and in Section 3 for
m = 2.

NoratioN. For a rational prime p, Q" denotes the maximal unramified
extension of @, Let K be a finite extension of @, Q, or 3", and A an
abelian variety defined over K. Then ¢, denotes the ring of integers of
K, and A,, denotes the Néron model of A over the base 0,. For a finite
subgroup G of A defined over K, G,,, denotes the schematic closure of G
in the Néron model A,, (, which is a quasi finite flat group scheme [28]
§2). For a subscheme Y of a modular curve X/Z and for a fixed rational
prime p, Y* denotes the open subscheme Y\{supersingular points on
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Y®F,. For a finite extension K of Q and for a prime p of K, (0),,
denotes the local ring at p.

§1. Preliminaries

In this section, we give a review on modular curves and discuss the
Mordell-Weil groups of jacobian varieties of some modular curves. Let
N > 1 be an integer and m a positive divisor of N. Let X,(m, N) (resp.
X(m, N)) be the modular curve (/Q(,)) (resp. /Q) which corresponds to
the finite adeélic modular group

r'(m, N):{(j 2)6GL2(2)|a—15050modN, b=d— EOmodm}.

(resp. I'y(m,N) = {(: 2) e GL, (Z)|c =0 mod N, b =0 mod m}) .
The modular curve X,(m, N) is the coarse moduli space (/Q({,)) of the
isomorphism classes of the generalized elliptic curves E with a pair (P, Py)
of points P, and P, which generate a subgroup ~ Z/mZ X Z/NZ, up to the
isomorphism (— 1);: E3 E [4]. Let Y,(m, N), Y, (m, N) denote the open
affine subschemes X (m, N)\{cusps} and X (m, N)\{cusps}. For m =1, let
X(N) = X(1, N), X(N) = X1, N), I'(N) = I'|(1, N), '(N) = I'(1, N), Y(N)
=Y, (1,N) and Y (N) = Y1, N). Let K be a subfield of C. For a K-
rational point x on Y(m, N) (resp. Y, (m, N)), there exists an elliptic curve
E defined over K with a pair (P,,, Py) of K-rational points P,, and P, (resp.
(A4, Ay) of cyclic subgroups A, and A, defined over K) such that (the
isomorphism class containing) the pair (E, + (P,, Py)) (resp. the triple
(E, A, A,)) represents x [4] VI (3.2). The modular curve X, (mN) is iso-
morphic over @ to X (m, N) by

(E, A)—(E[Ay, Ay/Ay, E[A,),

where E, = ker(N: E— E) and A, is the cyclic subgroup of order N
of A. Let = =,y be the natural morphism of X(m, N) to X(m, N):
(E, = (P,, Py)) — (E,{P,>, {Py), where (P,) and (P, ) are the cyclic sub-
groups generated by P, and P,, respectively, Then z is a Galois covering
with the Galois group ['(m,N) = I'{(m, N)/+ I'(m, N) = (ZImZ)* X
(ZINZ)*)]+ 1. For integers a, § prime to N, [«, 8] denotes th2 automorphism
of X,(m, N) which is represented by ge I'(m, N) such that g = (g 2)
mod N. Then [«, f] acts as
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(E, & (P, Py)—> (E, £ (aP,, fPy)).

When a = gmod Norm = 1, let [«] denote [, f]. When m = 1, let n, = x,
and I'(N) = I'(1, N). For a positive divisor d of N prime to N/d, let w,
denote the automorphism of X,(N) defined by

(E, & P)——> (E[{P), £ (P + Q) mod {P,)),

where P, = (N/d)P and @ is a point of order d such that e,(P;, @) = {,
for a fixed primitive d-th root {, of 1. (e;: E; X E, — p, is the e,-pairing).
For a subcovering X : Xi(m, N) — X — X(N) (resp. X,(N)— X— X(N)),
we denote also by [«, f] (resp. w,) the automorphism of X induced by
[, B] (resp. w,). For a square free integer IV, the covering X,(IV) — X(IV)
is unramified at the cusps. Let & denote the normalization of the pro-
jective j-line (1) ~ P} in X. For X = X\(m, N), X = X,(m, N), X = X,(N)
and X = X(N), let £ =2(m,N), Z =Z(m,N), X =% (N) and & =
Z(N). Then & ® Z[1/N]— Spec Z[1/N] is smooth [4] VI (6.7).

(1.1) Let 0= (2), 0o = ((1)) be the Q-rational cusps on X, (IN) which
are represented by (G, X Z/INZ, Z[NZ) and (G,, py). Then wy(0) = oo.
The cuspidal sections of the fibre X(IN) X x,,0 are represented by the
pairs (G, X Z|NZ, + P) for the points Pe{l} X ZI[NZ of order N, which
are all @Q-rational. We call them the 0-cusps. For a positive divisor d
of N with 1 <d < N and for an integer i prime to N, let (&) denote the
cusps on Xy (XN) which is represented by (G, X Z/(N|/d)Z, Z|NZ({,, i),
where Z/NZ(¢,,1) is the cyclic subgroup of order N generated by the
section ({y, 7). Then (é) is defined over Q(,), where n = G.C.M. of d

and N/d. When N is a product of 2™ for 0 < m < 2 and a square free odd
integer, all the cusps on X,(INV) are @-rational.

(1.2) Let 4 C (Z/NZ)* be a subgroup containing + 1 and X = X, be
the modular curve (/Q) corresponding to the modular group

r,= {(“ g) e I(M)|(a mod N e 4) .
c

Then X, is the subcovering of X,(IN) — X,(IV) associated with the subgroup

4. TFor a prime divisor p of N, let Z’ (resp. Z) be the irreducible com-

ponent of the special fibre Z'(N)® F, such that Z’'* (= Z’\{supersingular

points on Z(N)Q®F,}) (resp. Z") is the coarse moduli space (/F,) of the
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isomorphism classes of the generalized elliptic curves E with a cyclic
subgroup A, A =~ Z|NZ (resp. A =~ py), locally for the étale topology ([4]
V, VI). Let d be a positive divisor of N coprime to N/d. If p|d, then
w, exchanges Z’ with Z. If p td, then w, fixes Z’ and Z. Let Z% be the
fibre & X, Z’. Then Z}* is smooth over F, and the 0-cusps(® F,) are
the sections of Zy". If p||N and 4 contains the subgroup

{ae(Z/NZ)*|(a mod Njp) = £1},

then £ ® F, is reduced and 2" Q Z, — Spec Z,, is smooth, where Z, is
the localization of Z at (p) ([4] VI).

(1.3) We will make use of the following subcoverings X = X,: X,(mN)

— X — X(mN).

m N X A4 genus of X
1 14 X = X(14)—> X,(14) (+1) 1
1 15 X = X,(15)—>X,(15) (+ 1} 1
1 18 X = X(18)—> X,(18) (+ 1) 2
1 20 X = X(20)—> X,(20) (+1) 3
121 X2)—>X—25X,21) (Z32) x {+1} 3
1 24 X(24)—2>X—25X,24) (ZI3Z)* x {+1} 3
1 35 X,(35)—> X—> X,(35) Z5Z) x {1} T
1 55 X(65)— X—25 X,(55) (£ 1} X (Z112)* 9
2 16 X(B2)— X = X,(2,16) > X,(32) {+ (1 + 16)} 5
2 10 X@20)—2>X = X2,10)—>X,20) {1} X {+ 1} 1
2 12 X)X = X212 X4 {1} x (1) 1

(1.4) Mordell-Weil group of J(X).

Let J,(m, N) and Jy(m, N) be the jacobian varieties of X,(m, N) and
X,(m, N), respectively. For m = 1, Jy(1, N) = Jy(IN) and J(1, N) = Jy(N).
For the integers N = 13q, ¢ = 2, 3, 5 and 11, there exist (optimal) quotients
(/Q) of J(N) whose Mordell-Weil groups are of finite order ([36] table
1,5). For m =1 and N = 14, 15, 18, 20, 21, 24, 35 and 55, and (m, N) =
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(2,10), (2,12), let X = X, be the subcoverings in (1.3) and J(X) be their

jacobian varieties.
Mordell-Weil groups ([36] table 1).
cokernels of the morphisms as the Picard varieties.

table 1, 5, [8] [14] [19], (1.5) below).

N factor A of J(X) or A = J(N)

22
33
55
77
14
21
28
35
20
30
45
24
15
18
36
72
32
27
10
12
16

ProposiTiON (1.5).
X, be the subcoverings in (1.3) and put C, = Coker (J,(IV) — J(X)).

#Cx(Q) < oo.
Proof.

Jy(22)
Jy(33)
Coker (J(55) —> J(X))
JI(TDI(A + wi)J(77)
Ji(14)
Coker (Jy(21) —> J(X))
Jy(28)
Coker (Jy(35) —> J(X))
J,(20)
Jy(30)
Jy(45)
Coker (Jy(24) —> J(X))
Ji(15)
J,(18)
Jy(36)
Ji(72)
Jy(32)
Jy(27)
J(2, 10)
Ji(2, 12)
Ji(2, 16)

dim A

2

Ol = = = = O DN H W W w w ik N weHE W ks w

Then J,(2,10) and J,(2,12) are elliptic curves with finite
Let Coker (J(N) — J(X)) be the

In the following
table, the factors A (/Q) of J(X) have finite Mordell-Weil groups ([36]

genus of X (V)

2

e e T = T e e 22 B S = T - S S JUR ST U R S S I )

For the integers N = 20, 21, 24, 35 and 55, let X =

Then

Case N = 20: We use a result of Coates-Wiles on the Mordell-Weil

groups of elliptic curves with complex multiplication ([1] [3] [29]).
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be the multiplicative character of (Z[v —1]/(2 + v —1))* with v —1) =
—+/—1, and put

-1 _ -1 -
e = (——) Xizpzy and &= <~—> iz »

where (f—l) is the quadratic residue symbol. Let f,, f; be the new forms

([2]) belonging to S,(7I",(20)) (= the C-vector space of holomorphic cusp
forms of weight 2 belonging to 77,(20)) which are associated with the neben
types characters ¢ and ¢, respectively; Let + be the primitive Grossen
character of Q(+/—1) with conductor (2 + +/—1) such that (@) = Ua)x
for « € QW —1)* prime to the conductor (2 + +—1). Then

f(2) = 2 ¥(U) exp @zv —IN)2) ,

where N(U) = Ng(,=1,,¥) is the norm of the ideal % = {0} and U runs over
the set of integral ideals of Q(+'—1) ([33]). The modular curve X,(20) is

of genus 3 and HX,(20) ® C, Q") = HY(X,(20) ® C, Q") ® Cf.dz @ Cf.dz.

For a cusp form fe S,(I",(20)) and g = (g 3) e GL}(Q), put

fllgh(2) = (ad — bo)ez + d)-Zf(jjj 2) and fIK(2) = (f(— 2)",

where — is the complex conjugation. Then for H = [((2)0— é)] , [|H=
2

Af, with the absolute value [2| = 1([2]). Put g =f. —f.|Hand h =f, + .| H.
Then g = f. + e " Vf|K = e "=Y(e’-f, + e’-f,| K) for a real number 4,
and ev-’g is real on the pure imaginary axis ([24] §2). C; = Coker(J,(20)
— J(X)) is isogenous over Q(v'—1) to the product of two elliptic curves
E, and E, with H(E, ® C, 2") = Cf.dz and HYE, ® C, 2') = Cf.dz. Further
Cy is isogenous over Q to the restriction of scalars Reg = o(&: /=)
([5] [34]). For a cusp form fe Sy(7",(20)), put

(22/+/20)"* ()L (s) = J: tSf(«/:it/JQ()),été,
and
1) = | f/=Tev 20t

The (1-dimensional) L-function of C./Q and that of E./Q(W —1) are
L;(s)L;(s) and L, (1)L, (1) = |L, (1) (, since f, = f,|K) ([21]). The rank of
Cx(Q) is zero if and only if E.(Qv —1) < co. Then by the result on the
Birch-Swinnerton Dyer conjecture for elliptic curves with complex multi-
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plication ([1] [3] [29]), it suffices to show that I(f,) = 0. One sees that
I(h) =0 and I(f.) = $(I(g) + I(h)). Since e’'~’g is real on the pure
imaginary axis, it suffices to show that g(v' —1¢/4/20) == 0 for all ¢ > 0. Let

r= (2 8)er with (@ = —1. The gll7l. = —g = gIH, hence for o=

T"(go o 0), gll6l; = g. The quotient X;(20)/{d)> is an elliptic curve, so the

zero points of gdz are the fixed points of §. The automorphism § has four
fixed points, which correspond to (— 208 4+ + — 20)/20a for integers « and

B such that e(@) == —1 and (:)f f ) € I'(20). Then B % 0, so § does not have
the fixed points on the pure imaginary axis.

For the remaining cases for N = 21, 24, 35 and 55, we apply a Mazur’s
method in [14] [19]. It suffices to show that Cy is Q-simple and that Cx(Q)
has a subgroup = {0} of order prime to the class numbers of Q(), where
{y 1s a primitive N-th root of 1 (see loc. cit.). For the class numbers, see
e.g. [6] table.

Case N = 21 and 24: Cj; are Q-simple. By [35], one finds cuspidal
subgroups of order 13 (N = 21) and 5 (IV = 24).

Case N = 35: The characteristic polynomial of the Hecke operator
T. on SY(I',) (associated with the prime number 2) is
X4+ X —4X) X (X +2X* —7X* — 14X + 1).
The first factor of the above polynomial corresponds to X (35), so Cy

is Q-simple. There is a cuspidal subgroup of order 13 (see loc. cit.).
Case N = 55: The characteristic polynomial of T, on Sy(I",) is

X+2X-1DX*—-2X - 1) X (X* —9X*® + 12).
Cy corresponds to X* — 9X* + 12 ([36] table 5), so Cy is Q-simple. There

is a cuspidal subgroup of order 3. |
(1.6) The following curves are hyperelliptic (of genus > 2).

curve hyperelliptic involution

Xi(18) w,[5]

X,(22) Wy,

X(33) Wy

X,(28) Wy

X,(30) Wis

X,(13) (5]
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ProrosrrionN (1.7) ([7], [8]). Let X be the subcoverings in (1.3) for (m, N)
= (2,16), (1,20), (1,21), (1,24) and (1,35). Then X are not hyperelliptic.

(1.8) For N = 35, 55 (resp. 77), let X be the subcoverings in (1.3)
(resp. X = X(77)). For an automorphism 7 of X, let S, denote the number
of the fixed points of 7. Then we see the following.

N T Sr
35 (E, As, £ P))—> (E|A;, Ej|A;, £ 3P, mod Ay) 12
55 (E, £ P;, A)) ——> (E[A,;, £ 2P;mod A,;, Eu/Au) 16

7 7 = Wy (B, A) —> (E[A, E,/A) 8

Here P, is a point of order m and A, is a subgroup of order m.
For the integers N in (1.8), we will apply the following lemma.

LEMMA (1.9). Let K be a field, X a proper smooth curve defined over
K and (1 #) v an automorphism of X with the fixed points x,, 1 <i < s.
Let f be a rational function on X such that the divisors (r*f) + (f). Then
the degree of [ < s/2 and

(I fIf — 1)y > 23 (0,
where Y is the sum of the divisors (x,) such that f(x,) # 0, oo.

Proof. Let S, (resp. S., resp. T) be the set of the fixed points of 7
consisting of x, with f(x,) = 0 (resp. f(x,) = oo, resp. x,28S, U S.). Then
the divisor

Z,€S
for effective divisors E and F, and positive integers n,. Then
(r*flf) = 1E+ F — E — 1*F .

By the assumption (*f) == (f), g = r*f/f is not a constant function, so
deg(g) < 2-deg(f) — Xziesous. Nie For x,€ T, g(x;) = 1. Therefore

€ —=1> 2 (x).
Then deg(g) = 7. Further 2-deg (f) = deg(g) + Xl.ies0us. i = 8- |

ProrositioN (1.10) ([28] (38.3.2) [27]). Let K be a finite extension of

um of degree e < p — 1 with the ring of integers R = 0. Let G, (i = 1, 2)
be finite flat group schemes over R of rank p and f: G,— G, be a homo-
morphism such that fQK: G,Q K— G,® K is an isomorphism. If e <
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p — 1, then f is an isomorphism. If e = p — 1 and f is not an isomorphism,
then G, =~ (Z[pZ),z and G, = p,p.

CororLARY (1.11). Under the notation as in (1.10), assume that e <
p — 1. Let G be a finite flat group scheme over R of rank p and x an R-
section of G. If x ® F, = 0 (= the unit section), then x = 0.

(1.12) Let K be a finite extension of @, with the ring of integers
R = 0 and its residue field ~ F,, Put N = N’-p” for the integer N’
prime to p. We here set an assumption on N that r = 0 if the absolute
ramification index ¢ of p (in K) = p — 1. Let E be an elliptic curve de-
fined over K with a finite subgroup G C E(K) of order N. Then by the
universal property of the Néron model, the schematic closure G,; of G in
E . is a finite étale subgroup scheme (, since e <p — 1 if r > 0 (1.11)).
If N 2,3 nor 4, then E,; is semistable (see e.g. [36] p. 46). When E has
good reduction, the Frobenius map F=F,;: E,QF,—E;®F, acts
trivially on G,z ® F,. In particular, N < (1 + 4/ q)* (by the Riemann-Weil
condition). When E has multiplicative reduction, the connected component
T of E, ® F, of the unit section is a torus such that T(F)) =~ Z/(q — &)Z
for e = + 1. For a prime divisor / of N, the l-primary part of G(F, =~
Z[I'Z x Z[I'Z for integers s, t with 0 < s < ¢ Then [I* divides ¢ — ¢ and
E .®F, contains T'X Z[I’'Z. If I' Y q — ¢, then E,,®F, contains T X Z/I'Z.

(1.13) Let X (— X (1)) be a modular curve defined over @ with its
jacobian variety J = J(X). Let 2 be a quadratic field and » be a prime
of k lying over a rational prime p. Let R = (0\),) Z, denote the local-
izations at p and p, respectively. Let x be a k-rational point on X such
that x ® x(p) is a section of the smooth part Z*™" ® Z, and that x ® «(»)
=CQ«klp), x°Q«lp) = C,Q«k(p) for Q-rational cusps C, C, and 1+
o € Gal (k/Q), where & is the normalization of the projective j-line % (1)
~ P} in X. Consider the Q-rational section i(x) = cl((x) + (x) — (C) — (C,))
of the Néron model J,,:

Spec R X SpecRx—Xﬁ; @ x %”)S'“""“‘—i—)J,Z X oJ,z
: (2, 2)—>(cl((2) — (C)), cl((z') — (C,))

l+
Spec Z, @) Jiz.

4: diagonal

Then ((x X x°)-i-+) ® £(p) = 0 (= the unit section), hence i(x) ® F, = 0.
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Let A/Q be a quotient of J; J —» A which has the Mordell-Weil group
of finite order. If p + 2, then the specialization Lemma (1.11) shows that
Jji(x) = 0.

Remark (1.14). Under the notation as in (1.13), wa here consider the
case when C and C, are not @Q-rational. Assume that the set {C, C,} is
Q-rational and that C® Z,, and C, ® Z, are the sections of ™" @ Z,,.
Let K be the quadratic field over which C and C, are defined. Let ' be
a prime of K lying over p and ¢’ be the ramification index p in K. Then
by the same way as in (1.3), we get i(x) ® () =01in J,,. If e <p—1
or p does not divide $A(Q), then j-i(x) = 0.

For a finite extension K of @ and for an abelian variety A defined
over K, let f(A/K) denote the conductor of A over K.

LemMmA (1.15) ([21] Proposition 1). Let E be an elliptic curve defined
over a finite extension K of Q and L be a quadratic extension of K, with
the relative discriminant D = D(L/K). Then the restriction of scalars
Re, x(E ;) ([56] [34]) is isogenous over K to a product of E and an elliptic
curve F(/K) with f(E/K)f(F|K) = N, (f(E/L)}’D.

§ 2. Rational points on X,(N)

Let k be a quadratic field and N an integer of a product of 2, 3,5,
7,11 and 13. Let x be a k-rational point on X;(IN). Then there exists
an elliptic curve E/k with a k-rational point P of order N such that (the
isomorphism class containing) the pair (E, & P) represents x ([4] VI (3.2)).
For 1 +# o € Gal (k/Q), x° is represented by the pair (E°, +P°). For the
integers N, 1< N<10 or N=12, X,(N) = P'. For N = 11,14 and 15,
X,(N) are elliptic curves. For N = 13,16 and 18, X,(IN) are hyperelliptic
curves of genus 2. In this section, we prove the following theorem.

THEOREM (2.1). Let N be an integer of a product of 2,3,5,7,11 and
13. If X(N) is of genus = 2 and is not hyperelliptic, then Y(N)k) = ¢
for any quadratic field k.

Proof. 1t suffices to discuss the cases for the following integers N =
2.13,3-18,5-13, 7-13, 11-13; 2-11, 3-11, 5-11, 7-11; 3.7, 4.7, 5.7; 4.5, 6.5,
9.5;8-3,4-.9 (see [8,12] [23]). Suppose that there exists a k-rational point
x on Y(N). Let (E, + P)/k be a pair which represents x with a k-rational
point P of order N and let 1 = ¢ € Gal (£/Q).
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Case N = 13q for q = 2,3,5,7 and 11: We make use of the following
lemma.

Lemma (2.2) ([23] (3.2)). Let y be a k-rational point on Y,(13). Then
the set {y, [5](y)} represents a Q-rational point on X,(13)/{[5]) ~ P}, where
[5] is the automorphism of X,(13) represented by g e I'(13) such that g =

((5) I) mod 13.

Let 7: X,(13q) — X,(13) be the natural morphism and y be the Q-
rational point {z(x), [5]x(x))} on Y,(13)/{[6]>. Let p be a prime of k lying
over the rational prime p=3 if ¢ =2, and p =5 if ¢ = 3. Then the
condition Z/NZ C E(k) leads that (Z/NZ), C E,;, where R is the locali-
zation (0,),, of 0, at p (1.12). Then E,; has multiplicative reduction cf.
(1.12). Let F be an elliptic curve defined over @ with a @Q-rational set
{£ @, +£5Q} for a point @ of order 13 such that the pair (F, {+@Q, +5Q)})
represents y on Y,(13)/{[5])>. Let p = p, be the representation of the Galois
action of G = Gal(@Q/Q) on the g-torsion points F(Q). Then F ~ E over
a quadratic extension K of k, since E has multiplicative reduction at p.
Then for G, = Gal(Q/K),

*

o(G) = {((1) *)} C GL,(F) = Aut F(Q).

When g = 2, GLy(F,) =~ &, (= the symmetric group of three letters) and

[0(G): p(G)] divides 4, so that p(G) =—> {(}) :)} Then F has a @-rational

point @, of order 2 and the pair (F, (@, @)) represents a @-rational point
on Y (26). But we know that Y,(26)(Q) = ¢ ([18] [24] [36] table 1, 5). Now
consider the cases for ¢ = 3. Let 6, be the cyclotomic character

6,: G = Gal(Q/Q) —> Aut 1(Q) .
Then det-p = 6,. Let P, be a K-rational point on F of order ¢ and ge
G\Gy for G, = Gal(Q/k). If P¢+ + P, then (Pg) + (P> and p(Gy) =
{1}. Then 6,(Gx) = {1}, hence ¢q =3, or ¢ =5 and K = Q({;). For q =3,
if k= Q(,), then K is an abelian extension of @ with the Galois group

~ Z/2Z % Z/2Z and o(G) =—> {(g S)} It k= Q(), then p(Gy) = {+ 1},

since det p(G;) = 64(G,) = {1}. Then p(G)L»{(("; 2)} since 6,(G) = {+ 1).

For ¢ =5, K = Q((;) and p(G)L»{G; 2)} Thus there exists a subgroup
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A,/Q of F of order gq. Then the pair (F, A, + (@) represents a Q-rational
point on Yy(13g). But we know that Y (13¢)(Q) = ¢ for ¢ = 2 ([9, 10, 11]

[18] [20]). Now suppose that P& = + P,. Then p(G,) L){(Oil :)} Take

he G\G, and put A, =(P,). If Al = A, then the pair (F, A, + (@)
represents a @Q-rational point on Y(13q). Therefore, A} A, and p(G,)

+ 1
= {((Tli(l))} If p(Gk)C—>{i (0 2)}, then ¢ =3, k= Q(,) and p(G)
C‘——>{ + (8 2)} and the same argument as above gives a contradiction. If

o(Gy) = {((—)—Fl +2>}, then ¢ = 3 and o(G) is contained in the normalizer of

a split Cartan subgroup (, since det p = 6,). Let Y be the modular curve
/Q which corresponds to the modular group

{(a b)€F0(13)leCEOOI‘aEdEOmOd3}.
cd

Let w be the involution of Y represented by a matrix g € ["(13) such that
g= <(1) '_(1)) mod 3. Then the isomorphism of X;(9-13) to Y:

(C, A, + Ap) —> (C/A,, {AQ/A3, Ca/Aa}, (A + AylAy

induces an isomorphism of X (9-13)/{w,> to Z = Y/{(w), where A, are
cyclic subgroups of order m with A; C A, The jacobian variety J = J(Z)
of Z has an optimal quotient A/Q (J—» A) with finite Mordell-Weil
group ([36] table 1,5). As was seen as above, F has potentially mutiplica-
tive reduction at 5. Let z be the @Q-rational point on Y represented by
(F, {Q)) with a level structure mod 3, then z® F, = C Q F; for a Q-rational
cusp C on Z Let f: Z—J— A be the morphism defined by f(y) =
cl((y) — (C)). Then we see that f(2) = 0 (see (1.11)). Let Z denote the
normalization of % (1) in Z. Then we see that fQ® Z;: Z QR Z, - A, is
a formal immersion along the cusp C (see the proof in [22] (2.5)). Therefore,
Mazur’s method in [18] Section 4 can be applied to yield z = C. Thus
we get a contradiction.

Case N =11q for ¢q =2,3,5and 7: q= 2 and 3: Let p» be a prime
of k lying over the rational prime 3 and put R = (0;),,. The condition
ZINZ C E(k) shows that (Z/NZ),, C E;, if ¢ =2 or ¢ = 3 is unramified
(1.11). If g = 3 ramifies in &, then (Z/11Z),; C E,; and «(») = F,. Hence
x ® k(p) is also a cusp (see (1.12)). Denote also by x, x° the images of x
and x° under the natural morphism n: X(N) — Xy(N). Then x® £(») =
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C®klp), x* @ k(p) = C, ® v(p) for Q-rational cusps C and C, on X (N).
Let i(x) = cl((x) 4+ (x°) — (C) — (C,)) be the Q-rational section of Jy(N),,.
The Mordell-Weil groups of J(11q) for ¢ = 2 and 3 are finite and their
orders are prime to 3 [36] table 1,3,5. Therefore i(x) = 0, see (1.13).
Since Y, (11¢)(Q) = ¢ [18], C, = w(C) if ¢ =2 and C, = w,(C) if ¢ =3
(see (1.6)). As was seen as above, C and C, are represented by
(G, X Z[11mZ, H) and (G, X Z/11m,Z, H,) for integers m, m, =1 and
cyclic subgroup H, H, containing the subgroup ~ Z/11Z. Thus we get a
contradiction, since wy(C), w,(C) are represented by (G, X Z/m’Z, H') for
integers m’ prime to 11 [4] VIL

g = 5: Let X be the subcovering as in (1.3):

X,(55) > X5 X,(55).
Let 1 # 7 € Gal (X/X,(565)) and ¢ be the automorphism of X defined by
(F, + P, Bn) [ — (F/Bm =+ 2P, mod B,,, En/Bu) ’

where P, is a point of order 5 and B,, is a subgroup of order 11. Then
6 has 16 fixed points (1.8). Let » be a prime of %k lying over the rational
prime 5 and put R = (0,),.- The condition Z/55Z C E(k) shows that
x® k() = C® r(p), x° @ k(p) = C, ® x(p) for 0-cusps C and C, (see (1.11),
(1.12)). Denote also by x, x°, C and C, the images of x, x°, C and C, under
the natural morphism z,: X,(55) - X. Put C, = Coker (z%: Jy(55) — J(X)),
which has the Mordell-Weil group of finite order (1.5). Let i(x) = cl((x)
+ (x°) — (C) — (C,)) be the Q-rational section of J(X),;. Then i(x)QF, =0
(1.13), so by (1.11), i(x) € z¥(J(55)). Then we get a rational function f on
X such that

() = @) + &) + ((O) + (1(C,)) — ("(x)) — ((x")) — (C) — (C,).

Since "(C)® F, + CQF,, 7(x) #+ x. If f is a constant function, then 7(x)
= x° and the set {x, 7(x) = x°} defines a @Q-rational point on Yy(55). But
Y (55)(Q) = ¢ [18], so that f is not a constant function. If (6*f) = (f),
then 6(C) = C or C,. But C, C, are 0-cusps and d(C) is not a 0-cusps, so
that (6%f) # (f). Applying (1.9) to f and 5, we get a contradiction.

Remark (2.3). For any cubic field &/, Y,(55)(k’) = ¢. It is shown by the
same way as above, taking a prime /|5 of the smallest Galois extension
of Q containing %’
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= 7: Let m,: X(77)— X (77)/{w,,> be the natural morphism and JJ’ be
the jacobian variety of X(77)/(w,>. Then A = Coker (zj;: J’ -— J(77)) has
the Mordell-Weil group of finite order [36] table 1,5. Let , be a prime
of k lying over the rational prime 5. The condition Z/77Z < E(k) shows
that x ® x(p) is a 0-cusp (® «(p)) (1.12). Denote also by x, x° the images
of x and x° under the natural morphism X (77) — X (77). Then x ® x(p) =
0® x(p). Leti(x) = cl((x) + (x°) — 2(0)) be the Q-rational section of J(77),,.
Then i(x) ® F, = 0 and i(x) € nji(J’) (see (1.11), (1.13)). Then we get a
rational function f/@ on X, (77) such that

() = (@) + () + 2(w(0)) — (Wu(x)) — (wi(x7) — 2(0).

Then (w¥f) = —(f) # 0, since w,,(0) %= 0. Hence w}f = «ff for « € @*. The
fundamental involution w = w,, of X,(77) has 8 fixed points x,(1 < i < 8).
The cusps w,(0) ® F, and 0 ® F, are not the fixed point of w. Therefore
by (1.9),

WHlf — 1y = 3, () (5, D).
Put g = (w*flff — 1)-'. Then

(8) = (%) + (x7) + 2wi(0)) + (wi(x)) + (wAx")) + 2(o0) — D
and
wig = wig=—-1—-4g.

Then g defines a rational function A on Y = X(77)/{(w,> with z}(h) = g,
where 7;: Xy(77) — Y is the natural morphism. Set {y}<;<. = {zx))}, and
put E = >3i_,(y,) and C = rfo0) (= a(w,0))). Then A is of degree 4 and
he H(Y, O,(E — 2(C))). Denote also by w the involution of Y induced by
w (and w,;). Then

w*h = —1—h and (h).=FE.

Let ny: Y— Z = X(77)/{w.,, w,,) be the natural morphism. Z is an elliptic
curve [36] table 5. The canonical divisor K; ~ E (linearly equivalent) and
dim H(Y, 0y(E)) = 3. Let o be the base of HYZ, 2") and o, = 7¥(0), v,
and o, be the basis of HY(Y, 2') such that »,(C) = 1 and that w, are eigen
forms of the Hecke ring Q[7,., W] m-1 With T§w, = 0 and T e, = w, (see
[36] table 1,3,5). Then {1,f, = w0, f; = w;/o,} is the set of basis of
HYY, 0,(E)) such that f,=1+¢g+ --- and fy=1—-38¢+ --- for g =
exp (277 —12) (see loc. cit). Then h = a, + a,f, + a.f, for a,e Q. The
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conditions w*h = —1 — h and w*f, = —f, show that ¢, = —}. Further
by the condition (h), > 2(C), a, =+ and a, =%. Let & be the quotient
Z(TDHKw;> Q@ Z; and @;\ ¢ be the completion of the local ring 0, , along
the cuspidal section C. Then f, e 0;\ o, SO that he 0/;0. Put C’ = 1/(0) (=
7{w,(0))). Then w*h e @/,y\,c, and w*h(ry(x)) = (— 1 — h)(xy(x)) = —1, w*h(C")
=(—1—g)0)=0. But the conditions that x® x(p) = 0 ® «(p) for p(5)
and w*he@;\,c, give the congruence w*h(rny(x)) = w*h(C’) mod p. Thus
we get a contradiction.

Case N="Tn for n=3,4 and 7:
n = 3: Let X be the subcovering as n (1.3):

X,21) -2 X 5 X,(21) |

which corresponds to the subgroup 4 = (Z/3Z)* X {+ 1}. Let & denote
the normalization of (1) in X. The special fibre £ @ F, is reduced (1.2).
Let » be a prime of k£ lying over the rational prime 3 and put R = (0,),,.
The condition Z/21Z  E(k) shows that (Z/21Z),, C E,, if the rational
prime 3 is unramified in %k (1.11), (1.12). If 3 ramifies in k, then () = F,,
so that in both cases E,; has multiplicative reduction see (1.12). There-
fore, x@(p) = CQ«(p), x° @ r(p) = C, ® k(p) for Q-rational cusps C and
C, (see loc. cit.). Let i(x) = cl((x) + (x°) — (C) — (C,)) be the Q-rational
section of J(X),;. Since the Mordell-Weil group of J(X) is finite (1.4),
1.5), () + (x)~(C) + (C,). But X is not hyperelliptic (1.7).

n=4: Let p» be a prime of £ lying over the rational prime 3 and put
R = (0. The condition Z/28Z C E(k) shows that (Z/28Z),, C E,z. De-
note also by x, x° the images of x and x° under the natural morphism
X(28) — X(28). Then x®x(p) = CQ«(p), x*®k(p) = C,R®k(p) for Q-
rational cusps C and C,. These cusps C, C, are represented by
(G,, X Z[TmZ, H) and (G, X Z|Tm,Z, H,) for integers m and m, and cyclic
subgroups H, H, containing {1} X mZ/TmZ and {1} X m,Z[Tm,Z, respective-
ly. Let i(x) = cl((x) + (x°) — (C) — (C,)) be the Q-rational section of J,(28),,.
Since the Mordell-Weil group of J(28) is finite (1.4), i(x) = 0 (1.13) and
(x) 4+ (x)~(C) + (C,). X,(28) has the hyperelliptic involution w, so C,
= w,(C). But as noted as above, C, = w,C).

n =>5: Let X be the subcovering as in (1.3):
X(35) > X 255 X(35),
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which corresponds to the subgroup 4 = (Z/5Z)* X {+ 1}. The automorphism
7 of X represented by

(F, Bs, £ @) —> (F|B;, F/B;, & 3Q: mod By)

has 12 fixed points (1.8). Let , be a prime of %k lying over the rational
prime 3 and put R = (0,),. The condition Z/35Z C E(k) shows that
(Z/35Z),, C E,z. Denote also by x, x° the images of x and x° by the natural
morphism 7z;: X(35) - X. Then x ® k(p) = CR £(p), x° Q k(p) = C, ® (p) for
Q-rational cusps C and C, (1.12). Let i(x) = cl((x) + (x°) — (C) — (C,))
be the @Q-rational section of J(X),,. The Mordell-Weil group of C, =
Coker (r%: Jy(35) — J(X)) is finite (1.5). Let d be a generator of Gal (X/X(35)).
Then we get a rational function f on X such that

(f) = (@) + (=) + (A(C)) + (8(C,) — (3(x)) — (3(x")) — (C) — (C,)

(see (1.13)). If f is a constant function, then {x, x’} = {3(x), 6(x°)}. Then
x = d(x) = 0*(x), hence C®(p) = 0(CR®«(p)). But CR«k(p) is not a fixed
point of 5. The similar argument as above shows that (¥*f) =+ (f). Apply-
ing (1.9) to f and 7, we get a contradiction.

Case N = 5n for n = 4,6 and 9:

n=4: Let p be a prime of k lying over the rational prime 3 and
put R = (0,)y. The condition Z/20Z C E(k) shows that (Z/20Z),, C E
and that E,, has multiplicative reduction (1.12). Let T be the connected
component of the special fibre E,,®(p) of the unit section. If p is

of degree one, then Z/5Z ¢ T(F,). Then x®«(p) = C® «(p), x° @ £(p) =

C,®«k(p) for Q-rational cusps C and C,, since (-_é‘l> = —1, where (-—}>

is the quadratic residue symbol. If , is of degree two, then x® x(p) =
C®«x(p) for a Q(v—1)-rational cusp C, and x° Q«k(p) = C, ®«(p) with
C, = C for 1+#recGal(Q(v—1)/Q). Let i(x) = cl((x) + (x°) — (C) — (C,))
be the Q-rational section of J,(20),,. Since #J,(20)(Q) < o (1.4) (1.5), i(x)
=0 (1.14) and (x) + (x°) ~ (C) + (C,). But X,(20) is not hyperelliptic (1.7).

n = 6: The modular curve X,(30) has the hyperelliptic involution w;:
(F, B) — (F|B,;, (B + F,;)/|B,;), where B,; is the subgroup of B of order 15.
Let p» be a prime of % lying over the rational prime 3 and put R = (0y) .
Then (Z/10Z2),, C E,, and E,, is semistable (1.12). If 3 is unramified in &,
then (Z/30Z),; € E;z. Then E,, has multiplicative reduction and
(Z/3Z),r ® k(p) is not contained in the connected component of th2 spscial
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E . ® x(p) of the unit section (see (1.11), (1.12)). If 3 ramifies in %, then
E,; has also mutliplicative reduction and (Z/5Z),; ® «(p) is not containted
in the connected component of E,,® k(p) of the unit section (see loc.
cit.). Denote also by x, x° the images of x and x° under the naturai mor-
phism X,(30) — X;(30). Then x® x(p) = C® x(p), x* @ £(p) = C, ® «(p) for Q-
fibre rational cusps C and C,. These cusps C, C, are represented by
(G, X Z|gqm,Z, H,) and (G,, X Z|qm,Z, H,) for integers m, m, = 1 and cyclic
subgroups H, H, containing {1} X mZ/gmZ and {1} X m,Z|qm,Z for q = 3
or 5, respectively. Let i(x) = cl((x) + (x°) — (C) — (C,)) be the Q-rational
section of J(30),;. Since #Jy(30)(Q) < oo (1.4), i(x) = 0 (1.13) and (x) + (x°)
~(C) + (C,). It yields w,(C) = C,. But as noted as above, w,(C) = C,.

n=29: Let p be a prime of % lying over the rational prime 5 and
put R = (0,)y. Then (Z/45Z),, C E,z and x @ &(p) = C® £(p), x° @ k(p) = C,
® k(p) for 0-cusps C and C, (1.11), (1.12). Denote also by x, x°, C and C,
the images of x, x’, C and C, under the natural morphism X,(45) — X,(45).
Let i(x) = cl((x) + (x°) — (C) — (C,)) be the Q-rational section of J(45),,.
Since #J,(45),,0(Q) < oo (1.4), i(x) = 0 (1.13). But X (45) is not hyperelliptic
[25].

Case N = 3n for n =8 and 12:

n = 8: Let X be the subcovering as in (1.3):

X,(24) -2 X 55 X(24),

which corresponds to the subgroup 4 = {%1} X (Z/3Z)*. Let p be a
prime of %k lying over the rational prime 3 and put R = (0y),. Then
(Z/8Z),r C E,; and E,; is semistable (1.12). If 3 is unramified in &, then
(Z/24Z2),, C Er (1.11) and E,; has multiplicative reduction (1.12). If 3
ramifies in &, then , is of degree one, so E,; has also multiplicative
reduction (see loc. cit.). Denote also by x, x* the images of x and x° by
the natural morphism z: X,(24) —» X. If , is of degree one, then x ® «(p)
= CQ®«(p), x* Q@ k(p) = C, ® k(p) for Q-rational cusps C and C,. Any cusp
on X is defined over @ or Q(v/ 2). If , is of degree two, then x® «(p)

= CQ®x(p) for a QW 2)-rational cusp C. Then x°®x(p) = C,® £(p) for
C, = C and 1+ e Gal(Qv2)/Q), since (%) — — 1. Let i(%) = cl((®) +
(x7) — (C) — (C,)) be the Q-rational section of J(X),,. Since #J(X)Q) <
oo (1.4) (1.5), i(x) = 0 (1.13). But X is not hyperelliptic (1.7).

n = 12: Let p be a prime of k lying over the rational prime 5 and put
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R = (0,),- Then (Z/36Z),, C E,, and E, is semistable (1.12). If E,; has
good reduction, then #E (F,) =1+ 25 — (— 10) (, since Z/36Z C E 4(F;;)
and $E n(F,) < 36). But then the Frobenius map F = Fy;: E,, Q Fy, —
E . ®F, does not act trivially on E (F,)<«—= Z/36Z. Hence E,; has
multiplicative reduction. Let 7 be the connected component of E . ® «(p)
of the unit section. Then Z/9Z ¢ T(F,). Denote also by x, x° the images
of x and x° under the natural morphism X,(36) — X,(18). Then x ® ()
= CQ«lp), x° Qr(p) = C, R k(p) for Q-rational cusps C and C, on X,(18)
(see above). The modular curve X, (18) has the hyperelliptic involution
w,[5] (1.6):

(Fa BZ, i QQ) > (F/B21 F2/B2’ i 5Q9 mOd B?) ’

where B, is a subgroup of order 2 and @, is a point of order 9. Let i(x)
= cl((x) + (x°) — (C) — (C,)) be the Q-rational section of J,(18),,. Since
#J,(18)(Q) < oo (1.4), i(x) =0 (1.13) and x° = w,[5](x). For a k-rational
point @ € (P) of order 18, the pairs (E, + @), (E’, +Q°) represent x and
x° on X,(18). Put A, = (9@Q). Then there is a quadratic extension K of
k over which

2 (B, Q) —> (E[A,, =(Q; + 5Q) mod A,),

where @; is a point of order 2 not contained in A4,. For 1 - r e Gal (K/k),
=+ 1, since x®«x(p) is a cusp. Then AQ’) = «(@; + 5@) mod A, for
e = £ 1. The points ¢° and A(Q°) are k-rational, so 1(Q°) = (AQ")) =
AQ°). Therefore 2 = 2 and A is defined over k. Since E/A, contains
E,JA, ® (OPY|A, (=~ Z|2Z X Z[2Z), E‘(kR) D Z[2Z X Z[36Z. Let X2, 36) be
the modular curve /Q corresponding to (2, 36). Then E and E’ (with
level structures) define k-rational points y and y° on X,(2, 36) such that
yQ k(p) = DR k(p), ¥ @ k(p) = D, ® k(p) for Q-rational cusps D and D,.
Let i(y) = cl((y) + (y°) — (D) — (D,)) be the Q-rational section of Ji(2, 36),,.
Then i(y) = 0, since #Jy(2, 36)(Q) < oo (1.4) (1.13). But X2, 36) is not
hyperelliptic [25]. ]

Now we discuss the k-rational points on X,(N) for N = 14, 15 and 18.
The modular curves X,(14) and X (15) are elliptic curves, and X,(18) is
hyperelliptic of genus 2. We here give examples of quadratic fields &
such that Y (N)(k) = ¢ for each integer N as above.

ProposiTiON (2.4). Let k be a quadratic field. If one of the following
conditions (i), (ii) and (iii) is satisfied, then Y,(18)(k) = &:
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(1) The rational prime 3 remains prime in k.
(i1) 3 splits in k and 2 does not split in k.
(iil) 5 or 7 ramifies in k.

Proof. Let x be a k-rational point on Y (18). Then x is represented
by an elliptic curve E defined over k with a k-rational point P of order
18 [4] VI(32). Let p=2,3,5 or 7, and put R = (0,),, for a prime p of
k lying over p. Then (Z/18Z),, C E, if p=5 or 7, (Z/9Z),, C E,» if
p =2 and (Z/18Z),, C E,; if p = 3 is unramified in & (1.11).

Case (i) and (ii): The same argument as in the proof for N = 36
shows that x ® £(p) = CQ £(p), x° ® x(p) = C, ® k() for Q-rational cusps
C and C, and for a prime p of k& lying over p = 3. Using the Q-rational
section i(x) = cl((x) + (x°) — (C) — (C,)) of J(18),;, we see that w,[5](C)
= C,. If 3 remains prime in 2, then C,QF, = x*’ Q F, = (x Q F,)® = CQF,.
But C®Q F, is not a fixed point of the hyperelliptic involution w,[5]. In
the case (il), the same argument as above shows that C® F, = C, Q F..
But C® F, is not a fixed point of w,[5].

Case (iii): Under the assumption that p =5 or 7 ramifies in k, the
same argument as above gives the result. |

ExaMpLE (2.5). (1) Y,(14)(k) = ¢ for k = Q(+—3) and Q(v —T).
(2 Y(15)(Q(W5)) = ¢.

Proof. For N =14 and 15, X(N) are elliptic curves with finite
Mordell-Weil groups [36] table 1. The restriction of scalars [5] [34]
Req(,=5e(X°(14)100,7), Reqv=n/e(Xi(14)0¢,=) and Req(,5)e(Xi(15)q(/5) are
isogenous over Q (respectively) to products X (14) X E,, X (14) X E, and
X,(15) X E, for elliptic curves E, with conductor n (1.15). These E, have
the Mordell-Weil groups of finite order [36] table 1. Therefore #X(IN)(k)
< oo for (N, k) as above. Let x be a k-rational point on X,(N) and denote
also by x the image of x under natural morphism X,(N) — X,(N) for (N, k)
as above. Then x® x(p) = C®k(p) for a @Q-rational cusp C on X(N)
and for a prime p of k lying over p =7 if N=14, and p=5 if N=15
(1.11) (1.12). Then the specialization Lemma (1.11) yields that x = C. W

§3. Rational points on X,(m, N)

Let N be an integer of a product of powers of 2, 3,5, 7, 11 and 13,
and m = 1 be a positive divisor of N. Let & be a quadratic field. In this
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section, we discuss the k-rational points on X,(m, N). For (m, N) = (2, 2),
2, 4), (2,6), 2,8); (3,3), (38,6); 4,4), X,(m, N) ~P'. For (m, N) = (2, 10)
and (2,12), X,(m, N) are elliptic curves. For the other pairs (m, N) as
above, X,(m, N) are not hyperelliptic [7]. We first discuss the k-rational
points on Y,(m, N) for the pairs (m, N) such that X,(m, N) are not hyper-
elliptic. It suffices to treat the cases for the pairs (m, N): m = 2, N = 10,
12, 14, 16, 18; m =3 (k= QW —=3)), N=09, 12, 15; m = 4 (k = Q(W—=1)),
N=2812; m=6(k=Q+—3), N=6. Let x be a k-rational point on
Y.(m, N). Then there exists an elliptic curve E defined over k with a pair
(P,, Py) or k-rational points P, and P, such that (P, + (P> =~ ZImZ
X Z|NZ and that the isomorphism class containing the pair (¥, +(P,, P,))
represents x [4] VI (3.2). For 1+ oe Gal(k/Q), x° is represented by the
pair (E°, ==(Pg, P)).

THEOREM (3.1). Let (m, N) be a pair as above and k be any quadratic
field. If X.(m, N) is not hyperelliptic (i.e., X,(m, N) + P' nor (m, N) + (2,10),
(2, 12)), then Y(m, N)(k) = ¢.

Proof. Let J(m, N) and J(m, N) be the jacobian varieties of the
modular curves X(m, N) and X,(m, N) = X(mN), respectively, and =z:
X(m, N)— X(m, N) be the natural morphism. Suppose that there is a
k-rational point x on Y,(m, N). Let E be an elliptic curve defined over &
with k-rational points P, and P, such that the pair (E, + (P,, P,)) re-
presents x.

Case m = 6 (N =6): Let p, be a prime of 2k = Q(v—3) lying over
the rational prime 7 and put R = (0,),,. Then (Z/6Z),, X (Z/6Z),, C E,
(1.12), so that z(x) ® k(p) = C® (p) for a Q(~ —3)-rational cusp C. The
modular curve X,(6, 6) is an elliptic curve and the restriction of scalars
Req(,=5,/(Xi(6, 6),qc,73) [5] [34] is isogenous over @ to the product X(6, 6) X
X8, 6). Since #X,(6, 6)(Q) < co [36] table 1, we see that #X,(6, 6)(Q(v —3))
< oo0. Then =(x) = C (1,11), which is a contradiction.

Case m = 4 (N = 8,12): In both cases for N = 8 and 12, =(x) ® «(p)
=C®«(p) for a prime p of k = Q(v—1) lying over the rational prime 5
and for k-rational cusps C (1.12). Let z’': X(4, 12) — X(2, 12) be the natural
morphism. The modular curves X,(4,8) and X2, 12) are elliptic curves
and £X,(4, QKW —=1)), #X,(2, 12)(Q(~—1)) are finite (1.15) [36] table 1.

Then the same argument as in the proof for m = 6 gives a contradiction.
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Case m =3 (N=9,12,5): In all the cases for N=09, 12 and 15,
(%) @ k(p) = CQ«(p) for a prime , of k= Q(w—3) lying over the ra-
tional prime 7 and for k-rational cusps C(1.12). The modular curves
X,(8,9) and X,(3,12) are elliptic curves /Q with complex multiplication
/Q(v —3), so the restriction of scalars Reg(,=,o(Xi(8, N)ov=5) (N = 9, 12)
are isogenous over @ to the products X (3, N) X X8, N). Further
Req(v=5,e(Xs(45),9,=5) 1s isogenous over @ to a product X,(45) and an
elliptic curve with conductor 15 (1.15) [36] table 1. Then #X,(3N)(Q(v —3))
< oo for N=9,12 and 15 [36] table 1. The same argument as above
gives contradictions.

Case m = 2 (N = 14, 16, 18):

N = 14: The modular curve X (2, 14) =~ X,(28) has the hyperelliptic
involution w, (see [36] table 5). Let » be a prime of k& lying over the rational
prime 3. Then n(x) @ £(p) = C ® £(p), n(x") ® £(p) = C, ® «(p) for Q-rational
cusps C and C,. These cusps C, C, are represented by (G,, X Z/14Z, A,, A,,)
and (G, X Z/14Z, B,, B,,) such that A, D {1} X 2Z/14Z and B, D {1} X
2Z[14Z (1.12). Let i(x) = cl((x) + (x°) — (C) — (C,)) be the @-rational
section of Jy(2,14),;. Then i(x) =0 and *(x) + (x°) ~ (C) + (C,), since
#Jy(2, 14)(Q) < o0 (1.4) (1.13). But as noted as above, w,(C) #~ C,.

N = 16: Let 7 be a generator of the covering group of X(32) — X,(32).
Then Y = X (32)/{r*) = X,(2, 16) and #J(Y)(Q) < oo (1.4). Let p be a prime
of k lying over the rational prime 3. Then x® x(p) = C® £(p), x° ® £(p)
= C,®«x(p) for Q-rational cusps C and C, (1.12). Considering the @-
rational section i(x) = cl((x) + (x°) — (C) — (C,)) of Ji(2, 16),;, we get the
relation (x) + (x°) ~ (C) + (C,). But X,(2, 16) is not hyperelliptic 1(1.7).

N = 18: Let » be a prime of % lying over the rational prime 5 and put
R = (0y) . By the condition Z/2Z X Z[18Z C E(k), E,,Q«(p) = G, X Z/18nZ
for an integer n =1 (1.12). Then x®«(p) = CQ«(p), ¥ R £(p) = C, ® x(p)
for Q-rational cusps C and C,. These cusps C and C, are represented
respectively by (G, X Z/18Z, P,, + P,,), (G,, X Z[18Z, ,, + @,;), where P,
@, are points of order n such that P, @, ¢ p, X Z/18Z (see loc. cit.). De-
note also by x,x°,C and C, the images of x,x°, C and C, under the
natural morphism of X,(2, 18) to X,(18):

(Fy BZ’ iBlﬂ)'—) (Fa inB) .
Let i(x) = cl((x) + (x°) — (C) — (C,)) be the @Q-rational section of J,(18),;.
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Since #J,(18)}(Q) < oo (1.4), i(x) = 0 and (x) + (x°) ~ (C) + (C,). The mod-
ular curve X (18) has the hyperelliptic involution 7 = w,[5]:

(F, + Q) —> (F[{Q:), = (Q; + 5Q,) mod (&),

where @,, @} are points of order 2 with @,¢{(Q;;> and Q¢ (Q;>. Then
x° = A(x), so there exists an isomorphism 1 (/C)

A: (E°, & Pi) —> (E[{9Pys), £(P’ + 5P;) mod (9P,)),

where P’ is a point of order 2 not contained in (P,). Since x® «(p) is
a cusp, A is defined over a quadratic extension K of 2 and A = 4 1 for
1 # ce Gal(K/k). Then A(Pj) = (P’ + 5P;) mod (9P;;> for e = £+ 1, and it
is k-rational. Noting that all the 2-torsion points on E are defined over
k, we see that 1(P%) = (APr))y = (AP = X(Pf), Thus ¥ =2 and 1 is
defined over k. Then A induces the isomorphism

A (B, Py, Piy) —=> (E[(9Py), AP;), «(P’ + 5Pf) mod (9Py)) .

Let p: E— E[{9P,;) be the natural morphism and put B = 270, 2(F;)}.
Then B =+ E,, so that B is a cyclic subgroup of order 4 defined over k.
Put A’ = (P’ + 2P,;) and let y,y" be the k-rational points on X(4, 18) =
X(72) represented by the triples (E, B, A’) and (E°, B", A’*), respectively.
Noting that Bz P’ and Be9P,, we see that y®«(p) = C’' ® x(p) and
Y @ u(p) = C, & k(p) for @Q-rational cusps C and C, (1.12). The remaining
part of the proof is the same as that for the case X,(36). [ |

In the rest of this section, we give examples of quadratic fields k& such
that Y2, N)(k) = ¢ for N = 10 and 12.

ExampLE (3.2). For N = 10 and 12, X,(2, N) are elliptic curves. Let
p be a prime of k& lying over the rational prime 3. Then for a k-rational
point x on X2, N) (N = 10,12), a(x) Q@ «(p) = CQ«x(p) for a @-rational
cusp C (1.12), where n: X,(2, N) — X, (2, N) is the natural morphism. Set
an assumption: #Jy(2, N)(k) < oo, and the rational prime 3 is unramified
in k or 3/ #Jy(2, N)(k). Under this assumption, the same argument as in
the proof for m =64 and 3 (in (3.1)) shows that Y,(2, N)(k) = ¢.
For example, #J(2,10)(Q(V —1)) < oo, #Ji(2,12)(Q(W —3)) <co and 34
#J,(2, 12)(Q(v —3)) (1.15) [36] table 1, 3, 5.
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