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Capillary flow of liquids plays a key role in many applications including
lab-on-a-chip devices, heat pipes and printed electronics manufacturing. Open rectangular
microchannels often appear in these applications, with the lack of a top resulting in a
complex free-surface morphology and evaporation. In this work we develop a theoretical
model based on lubrication theory and kinetically limited evaporation to examine capillary
flow of evaporating liquid solutions in open rectangular microchannels connected to
circular reservoirs. The model accounts for the complex free-surface morphology, solvent
evaporation, Marangoni flows due to gradients in solute concentration and temperature
and finite-size reservoir effects. Significant differences are predicted in flow behaviour
between pure liquids and liquid solutions due to solvent evaporation and solute transport.
Marangoni flows are found to promote more uniform solute deposition patterns after
solvent evaporation. Model predictions of meniscus position evolution are in good
agreement with prior capillary-flow experiments of aqueous poly(vinyl alcohol) solutions
in the presence of evaporation. The model reveals that the principal mechanism through
which evaporation influences the meniscus position in the experiments is the increase in
viscosity with solute concentration.
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1. Introduction

Spontaneous capillary-driven imbibition of liquids into microchannels plays a central role
in applications such as lab-on-a-chip devices (Olanrewaju et al. 2018; Narayanamurthy
et al. 2020), heat pipes (Faghri 1995, 2012), evaporative lithography (Lone et al. 2017)
and fabrication of flexible printed electronics (Lone et al. 2017; Cao et al. 2018; Jochem
et al. 2018, 2020). These applications use either closed or open microchannels. A closed
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microchannel is defined as one where all walls are solid whereas an open microchannel
lacks a top.

Early studies by Lucas (1918) and Washburn (1921) proposed theoretical models
describing the time evolution of the meniscus position ẑM , where flow is driven by
capillary-pressure gradients caused by a circular-arc meniscus front. For horizontal
capillary tubes, an analytical solution ẑM =

√
k̂t̂ is obtained, commonly referred to as the

Lucas–Washburn relation, where the mobility parameter k̂ can be thought of as a diffusion
coefficient driving the growth of the liquid interface. Multiple studies extended the work
of Lucas (1918) and Washburn (1921) by accounting for inertial (Rideal 1922; Bosanquet
1923; Quéré 1997), dynamic contact angle (Siebold et al. 2000; Popescu, Ralston & Sedev
2008; Ouali et al. 2013) and surface roughness (Ouali et al. 2013; Xing, Cheng & Zhou
2020) effects, and generalized the Lucas–Washburn relation to arbitrary cross-sectional
geometries (Ouali et al. 2013; Berthier, Gosselin & Berthier 2015). Comparison of model
predictions with experiments (Yang et al. 2011; Ouali et al. 2013; Chen 2014; Sowers et al.
2016; Kolliopoulos et al. 2019; Liu et al. 2021) confirms the ẑM ∼ t̂1/2 relationship.

Due to advancements in lithographic fabrication techniques and micromoulding, open
microchannels with various cross-sectional geometries can be fabricated easily and
inexpensively, including rectangular (Yang et al. 2011; Sowers et al. 2016; Lade et al.
2018; Kolliopoulos et al. 2019, 2021), trapezoidal (Chen 2014), U-shaped (Yang et al.
2011) and V-shaped (Mann et al. 1995; Rye, Mann & Yost 1996; Yost, Rye & Mann
1997; Rye, Yost & O’Toole 1998) cross-sections. However, the mechanism for flow in open
channels is more complex than for closed channels because the additional free surface due
to the lack of a top wall also drives the flow (Romero & Yost 1996; Weislogel & Lichter
1998; Weislogel 2012; Gurumurthy et al. 2018; White & Troian 2019; Kolliopoulos et al.
2021).

In addition to this complex free-surface morphology, the lack of a top allows evaporation
to significantly affect flow if the liquid is volatile. In applications such as microfluidic
devices used for diagnostic testing, evaporation can undesirably influence test results. In
contrast, in applications such as flexible printed electronics fabrication via the self-aligned
capillarity-assisted lithography for electronics (SCALE) process, evaporation is exploited
to print conductive inks on flexible substrates which can be integrated with roll-to-roll
manufacturing processes, resulting in low-cost and high-throughput device fabrication
(Mahajan et al. 2015; Cao et al. 2018; Jochem et al. 2018, 2020).

Motivated by heat-pipe applications, previous studies have considered the effects of
evaporation on steady flow in rectangular (Nilson et al. 2006; Xia, Yang & Wang
2019) and V-shaped (Khrustalev & Faghri 1994; Peterson & Ma 1996; Suman & Hoda
2005; Markos, Ajaev & Homsy 2006) channels. Gambaryan-Roisman (2019) recently
examined the influence of diffusion-limited evaporation on capillary-flow dynamics in
V-shaped channels. However, these previous studies focus on pure liquids, whereas many
applications rely on capillary flow of liquid solutions or colloidal suspensions.

One of the first studies to investigate the effects of evaporation on capillary flow in
open rectangular microchannels was conducted by Lade et al. (2018). This study was
motivated by the SCALE process (Mahajan et al. 2015; Cao et al. 2018; Jochem et al. 2018,
2020), which uses evaporation during capillary flow for the fabrication of flexible printed
electronics. Uniform deposition of solute suspended in the evaporating liquid is generally
required for the electronic devices to function well. The length of travel down a channel
and the size of the liquid reservoir feeding the channel are also critical to the design of
SCALE circuits. Lade et al. (2018) conducted experiments using polymer solutions and
the rate of evaporation was controlled using a humidity chamber.
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Kolliopoulos et al. (2019) extended the Lucas–Washburn model by including the effects
of concentration-dependent viscosity and uniform evaporation, and compared model
predictions with the experiments of Lade et al. (2018). Their model, however, did not
account for solute concentration gradients and used the evaporation rate Ĵ as a fitting
parameter. While scaling relationships obtained from this model for the dependence of
the final flow time (t̂ ∼ 1/Ĵ) and final liquid-front position (ẑM ∼ 1/Ĵ1/2) on the rate
of evaporation were in good agreement with the experimental observations, there was
an O(10 − 102) discrepancy between the evaporation rates used to fit the model and the
estimates obtained from experiments. This discrepancy was attributed to not accounting
for the complex free-surface morphology and the spatial concentration gradients due to
solute accumulation at the contact line. Kolliopoulos et al. (2019) also assumed an infinite
supply of liquid into the channel and did not account for effects from the finite-size
reservoir used in the experiments of Lade et al. (2018).

In this work we develop a lubrication-theory-based model (§§ 2 and 3) to study capillary
flow of evaporating liquid solutions in open rectangular microchannels. The model
accounts for the complex free-surface morphology, solvent evaporation, Marangoni flows
due to gradients in solute concentration and temperature and finite-size reservoir effects.
We initially consider the effect of channel aspect ratio and equilibrium contact angle on
the temperature and evaporative mass flux profiles (§ 4.1). We isolate thermal effects by
considering a pure solvent (§ 4.2) and investigate solute-concentration effects in a liquid
solution (§ 5). Then, model predictions are compared with the capillary-flow experiments
of Lade et al. (2018) (§ 6), followed by concluding remarks (§ 7).

2. Mathematical model

We consider an incompressible Newtonian liquid solution in an open rectangular channel
in contact with an ambient gas phase. The liquid consists of a volatile solvent and a
non-volatile solute. We assume the solvent and solute densities are equal such that the
liquid has a constant density ρ̂. The liquid has viscosity μ̂ and surface tension σ̂ , which
are dependent on the solute concentration c (mass fraction) and liquid temperature T̂ . It is
assumed that the liquid has a constant equilibrium contact angle θ0 with the channel walls.
Evaporation of the solvent is induced by increasing the temperature of the channel walls
T̂W or by decreasing the relative humidity RH of the ambient gas phase. We assume the
liquid thermal conductivity k̂ and heat capacity Ĉp are constant. In this work, we use the
notation f̂ to denote the dimensional version of a variable f .

2.1. Model geometry

An open rectangular channel with width Ŵ, height Ĥ and length L̂, connected to a reservoir
of radius R̂ is depicted in figure 1. The amount of liquid in the reservoir is described using
the contact angle on the reservoir sidewall θR. The contact line is assumed to be pinned to
the top of the reservoir sidewall. As described in Kolliopoulos et al. (2021), the free surface
undergoes a transition from that observed in figure 1(a) (λ ≥ λc) to that in figure 1(b)
(λ < λc). Here, λ = Ĥ/Ŵ is the channel aspect ratio and λc = (1 − sin θ0)/2 cos θ0 is the
aspect ratio at which the circular upper meniscus contacts the bottom of the rectangular
channel while being attached to the top of the channel sidewalls with an equilibrium
contact angle θ0.

Each regime is described using the liquid height â and the contact angle θ on the channel
sidewall. For λ ≥ λc (figure 1a), the free-surface morphology is divided into three regimes
along the channel length: meniscus deformation [0, ẑD], meniscus recession [ẑD, ẑM] and
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Figure 1. Schematic of liquid undergoing capillary flow in an open rectangular channel connected to a circular
reservoir for aspect ratios (a) λ ≥ λc and (b) λ < λc. Here, β = arctan(cos θ/ cos θ0) and the finger length is
z̃T − z̃M .

corner flow [ẑM, ẑT ]. In the meniscus-deformation regime, the upper meniscus curvature
at the channel inlet is matched to the liquid–air interface curvature in the reservoir and the
upper meniscus curvature increases down the channel length until θ(ẑD, t̂) = θ0, while the
liquid remains pinned to the top of the channel sidewall â = Ĥ.

In the meniscus-recession regime, the contact angle on the sidewall remains constant at
θ = θ0 and the liquid height recedes down the sidewall until the upper meniscus contacts
the channel bottom â(ẑM, t̂) = Ŵλc. At this point, the contact angle on the bottom is
assumed to reach θ0 instantaneously. This is the simplest possible assumption, implies
a neglect of contact-angle hysteresis, and works well in describing experiments in the
absence of evaporation (Kolliopoulos et al. 2021). Subsequently, the flow splits into the
channel corners, leading to the corner-flow regime. Here, the contact angle on the sidewall
and bottom remains constant at θ = θ0 and the liquid height further recedes down the
sidewall from â(ẑM, t̂) = Ŵλc to â(ẑT , t̂) = 0 at the finger tip.
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Capillary flow of evaporating liquids in open microchannels

For λ < λc (figure 1b) the free-surface morphology is also divided into three regimes:
meniscus deformation [0, ẑM], corner transition [ẑM, ẑC] and corner flow [ẑC, ẑT ]. In the
meniscus-deformation regime, the liquid is pinned to the top of the sidewall (â = Ĥ).
The upper meniscus curvature at the channel inlet is matched to the liquid–air interface
curvature in the reservoir and the upper meniscus curvature increases down the channel
length until θ(ẑM, t̂) = θC when the upper meniscus touches the channel bottom.

Upon contact with the channel bottom, the contact angle there is assumed to reach
θ0 instantaneously. The upper meniscus splits into the channel corners, yielding the
corner-transition regime. During this stage, the liquid remains pinned to the top of the
sidewall (â = Ĥ). To conserve mass, the contact angle at the sidewall θ(ẑM, t̂) must change
from θC to another value denoted θT . The contact angle on the sidewall decreases down the
channel length until θ(ẑC, t̂) = θ0, at which point the flow transitions to the corner-flow
regime. Here, θ = θ0 and the liquid depins from the top of the sidewall and decreases until
â(ẑT , t̂) = 0.

In the following sections we develop a mathematical model for capillary flow of a liquid
solution with evaporation considering both λ ≥ λc (figure 1a) and λ < λc (figure 1b), and
account for the finite-size reservoir used in experiments (Lade et al. 2018).

2.2. Hydrodynamics
Mass and momentum conservation for an incompressible Newtonian liquid are governed
by

∇̂ · û = 0 and ρ̂

[
∂û
∂ t̂

+ (û · ∇̂)û
]

= −∇̂p̂ + μ̂∇̂2û + ρ̂ĝ, (2.1a)

where û = (û, v̂, ŵ) is the velocity in Cartesian coordinates (x̂, ŷ, ẑ), p̂ is the liquid
pressure and ĝ = (ĝx, ĝy, ĝz) is the gravitational acceleration. Along the channel walls,
the no-slip and no-penetration conditions require û = 0. The boundary conditions for the
jump in normal, transverse tangential, and axial tangential stresses across the liquid–air
interface ĥ(x̂, ẑ, t̂) are

[[n · T̂ · n]] = σ̂ (∇̂s · n), [[t1 · T̂ · n]] = t1 · ∇̂sσ̂, and [[t2 · T̂ · n]] = t2 · ∇̂sσ̂.

(2.1b)

Here, T̂ = −p̂I + μ̂[∇̂û + (∇̂û)T] is the stress tensor, I is the identity tensor, ∇̂s = ∇̂ −
n(n · ∇̂) is the surface-gradient operator, n is the unit outward normal vector and t1, t2
are the two unit tangent vectors to the interface in the transverse and axial directions,
respectively. These vectors are given by

n = (−ĥx̂, 1, −ĥẑ)√
1 + ĥ2

x̂ + ĥ2
ẑ

, t1 = (1 + ĥ2
ẑ , ĥx̂, −ĥx̂ĥẑ)√

(1 + ĥ2
ẑ )

2 + ĥ2
x̂ + ĥ2

x̂ ĥ2
ẑ

, t2 = (0, ĥẑ, 1)√
1 + ĥ2

ẑ

. (2.2a–c)

Equations (2.1a) are rendered dimensionless using the following scalings:

(x̂, ŷ, ẑ) = L̂(εx, εy, z), (û, v̂, ŵ) = Û(εu, εv, w), (ĝx, ĝy, ĝz) = ĝ(gx, gy, gz),

t̂ = (L̂/Û)t, ε = Ĥ/L̂, Û = εσ̂0/μ̂0, p̂ = (μ̂0Û/εĤ)p, μ̂ = μ̂0M, σ̂ = σ̂0Σ,

}
(2.3)

where ε is the ‘slenderness’ parameter, Û is the viscocapillary velocity, μ̂0 is the solvent
viscosity, σ̂0 is the solvent surface tension and M and Σ are the dimensionless solution
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viscosity and surface tension, respectively, defined in § 2.6. The dimensionless numbers
that arise are the Reynolds number Re = ρ̂ÛĤ/μ̂0 (ratio of inertial to viscous forces), the
capillary number Ca = μ̂0Û/εσ̂0 (ratio of viscous to surface-tension forces) and the Bond
number Bo = ρ̂ĝĤ2/σ̂0 (ratio of gravitational to surface-tension forces). Note that Ca = 1
based on our choice of Û.

In the limits where ε2 � 1, εRe � 1 and Bo/Ca � ε, (2.1a) reduces to

ux + vy + wz = 0, (2.4a)

px = py = 0, (2.4b)

pz = M(wxx + wyy). (2.4c)

The boundary conditions at the free surface in (2.1b) reduce to

p − pV,T = − Σ

Ca

[
hx

(1 + h2
x)

1/2

]
x
= − Σ

Ca
κ, (2.5a)

(1 − h2
x)(vx + uy) + 2hx(−ux + vy)− (1 − h2

x)hzwx − 2hxhzwy

= −hxhz(1 + h2
x)

1/2 Σz

MCa
, (2.5b)

wy − hxwx = Σz

MCa
, (2.5c)

where pV,T is the total pressure in the vapour phase and is assumed constant. Since the
leading-order pressure term is independent of (x, y) according to (2.4b), the leading-order
curvature term κ only depends on (z, t) according to (2.5a).

We note two things about these reduced equations. First, the interface shape at a given
z-position is determined by capillary statics (Yang & Homsy 2006), as can be seen from
(2.5a). As a consequence, contact angles can be imposed as boundary conditions without
having to specify a slip law. The interface shape slowly varies in the z-direction via
an evolution equation to be presented in § 2.7. This approach is expected to hold for
μ̂0Û/σ̂0 � 1. Second, because of the problem we are considering and our choice of
variables, hx is O(1), so the h2

x terms are retained.
As shown by Kolliopoulos et al. (2021), using a condition for the contact-line location

on the solid wall, a symmetry condition, and the definition of the contact angle on the
sidewall, expressions for p(z, t) and h(x, z, t) are obtained by integrating (2.5a) twice with
respect to x, leading to

meniscus deformation

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

p = −2Σλ cos θ(z, t) + pV,T ,

h = 1 + tan θ(z, t)
2λ

−
[

1
4λ2 cos2 θ(z, t)

− x2
]1/2

,

A = 1
4λ2

[
4λ− π/2 − θ(z, t)

cos2 θ(z, t)
+ tan θ(z, t)

]
,

(2.6a)

meniscus recession

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

p = −2Σλ cos θ0 + pV,T ,

h = a(z, t) + tan θ0

2λ
−
[

1
4λ2 cos2 θ0

− x2
]1/2

,

A = 1
4λ2

[
4λa(z, t) − π/2 − θ0

cos2 θ0
+ tan θ0

]
,

(2.6b)
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corner transition

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

p = −Σ[cos θ0 − sin θ(z, t)] + pV,T ,

h = cos θ cos β

cos(θ + β)
−
[(

sin β

cos(θ + β)

)2

−
(

cos θ sin β

cos(θ + β)
− x − 1

2λ

)2
]1/2

,

A = B(θ, θ0)

(cos θ0 − sin θ)2 ,

(2.6c)

corner flow

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p = −Σ[cos θ0 − sin θ0]
a(z, t)

+ pV,T ,

h = a cos θ0 cos π
4

cos(θ0 + π
4 )

−
[(

a sin π
4

cos(θ0 + π
4 )

)2

−
(

a cos θ0 sin π
4

cos(θ0 + π
4 )

− x − 1
2λ

)2
]1/2

,

A = a2B(θ0, θ0)

(cos θ0 − sin θ0)2 ,

(2.6d)

where β = arctan(cos θ/ cos θ0) and A = 2
∫ x2

x1
h dx is the dimensionless liquid cross-sectional

area. Note that θ and a in (2.6) are dependent on (z, t). The integration bounds for each regime
are

meniscus deformation: x1 = 0 and x2 = 1
2λ

,

meniscus recession: x1 = 0 and x2 = 1
2λ

,

corner transition: x1 = 1
2λ

− cos θ − sin θ0

cos θ0 − sin θ
and x2 = 1

2λ
,

corner flow: x1 = 1
2λ

− a
cos θ − sin θ0

cos θ0 − sin θ
and x2 = 1

2λ
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.7)

The geometric function B(θ, θ0) in the expressions for A is given by

B(θ, θ0) = θ + θ0 − π/2 − cos θ(sin θ − cos θ0) + cos θ0(cos θ − sin θ0). (2.8)

Equations (2.6) were also used by Kolliopoulos et al. (2021) and in other previous studies
(Romero & Yost 1996; Weislogel & Lichter 1998; Tchikanda, Nilson & Griffiths 2004; Weislogel
& Nardin 2005; Nilson et al. 2006; Yang & Homsy 2006; White & Troian 2019).

2.3. Evaporation
We assume the liquid is in contact with a gas phase having ambient temperature T̂A and relative
humidity RH . The gas phase consists of saturated vapour or a mixture of solvent vapour and
inert gas (e.g. air), and its velocity is assumed to be negligible. We assume the gas phase density
ρ̂V , viscosity μ̂V , and thermal conductivity k̂V , are much smaller than their liquid counterparts
(Burelbach, Bankoff & Davis 1988), and the temperature across the liquid–air interface is
continuous (Sefiane & Ward 2007). These assumptions allow us to describe evaporation using
a kinetically limited model focusing only on the liquid phase.

A kinetically limited model is chosen instead of a diffusion-limited model (Gambaryan-
Roisman 2019) for three reasons. First, a kinetically limited model is expected to be more accurate
at describing evaporating flow of liquid solutions since the presence of solute at the free surface
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makes the rate-limiting step more likely to be in the liquid phase (Cazabat & Guéna 2010).
Second, kinetically limited models have proven useful in interpreting experiments involving
evaporation into an unsaturated environment when the vapour diffuses rapidly away from the
evaporating interface even though they were originally developed for evaporation into a saturated
environment (Murisic & Kondic 2011). Third, a kinetically limited model does not require
keeping track of the solvent concentration in the vapour phase, which makes it computationally
simpler while still providing qualitatively accurate predictions (Ajaev 2005; Murisic & Kondic
2011). We note that, although a kinetically limited model is expected to provide qualitatively
accurate predictions, it is unlikely to produce quantitatively accurate predictions for situations
where evaporation is diffusion limited.

Evaporation is modelled using the non-equilibrium Hertz–Knudsen relation based on the
kinetic theory of gases (Plesset & Prosperetti 1976; Moosman & Homsy 1980). The evaporative
mass flux is described using

ĵ = αEp̂V

(
R̂gT̂|ĥ

2π

)1/2 (
p̂V,e

p̂V
− 1

)
, (2.9)

where αE is the thermal accommodation coefficient, R̂g is the gas constant per unit mass, T̂|ĥ is
the local liquid–air interface temperature, p̂V is the partial pressure of solvent in the vapour phase
and p̂V,e is the equilibrium solvent vapour pressure. Note that we have assumed the thermal
accommodation coefficients for evaporation and condensation are equal to αE. Physically, αE can
be thought of as a barrier to phase change, with αE = 1 corresponding to no barrier and αE = 0
corresponding to no phase change (Persad & Ward 2016). Prior studies have reported values of αE

that vary over several orders of magnitude from O(10−6) to O(1) (Marek & Straub 2001; Murisic
& Kondic 2011). In this work, we use the accommodation coefficient as a fitting parameter when
comparing with experiments, similar to Murisic & Kondic (2011).

According to equilibrium thermodynamics (Moosman & Homsy 1980; Ajaev & Homsy 2001;
Ajaev 2005) we can write

ln
(

p̂V,e

p̂V

)
= L̂

R̂g

(
1

T̂V
− 1

T̂|ĥ

)
+ p̂ − p̂V

ρ̂R̂gT̂|ĥ
, (2.10)

where L̂ is the latent heat and T̂V is the vapour temperature. The partial pressure of solvent in
the vapour phase is calculated using p̂V = RHp̂S(T̂A) (Cazabat & Guéna 2010; Murisic & Kondic
2011), where RH is the relative humidity, which ranges from 0 to 1, and p̂S(T̂A) is the saturation
pressure corresponding to the ambient temperature T̂A. Both p̂V and T̂A in the vapour phase are
assumed uniform and constant. The partial pressure of the solvent p̂V is then used to calculate
the vapour temperature T̂V using the Clausius–Clapeyron equation (Murisic & Kondic 2011).
Note that for RH = 1 (which corresponds to a vapour phase saturated with solvent), p̂V = p̂S and
T̂V = T̂A.

We rescale (2.10) and (2.9) using

p̂ = (μ̂0Û/εĤ)p, T̂ = T̂V + T�T̂, �T̂ = T̂W − T̂V , and ĵ = (k̂�T̂/L̂Ĥ)j, (2.11a–d)

where T̂W is the temperature of the channel walls, and substitute (2.10) into (2.9), assuming

ln(p̂V,e/p̂V) ≈ p̂V,e/p̂V − 1 and
√

T̂|ĥ ≈
√

T̂V . The resulting expression for the evaporative mass
flux is

Kj = δ( p − pV) + T|h, (2.12)

where K = k̂
√

2πR̂3
gT̂5

V/p̂V L̂2ĤαE is the Knudsen number (ratio of interfacial to bulk
heat transfer resistance), which is essentially the inverse of the Biot number, and
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δ = μ̂0ÛT̂V/ρ̂εĤL̂�T̂ accounts for the effects of pressure variation on the local interface
temperature (Ajaev 2005). From (2.12) it can be seen that the evaporative mass flux j is
proportional to deviations from pV and T̂V . Note that δ is typically O(10−4 − 10−6) compared
with T|h which is O(1), so contributions of the δ( p − pV) term in (2.12) are typically neglected
(Markos et al. 2006; Murisic & Kondic 2011). However, these contributions become significant
near the finger tip as a → 0, where p → −∞ as seen in (2.6d).

2.4. Energy transport
Energy conservation is governed by

ρ̂Ĉp

[
∂T̂
∂ t̂

+ û · ∇̂T̂

]
= k̂∇̂2T̂. (2.13)

For simplicity, we consider the limiting case where heat conduction in the channel walls is
neglected, and assume that the channel walls are held at a constant temperature T̂W . The energy
balance at the liquid–air interface is

L̂ĵ = −n · k̂∇̂T̂. (2.14)

We render (2.13) dimensionless using the scalings in (2.3) and (2.11a–d). The dimensionless
numbers that arise are the Reynolds number Re (see § 2.2) and the Prandtl number Pr = μ̂0Ĉp/k̂
(ratio of momentum to thermal diffusivity).

In the limits of ε2 � 1 and εRePr � 1, the leading-order energy-transport equation is

Txx + Tyy = 0, (2.15a)

subject to

T = 1 at solid boundaries and j(1 + h2
x)

1/2 = hxTx − Ty at free surface, (2.15b)

where j is determined using (2.12). The total evaporative mass flux for a given channel
cross-section is defined as

J̃ =
∫

S
j dS = 2

∫ x2

x1

j(1 + h2
x)

1/2 dx, (2.16)

where x1 and x2 are given by (2.7). The liquid–air interface arc length is given by

S =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π − 2θ

λ cos θ
in meniscus-deformation regime,

π − 2θ0

λ cos θ0
in meniscus-recession regime,

(2π − 4θ − 4β) sin β

cos(θ + β)
in corner-transition regime,

(π − 4θ)a sin π/4
cos(θ + π/4)

in corner-flow regime,

(2.17)

where θ and a are dependent on (z, t) and the cross-sectional-averaged dimensionless temperature
is defined as

T̄ = 1
A

∫
A

T dA, (2.18)

where A is the liquid cross-sectional area from (2.6).
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2.5. Solute transport
A convection–diffusion equation governs the transport of solute

∂c
∂ t̂

+ û · ∇̂c = D̂∇̂2c, (2.19a)

where c is the solute concentration (mass fraction) and D̂ is the diffusion coefficient, which is
assumed to be constant. We impose no-flux boundary conditions

D̂(n · ∇̂)c = 0 at solid boundaries, (2.19b)

D̂(n · ∇̂)c = c(û − ûI) · n = cĵ/ρ̂ at free surface, (2.19c)

where ûI is the liquid–air interface velocity and ĵ is the local evaporative mass flux. Using the
scalings in (2.3), (2.19a) becomes

ε2Pe(ct + ucx + vcy + wcz) = cxx + cyy + ε2czz, (2.20a)

where Pe = ÛL̂/D̂ is the Péclet number (ratio of convective to diffusive transport rates).
Similarly, the no-flux boundary conditions become

(n · ∇)c = 0 at solid boundaries, (2.20b)

−hxcx + cy − ε2hzcz = ε2PecEj(1 + h2
x)

1/2 at free surface, (2.20c)

where E = k̂�T̂/ρ̂L̂ĤεÛ is the evaporation number (ratio of characteristic capillary to
evaporation times).

To simplify (2.20a) further, we assume solute transport in the x and y directions is dominated
by diffusion (ε2Pe � 1). As proposed by Jensen & Grotberg (1993), we asymptotically expand
the concentration in terms of ε2Pe, obtaining c(x, y, z, t) = c0(z, t) + ε2Pec1(x, y, z, t), where we
assume

∫
A c1 dA = 0. This allows us to define the cross-sectional-averaged concentration as

c̄ = 1
A

∫
A

c dA = c0(z, t). (2.21)

We apply cross-sectional averaging to (2.20a) and replace the c1 terms using the no-flux condition
at the free surface in (2.20c). In the limit of ε2 � 1, we obtain the following evolution equation
for c̄:

c̄t + w̄c̄z = 1
PeA

(Ac̄z)z + c̄
A

EJ̃, (2.22)

where w̄ is the cross-sectional-averaged velocity (which will be obtained from (2.28)), A is the
dimensionless cross-sectional area from (2.6), and J̃ is the total cross-sectional evaporative mass
flux in a given channel cross-section from (2.16).

2.6. Constitutive equations for viscosity and surface tension
The constitutive equations for viscosity M and surface tension Σ depend on the liquid solution we
choose to study. In this work, we use aqueous poly(vinyl alcohol) (PVA) solutions and compare
model predictions with capillary-flow experiments conducted by Lade et al. (2018). An empirical
model proposed by Patton (1964) is used to capture the dependence of the viscosity on T̄ and c̄
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through

log M = c̄
ka(T̄) + c̄kb(T̄)

, (2.23a)

where
ka(T̄) = 1.28 × 10−5(T̂V + T̄�T̂) + 1.59 × 10−2,

kb(T̄) = 3.83 × 10−4(T̂V + T̄�T̂) − 2.47 × 10−2.

}
(2.23b)

The ka(T̄) and kb(T̄) functions were reported by Lade et al. (2018) after fitting the empirical
model to rheological data of PVA solutions for a range of temperatures and concentrations. In
(2.23a), increasing the solute concentration can increase the viscosity by orders of magnitude,
and increasing the temperature decreases the viscosity but does not change its order of magnitude.
Similar models can be used to describe any solution or colloidal suspension where the shear
viscosity is the dominant rheological parameter.

The effects of T̄ and c̄ on the surface tension are modelled using

Σ = 1 − Macc̄1/2 − MaTT̄, (2.24)

where Mac = γ̂cε/μ̂0Û is the solutal Marangoni number and MaT = γ̂T�T̂ε/μ̂0Û is the thermal
Marangoni number, which are ratios of surface-tension-gradient forces to viscous forces, and
γ̂c and γ̂T are experimentally obtained constants. We assume the temperature at the liquid–air
interface does not deviate much from the vapour temperature, which allows us to write the surface
tension as a linear function of T̄ (Burelbach et al. 1988; Gramlich et al. 2002; Ajaev 2005;
Craster, Matar & Sefiane 2009). Many prior studies assume a dilute solution and use a linearized
surface-tension dependence on the concentration (e.g. Lam & Benson 1970; Pham, Cheng &
Kumar 2017); this would yield results that are qualitatively similar to those obtained using (2.24).
Comparison of the empirical models in (2.23a) and (2.24) with the experimental results of Lade
et al. (2018) is found in the supplementary material available at https://doi.org/10.1017/jfm.2022.
140.

2.7. Liquid height evolution
We begin with the no-flux boundary condition at the free surface given by

(û − ûI) · n = ĵ/ρ̂, (2.25)

where the velocity of the liquid–air interface is ûI = (0, ĥt̂, 0). Using the scalings in (2.3) and
(2.11a–d), (2.25) becomes

−uhx + v − whz − ht = Ej(1 + h2
x + ε2h2

z )
1/2. (2.26)

We apply cross-sectional averaging to the mass conservation equation (2.4a) and replace the u
and v terms using (2.26), thus obtaining

At = −(w̄A)z − EJ̃, (2.27)

where for each regime, the dimensionless liquid cross-sectional area A = 2
∫ x2

x1
h dx is given by

(2.6), w̄ = A−1
∫

A w dA is the cross-sectional-averaged velocity and J̃ is the total evaporative mass
flux in a given channel cross-section from (2.16). Equation (2.27) is the mass-balance equation
derived by Lenormand & Zarcone (1984), relating the time derivative of the dimensionless liquid
cross-sectional area A to the gradient in the dimensionless flux Q = ∫

A w dA = w̄A, with an
additional term accounting for mass lost due to solvent evaporation.
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The velocity in (2.27) can be decomposed as follows:

w̄ = w̄ca + w̄cg + w̄tg, (2.28)

where each contribution in each regime (figure 1) is expressed in (2.29). Each component
corresponds to a different mechanism acting on the liquid to drive flow. Here, w̄ca is the velocity
due to capillary effects, while w̄cg and w̄tg correspond to the effects of Marangoni stresses.
Specifically, w̄cg is due to solute concentration gradients and w̄tg is due to thermal gradients.
For each regime these contributions are given by

w̄ca = − Ūc
D

M
pz, w̄cg = Ūg

D

M
∂Σ

∂ c̄
c̄z, w̄tg = Ūg

D

M
∂Σ

∂T̄
T̄z, meniscus deformation, (2.29a)

w̄ca = − Ūc
R

M
pz, w̄cg = Ūg

R

M
∂Σ

∂ c̄
c̄z, w̄tg = Ūg

R

M
∂Σ

∂T̄
T̄z, meniscus recession, (2.29b)

w̄ca = − Ūc
T

M
pz, w̄cg = Ūg

T

M
∂Σ

∂ c̄
c̄z, w̄tg = Ūg

T

M
∂Σ

∂T̄
T̄z, corner transition, (2.29c)

w̄ca = −a2 Ūc
C

M
pz, w̄cg = Ūg

C

M
∂Σ

∂ c̄
c̄z, w̄tg = a

Ūg
C

M
∂Σ

∂T̄
T̄z, corner flow, (2.29d)

where Ūc
i and Ūg

i are rescaled cross-sectional-averaged dimensionless velocities, with the
subscript i being equal to D, R, T or C for the meniscus-deformation, meniscus-recession,
corner-transition and corner-flow regimes, respectively. Details of the calculation of Ūc

i and Ūg
i

can be found in the supplementary material. The expressions for M and Σ are given by (2.23a)
and (2.24), respectively.

Consistent with prior studies considering horizontal rectangular channels, we neglect the
meniscus-recession regime (i.e. zD = zM) where w̄ca = 0. This is because the transverse curvature
gradients are zero (constant p in (2.6b)) and the only contribution to w̄ca is from O(ε2) axial
curvature gradients, which we did not account for. The transition from the meniscus-deformation
regime to the corner-flow regime (for λ > λc) is treated as a jump in the dimensionless liquid
height a(z, t) (Nilson et al. 2006; Kolliopoulos et al. 2021).

2.8. Reservoir
Liquid is supplied to the microchannel from a cylindrical reservoir of radius R̂ and height
Ĥ, and the liquid–air interface in the reservoir is assumed to be axisymmetric. The channel
inlet is assumed to have a negligible influence on the liquid–air interface in the reservoir. The
reservoir aspect ratio is λR = Ĥ/R̂ and the cylindrical coordinates of the reservoir are scaled
using (r̂, ŷ, φ) = (R̂r, Ĥy, φ).

2.8.1. Hydrodynamics
Following a similar procedure to the one described in § 2.2, the normal stress balance in (2.1b)
reduces to the Young–Laplace equation,

p − pV,T = −Σλ2
R

Ca

[
hrr

(1 + λ2
Rh2

r )
3/2

+ hr

r(1 + λ2
Rh2

r )
1/2

]
. (2.30)

Using (2.30) in combination with a condition for the contact-line location on the solid wall (h =
1, at r = 1), a symmetry condition at the reservoir centre (hr = 0, at r = 0) and the definition
of the contact angle θR on the solid wall (λRhr/[1 + λ2

Rh2
r ]1/2 = cos θR, at r = 1), we obtain the
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following leading-order expressions for pressure p(t) and liquid–air interface profile h(r, t) in the
reservoir:

p = −2ΣλR cos θR(t) + pV,T , (2.31a)

h = 1 + tan θR(t)
λR

− 1
λR

[
1

cos2 θR(t)
− r2

]1/2

. (2.31b)

2.8.2. Energy transport
Similar to § 2.4, we consider energy conservation in the limit of λRRePr � 1, resulting in

λ2
R

r
(rTr)r + Tyy = 0, (2.32a)

subject to

T = 1 at solid boundaries, and j(1 + λ2
Rh2

r )
1/2 = λ2

RhrTr − Ty at free surface. (2.32b)
Note that in the limit of λR → 0, (2.32) solved along with (2.12) results in the evaporation models
used for axisymmetric droplets and thin films, where j = (1 + δ( p − pV))/(K + h) (Ajaev &
Homsy 2001; Ajaev 2005; Pham & Kumar 2017, 2019).

The dimensionless total evaporative mass flux for a given reservoir cross-section is defined as

J̃R =
∫

SR

j dSR =
∫ 1

0
j(1 + λ2

Rh2
r )

1/2r dr. (2.33)

The liquid–air interface arc length of the reservoir cross-section is given by

SR = 1
2

+ 1
2

(
1 − sin θR(t)

cos θR(t)

)2

. (2.34)

2.8.3. Liquid volume evolution
The dimensionless liquid volume in the reservoir VR = 2

∫
hr dr is

VR = 1 − 1 − sin θR(t)
6λR cos θR(t)

[
3 +

(
1 − sin θR(t)

cos θR(t)

)2
]

, (2.35)

where VR is scaled by the reservoir volume πR̂2Ĥ. The ratio of channel to reservoir volume is
fR = λ2

R/πελ. The reservoir is considered depleted when the liquid–air interface contacts the
reservoir bottom (i.e. h(r = 0) = 0 which corresponds to θR = arcsin((1 − λ2

R)/(1 + λ2
R)) and

VR = (3 − πελfR)/6).
We model the evolution of VR through the following total mass balance:

(VR)t = −fRλw̄A|z=0 − 2EJ̃R, (2.36)
where the rate of change of liquid volume in the reservoir is equal to the liquid flux into
the channel plus the liquid lost to evaporation. Evaporation is accounted for through the total
evaporative mass flux for a given reservoir cross-section J̃R using (2.33).

2.8.4. Solute transport
The solute concentration in the reservoir cR is assumed to be spatially uniform and its evolution
is modelled using the following species mass balance:

(cRVR)t = −fRλw̄c̄A|z=0 , (2.37)
where the rate of change of solute mass in the reservoir is equal to the solute mass flux into the
channel.
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3. Numerical methods

3.1. Boundary conditions
At the channel inlet (z = 0; see figure 1), the pressure and solute concentration are matched to the
reservoir pressure and solute concentration, respectively, and the liquid height is assumed to be
pinned to the top of the channel sidewall. This results in the following conditions at the channel
inlet:

θ(0, t) = cos−1 [λR cos θR(t)/λ
]
, a(0, t) = 1, and c̄(0, t) = cR(t). (3.1a–c)

Note that the condition on the contact angle at the channel inlet is obtained by matching the
pressure in (2.6a) and (2.31a).

For λ ≥ λc, at the transition from the meniscus-deformation to corner-flow regime (z = zM),
we impose the following boundary conditions:

θ(z−
M, t) = θ(z+

M, t) = θ0, a(z−
M, t) = 1, a(z+

M, t) = λc/λ,

c̄(z−
M, t) = c̄(z+

M, t), and Ac̄z|z=z−
M

= Ac̄z|z=z+
M

,

}
(3.2)

where the boundary conditions on θ and a are discussed in § 2.1 and the boundary conditions
on c̄ physically represent mass continuity with no accumulation at the interface between the two
regimes.

For λ < λc, at the transition from the meniscus-deformation to corner-transition regime (z =
zM), we impose the following boundary conditions

θ(z−
M, t) = θC, θ(z+

M, t) = θT , a(z−
M, t) = a(z+

M, t) = 1,

c̄(z−
M, t) = c̄(z+

M, t), and Ac̄z|z=z−
M

= Ac̄z|z=z+
M

.

}
(3.3)

Here, θC = arcsin[(1 − 4λ2)/(1 + 4λ2)] is the critical angle at which the upper meniscus touches
the channel bottom and θT (§ 2.1) is the angle determined (via Newton’s method) by setting
A(z−

M, t) = A(z+
M, t) to conserve mass. At the transition from the corner-transition to corner-flow

regime (z = zC), we impose the following boundary conditions:

θ(z−
C , t) = θ(z+

C , t) = θ0, a(z−
C , t) = a(z+

C , t) = 1,

c̄(z−
C , t) = c̄(z+

C , t), and Ac̄z|z=z−
C

= Ac̄z|z=z+
C
.

}
(3.4)

Finally, at the end of the corner-flow regime (z = zT ) we impose

θ(zT , t) = θ0, a(zT , t) = 0, and c̄z(zT , t) = 0. (3.5a–c)

The boundary condition on c̄ in (3.5a–c) corresponds to no flux. The boundary conditions in
(3.2)–(3.5a–c) for the contact angle θ and the liquid height a on the channel sidewall were also
used by Kolliopoulos et al. (2021).

3.2. Initial conditions
Initial conditions for θ(z, t0), a(z, t0), zM(t0), zC(t0) and zT(t0) are generated using the similarity
solutions reported by Kolliopoulos et al. (2021) in the absence of evaporation (E = 0). The
reported solutions are in terms of the self-similar variable η = z/

√
t, so we determine the initial

interface profile and its axial coordinates z = η
√

t0 by setting t0 = 10−4. The chosen t0 does not
influence our results since total flow times are O(10 − 102). Additionally, we assume the reservoir
is initially fully filled and the solute concentration is uniform in the reservoir and channel. Hence,

VR(t0) = 1, cR(t0) = C0, and c̄(z, t0) = C0. (3.6a–c)
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3.3. Solution procedure
The rescaled cross-sectional-averaged dimensionless velocities Ūc

i and Ūg
i in (2.29) are calculated

as discussed in the supplementary material. Velocity fields are numerically solved for with
a Galerkin finite-element method using quadratic basis functions (Kolliopoulos et al. 2021).
Results for Ūc

D and Ūc
T are found to be in agreement with results of Tchikanda et al. (2004)

and Weislogel & Nardin (2005), respectively. Results for Ūc
C agree with results of Ayyaswamy,

Catton & Edwards (1974), Ransohoff & Radke (1988) and Yang & Homsy (2006). Additionally,
results for Ūg

D and Ūg
C are in agreement with results of Tchikanda et al. (2004) and Yang & Homsy

(2006), respectively.
Rather than consider effects of a(z, t) and θ(z, t) on Ūc

i and Ūg
i separately, we consider the

dependence of Ūc
i and Ūg

i on the liquid saturation λA (ratio of channel cross-sectional area
filled with liquid to total channel cross-sectional area). These rescaled cross-sectional-averaged
dimensionless velocities Ūc

i (λA) and Ūg
i (λA) are fitted with Chebyshev polynomials of the first

kind using the least-squares method and then applied to calculate the cross-sectional-averaged
dimensionless velocity components of w̄ in (2.29).

The dimensionless total evaporative mass fluxes and cross-sectional-averaged dimensionless
temperatures for the channel and reservoir are calculated as discussed in § 2.4 and § 2.8.2,
respectively. Temperature fields are numerically solved for with a Galerkin finite-element method
using quadratic basis functions. Results for J̃ in the corner-flow regime agree with results of
Markos et al. (2006). Results for J̃(λA) and T̄(λA) in each regime, and J̃R(VR) and T̄(VR) for the
reservoir, are fitted with Chebyshev polynomials of the first kind using the least-squares method
and then applied in (2.27), (2.22), (2.36) and (2.37).

For λ ≥ λc, the system of equations consists of (2.27) and (2.22) for each regime in the
channel (meniscus-deformation and corner-flow regimes), and (2.36) and (2.37) for the reservoir.
Additionally, the positions of the moving regime boundaries are determined using the global
continuity equation assuming no accumulation at the interface between two regimes, as discussed
by Kolliopoulos et al. (2021). The general form of the global continuity equation at the interface
at position zi is [∫

A
n · (u − uI) dA

]
z=z−

i

=
[∫

A
n · (u − uI) dA

]
z=z+

i

at z = zi, (3.7)

where n = (0, 0, 1) is the unit normal to the interface, u = (u, v, w) is the dimensionless
liquid velocity, uI = (0, 0, dzi/dt) is the interface velocity at position zi and A is the liquid
cross-sectional area at position zi. For the meniscus position zM and finger tip position zT , (3.7)
reduces to [

Aw̄ − A
dzM

dt

]
z=z−

M

=
[

Aw̄ − A
dzM

dt

]
z=z+

M

at z = zM, (3.8a)

and

w̄|z=z−
T

= dzT

dt
at z = zT . (3.8b)

For λ < λc, the system of equations consists of (2.27) and (2.22) for each regime in the channel
(meniscus-deformation, corner-transition and corner-flow regimes), along with (2.36) and (2.37)
for the reservoir. In addition to the global continuity equations in (3.8) to determine zM and zT ,
we use [

Aw̄ − A
dzC

dt

]
z=z−

C

=
[

Aw̄ − A
dzC

dt

]
z=z+

C

at z = zC, (3.9)

to determine zC.
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ρ̂ (kg m−3) 103 D̂ (m2 s−1) 8.87 × 10−10

γ̂T (N m−1 K−1) 1.14 × 10−4 C0 (wt%) 3
σ̂0 (N m−1) 7.14 × 10−2 γ̂c (N m−1) 3.86 × 10−2

μ̂0 (Pa s) 9.35 × 10−4 Ĥ (μm) 25–50
k̂ (W m−1 K−1) 0.605 Ŵ (μm) 10–200
Ĉp (J kg−1 K−1) 4180 L̂ (mm) 30
L̂ (J kg−1) 2.442 × 106 R̂ (mm) 0.4–100
R̂g (J kg−1 K−1) 461.5 �T̂ (K) 0–40
θ0 (deg.) 19.9 (water), 24.5 (PVA) RH 0–1

Table 1. Typical dimensional parameter values at 298 K and 1 atm (Lade et al. 2018; Kolliopoulos et al. 2019).
Contact angles are for a substrate made of NOA73 (UV-curable adhesive used by Lade et al. (2018) to fabricate
microchannels).

The spatial derivatives in both systems of equations are approximated with second-order
centred finite differences. The resulting discretized systems of ordinary differential equations
are solved using the fully implicit, variable-step and variable-order ode15i solver in MATLAB.

Numerical solutions for the dimensionless total evaporative mass flux J̃(λA) and
cross-sectional-averaged dimensionless temperature T̄(λA) for the channel and their dependence
on the channel aspect ratio λ and equilibrium contact angle θ0 are presented first (§ 4.1). Using
these numerical solutions we then consider capillary flow of an evaporating pure solvent (§ 4.2)
and liquid solution (§ 5) for λ ≥ λc and λ < λc. Finally, model predictions for aqueous PVA
solutions are compared with experimental results of Lade et al. (2018) (§ 6).

4. Results: pure solvents

4.1. Evaporative mass flux
As discussed in § 2.1, the free-surface morphology is determined by the liquid height a(z, t)
and the contact angle θ(z, t) on the channel sidewall (figure 1). However, rather than consider
effects of a(z, t) and θ(z, t) on the dimensionless total evaporative mass flux J̃ and the
cross-sectional-averaged dimensionless temperature T̄ separately, we consider the dependence of
J̃ and T̄ on the liquid saturation λA (ratio of channel cross-sectional area filled with liquid to total
channel cross-sectional area). Since for a given microchannel λ is constant, we vary A to obtain
J̃(λA) and T̄(λA) for the channel cross-sections seen in figure 1. Note that λA = 1 corresponds
to a fully filled channel cross-section (θ = π/2) and λA = 0 corresponds to an empty channel
cross-section (a = 0).

Numerical solutions for J̃(λA) and T̄(λA) are obtained using (2.16) and (2.18), respectively,
after solving (2.15) as discussed in § 3.3. Motivated by the experiments of Lade et al. (2018),
we consider water as the solvent. Typical dimensional parameter values are shown in table 1 and
order-of-magnitude estimates of key dimensionless parameters are given in table 2. In this section
we choose representative parameter values RH = 1, �T̂ = 40 K, Ĥ = 50 μm and αE = 5 × 10−3,
since changes in these parameters do no qualitatively change the results. The dimensionless
parameters K and δ are calculated based on values in table 1.

In figures 2(a) and 2(b), we consider J̃(λA) for different channel aspect ratios λ and equilibrium
contact angles θ0, respectively. Solid lines represent the numerical results and symbols represent
the bounds of each regime in figure 1. For λ ≥ λc, decreasing λA leads to the transition from the
meniscus-deformation regime to the corner-flow regime (circles), where a jump in λA (dotted
lines) is observed due to neglecting the meniscus-recession regime as discussed in § 2.7. In the
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Parameter Physical Meaning Order of magnitude

ε = Ĥ/L̂ channel height/channel length 10−3

λ = Ĥ/Ŵ channel height/channel width 0.1–1
λR = Ĥ/R̂ channel height/reservoir radius 0.1–1
fR = λ2

R/πελ channel volume/reservoir volume 0–10
Re = ρ̂ÛĤ/μ̂0 inertial forces/viscous forces 10
Ca = μ̂0Û/εσ̂0 viscous forces/surface-tension forces 1
Bo = ρ̂ĝĤ2/σ̂0 gravitational forces/surface-tension forces 10−4

K = k̂
√

2πR̂3
gT̂5

V/p̂V L̂2ĤαE interfacial heat transfer resistance/bulk heat transfer resistance 1–10

δ = μ̂0ÛT̂V/ρ̂εĤL̂�T̂ pressure effects on local interface temperature 10−4–10−6

Pr = μ̂0Ĉp/k̂ momentum diffusivity/thermal diffusivity 10
Pe = ÛL̂/D̂ convective transport rate/diffusive transport rate 105–106

E = k̂�T̂/ρ̂L̂ĤεÛ capillary time/evaporation time 0–1
MaT = γ̂T�T̂ε/μ̂0Û surface-tension-gradient forces/viscous forces 0–1
Mac = γ̂cε/μ̂0Û surface-tension-gradient forces/viscous forces 0–1

Table 2. Order-of-magnitude estimates of key dimensionless parameters calculated using parameter values in
table 1.

corner-flow regime, λA continues to decrease until λA = 0, corresponding to the finger tip. For
λ < λc, decreasing λA results in the transition from the meniscus-deformation regime to the
corner-transition regime (circles) and further decreasing λA results in the transition from the
corner-transition regime to the corner-flow regime (squares).

In both figures 2(a) and 2(b), J̃ is a non-monotonic function of λA. In the
meniscus-deformation regime, decreasing λA increases J̃ because the liquid–air interface
approaches the channel bottom and the liquid–air interface arc length S (see (2.17)) increases.
For λ < λc, a jump in J̃ is observed at the transition from the meniscus-deformation regime
to the corner-transition regime (circles) due to the difference in S caused by the difference in
contact angles on the channel sidewall and bottom on either side of the transition (see § 2.1).
Finally, in the corner-transition regime and corner-flow regime, decreasing λA decreases J̃ due to
the decrease in S.

In figures 2(c) and 2(d), we consider T̄(λA) for different channel aspect ratios λ and
equilibrium contact angles θ0, respectively. Unlike J̃, there is a monotonic increase in T̄ with
decreasing λA, due to the liquid–air interface moving closer to the channel bottom.

In prior studies, the pressure contributions to the local interface temperature are neglected
(Markos et al. 2006) by neglecting δ( p − pV) in (2.12). This assumption, along with rescaling the
liquid–air interface arc length as S′ = S/a, where a is the liquid height on the channel sidewall,
allows for J̃ in the corner-flow regime to be expressed as

J̃ = a
aC

J̃(λAC), (4.1a)

where

AC = B(θ0, θ0)a2
C

(cos θ0 − sin θ0)2 , (4.1b)

aC =
{
λ/λc, if λ ≥ λc,

1, if λ < λc,
(4.1c)
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Figure 2. Dimensionless total evaporative mass flux J̃ as a function of liquid saturation λA for different
(a) channel aspect ratios λ and (b) equilibrium contact angles θ0. Cross-sectional-averaged dimensionless
temperature T̄ as a function of liquid saturation λA for different (c) channel aspect ratios λ and (d) equilibrium
contact angles θ0. Solid lines represent numerical results, dotted lines represent jumps in various quantities
and symbols represent the bounds of each regime. Results are for RH = 1, K = 4.88, δ = 4.36 × 10−6 and
αE = 5 × 10−3.

where J̃(λAC) is the dimensionless total evaporative mass flux at the beginning of the corner-flow
regime. Neglecting δ( p − pV) in (2.12) also allows for T̄ in the corner-flow regime to be written
as

T̄ = a
aC

[
T̄(λAC) − 1

]+ 1, (4.2)

where T̄(λAC) is the cross-sectional-averaged dimensionless temperature at the beginning of the
corner-flow regime.

In figure 3, we examine the effect of neglecting the pressure contributions to the local
interface temperature in the corner-flow regime and their influence on J̃ and T̄ . We compare
numerical results (circles), which include the δ( p − pV) terms, with the expressions for J̃ and
T̄ (lines) in (4.1a) and (4.2), respectively. In both figures 3(a) and 3(b), (4.1a) and (4.2) agree
with the numerical results for larger a but overpredict the numerical results for smaller a.
Pressure contributions to the local interface temperature are expected to become important as
the δ( p − pV) term in (2.12) becomes O(1). Since the results in figure 3 are for δ = 4.36 × 10−6,
using (2.6d) suggests that the δ( p − pV) term becomes important when a < δ, which is consistent
with our observations (see dashed lines in figure 3). Therefore, the effects of pressure on the local
interface temperature must be accounted for near the finger tip as a → 0.

938 A22-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

14
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.140


Capillary flow of evaporating liquids in open microchannels

(a) (b)
100

a = δ a = δ

100

10–2

[J̃
/J̃

(λ
A C

)]
 a

C

a a
10–2

[(
T̄ 

–
 1

)/
(T̄

 (
λ

A C
) 

–
 1

)]
a C

10–4

10–4

10–6

100

10–2

10–4

10–6

10–6 10010–210–410–6

λ = 0.25
λ = 0.33

λ = 0.5

λ = 1

(46)

λ = 0.25
λ = 0.33

λ = 0.5

λ = 1

(47)

Figure 3. Normalized (a) total evaporative mass flux J̃ and (b) cross-sectional-averaged dimensionless
temperature T̄ in the corner-flow regime as a function of the liquid height on the channel sidewalls a. Filled
symbols represent numerical results, solid lines represent predictions of (a) (4.1a) and (b) (4.2), and dashed
lines represent a = δ. Each λ includes results for θ0 = 10◦, 20◦ and 30◦. The parameter values are RH = 1,
K = 4.88, δ = 4.36 × 10−6 and αE = 5 × 10−3.
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J̃R
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Figure 4. Dimensionless total evaporative mass flux in the reservoir J̃R as a function of the reservoir liquid
volume VR for different channel-to-reservoir volume ratios fR. The parameter values are RH = 1, K = 4.88,
δ = 4.36 × 10−6 and αE = 5 × 10−3.

Numerical solutions for the dimensionless total evaporative mass flux in the reservoir J̃R are
obtained using (2.33), after solving (2.32) as discussed in § 3.3. In figure 4 the total dimensionless
evaporative mass flux in the reservoir J̃R as a function of the liquid volume in the reservoir VR

is shown for different reservoir sizes. Here, VR < 1 and VR > 1 correspond to an underfilled
and overfilled reservoir, respectively. Note that the contact line is assumed to be pinned to the
top of the reservoir sidewall. Decreasing VR (decreasing θR in (2.35)) results in a monotonic
increase in J̃R because the liquid–air interface approaches the reservoir bottom and the liquid–air
interface arc length SR (see (2.34)) increases. The effect of the reservoir size is probed using the
channel-to-reservoir volume ratio fR = λ2

R/πελ, where an increase in fR (λR increases) leads to
an increase in J̃R since the contribution to evaporation from the reservoir sidewalls increases.
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Figure 5. Evolution of (a) contact angle on channel sidewall θ , (b) liquid height on channel sidewall a and (c)
finger tip position zT and meniscus position zM . The parameter values are θ0 = 19.9◦, λ = 0.5 (λc = 0.35), ε =
1.7 × 10−3, fR = 0, C0 = 0, RH = 1, E = 0.93, MaT = 6.39 × 10−2, K = 4.88, δ = 4.36 × 10−6 and αE =
5 × 10−3.

4.2. Capillary flow
We now use results of § 4.1 to study pure water in an open rectangular channel, which allows
us to isolate the influence of thermal effects on the flow. Two key dimensionless parameters that
arise are the thermal Marangoni number MaT and the evaporation number E (table 2). Thermal
Marangoni effects are retained (MaT = 6.39 × 10−2) for completeness, although qualitatively
similar results are obtained in the absence of thermal Marangoni effects (MaT = 0) (see
figure 8c). The slenderness parameter ε is fixed to a representative value based on the quantities
given in table 1. We present numerical solutions of the contact angle θ(z, t) and the liquid height
a(z, t) on the channel sidewall for λ > λc and λ < λc in figures 5 and 6, respectively. Solutions
for λ > λc and λ < λc are obtained by solving (2.27) for each regime in figure 1. These solutions
are valid for intermediate times, when channel entrance and end effects can be neglected.

We initially consider results for λ > λc in figures 5(a) and 5(b). Here, we assume an infinite
reservoir (fR = 0), so we do not include (2.36) in our governing equations. The inlet conditions
are θ(0, t) = 90◦ and a(0, t) = 1 corresponding to a fully filled channel cross-section. Moving
down the length of the channel, θ(z, t) decreases monotonically while a(z, t) = 1, and at the
meniscus position zM (circles) the flow transitions from the meniscus-deformation regime to the
corner-flow regime (figure 1a). A jump in a(zM, t) (dashed lines) is observed at the transition
in figure 5(b) because the meniscus-recession regime is neglected as discussed in § 2.7. In the
corner-flow regime, θ(z, t) = θ0 and a(z, t) decreases monotonically until a(zT , t) = 0 at the
finger tip position zT (triangles).

The evolution of the meniscus position zM and finger tip position zT is shown in figure 5(c),
where both asymptotically approach their maximum values corresponding to the steady-state
solution of (2.27). At this steady-state capillary flow is balanced by evaporation due to the infinite
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Figure 6. Evolution of (a) contact angle on channel sidewall θ , (b) liquid height on channel sidewall a and
(c) finger tip position zT , finger depinning position zC and meniscus position zM . The parameter values are
θ0 = 19.9◦, λ = 0.25 (λc = 0.35), ε = 1.7 × 10−3, fR = 0, C0 = 0, RH = 1, E = 0.93, MaT = 6.39 × 10−2,
K = 4.88, δ = 4.36 × 10−6 and αE = 5 × 10−3.

supply of liquid at the channel inlet from the reservoir. The evolution of zM and zT is qualitatively
different from that observed in the absence of evaporation, where zM and zT scale as ∼ t1/2

(Kolliopoulos et al. 2021). This deviation from the Lucas–Washburn scaling for the finger tip
position zT was also observed by Gambaryan-Roisman (2019) in calculations involving V-shaped
channels.

We now consider the case λ < λc in figures 6(a) and 6(b). Moving down the length of the
channel, θ(z, t) decreases monotonically while a(z, t) = 1. At the meniscus position zM , the flow
transitions from the meniscus-deformation regime to the corner-transition regime (figure 1b).
A jump in θ(zM, t) (circles) is observed at the transition in figure 6(a) because when the upper
meniscus touches the channel bottom it is assumed that the contact angle at the channel bottom
instantaneously reaches θ0. Thus, to conserve mass, the contact angle on the channel sidewall
increases as discussed in § 2.1.

In the corner-transition regime (segment from circle to square), θ(z, t) continues to
monotonically decrease while a(z, t) = 1. At the finger depinning position zC (squares), the
flow transitions from the corner-transition regime to the corner-flow regime (figure 1b). In the
corner-flow regime, θ(z, t) = θ0 and a(z, t) decreases monotonically until a(zT , t) = 0 at the
finger tip position zT (triangles). It is evident from figure 6(c) that zM , zC and zT deviate from
the Lucas–Washburn scaling for λ < λc as well and asymptotically approach their maximum
values corresponding to the steady-state solution of (2.27).

Results for θ(z, t) and a(z, t) from figures 5 and 6 are used in (2.6) to determine the evolution
of the three-dimensional liquid height profile h(x, z, t) in the channel, whose top view is
depicted in figures 7(a) (λ > λc) and 7(b) (λ < λc), with t = 30 being in the steady-state regime.
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Figure 7. Evolution of liquid height profile h (top view) for (a) λ = 0.5 and (b) λ = 0.25. The corresponding
parameter values are given in the captions of figures 5 and 6, respectively. Discontinuities in h are caused by
discontinuities in θ and a seen in figures 5 and 6.

For larger λ (figure 7a) we observe shorter fingers and longer flow distances compared with
smaller λ (figure 7b). While here we considered water with θ0 = 19.9◦ (λc = 0.35), qualitatively
similar profiles are seen for liquids with θ0 < π/4. For liquids with θ0 ≥ π/4 finger formation is
not observed (Concus & Finn 1969).

We now examine the effect of channel aspect ratio λ, evaporation number E, thermal
Marangoni number MaT and channel-to-reservoir volume ratio fR on the maximum values
of zT , zC and zM . From figure 8(a) it is seen that when λ� λc (λc = 0.35) the size of the
meniscus-deformation regime size dominates that of the corner-flow regime (i.e. zM > zT − zM

in figure 1a). With decreasing λ, the finger length zT − zM increases monotonically. However,
with decreasing λ the meniscus position zM increases and then decreases. When λ drops below
λc = 0.35, the corner-transition regime appears, and as λ is further decreased zT − zM continues
to increase. These trends are observed for other θ0 and are consistent with trends observed by
Kolliopoulos et al. (2021) in the absence of evaporation. Therefore, there are optimal channel
aspect ratios λ for maximizing the total flow distance of the finger tip and meniscus.

In the absence of evaporation (E = 0) the liquid reaches the end of the channel (z = 1).
Figure 8(b) shows that increasing the evaporation number E (increasing the substrate temperature
TW or lowering the relative humidity RH) monotonically decreases the maximum values of zT , zC
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Figure 8. Final finger tip position zT , finger depinning position zC and meniscus position zM as a function
of (a) channel aspect ratio λ, (b) evaporation number E, (c) thermal Marangoni number MaT and
(d) channel-to-reservoir volume ratio fR. Unless denoted otherwise, the parameter values are θ0 = 19.9◦ (λc =
0.35), ε = 1.7 × 10−3, fR = 0, C0 = 0, RH = 1, E = 0.93, MaT = 6.39 × 10−2, K = 4.88, δ = 4.36 × 10−6

and αE = 5 × 10−3.

and zM . These maximum values are found to scale as ∼ E−1/2, which is consistent with studies of
uniform evaporation in open rectangular channels (Nilson et al. 2006; Kolliopoulos et al. 2019),
and uniform and diffusion-limited evaporation in V-shaped channels (Gambaryan-Roisman
2019).

The thermal Marangoni number MaT controls the magnitude of the surface-tension-
gradient forces caused by thermal gradients. In figure 8(c) it is shown that the maximum values of
zT , zC and zM for all λ decrease with increasing MaT . This is because the cross-sectional-averaged
temperature T̄ increases down the length of the channel (figures 2c and 2d) causing the
surface tension Σ to decrease due to (2.24). Decreasing Σ decreases the magnitude of the
capillary-pressure gradients in w̄ca (which drive flow) and increases the magnitude of the thermal
Marangoni stresses in w̄tg (which inhibit flow), thus reducing the axial velocity and propagation
of the liquid front. Hence, increasing MaT decreases the axial velocity and leads to shorter flow
distances.

The channel-to-reservoir volume ratio fR provides a measure of the relative size of the channel
compared with the reservoir. We examine the case where the reservoir is initially fully filled
(VR = 1) and consider the reservoir to be depleted when the liquid–air interface contacts the
reservoir bottom (VR = (3 − πελfR)/6). In figure 8(d), we consider the finite-size reservoir
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Figure 9. Evolution of finger tip position zT and meniscus position zM for a pure solvent (C0 = 0, Mac = 0),
a liquid solution without solutal Marangoni flows (C0 = 0.03, Mac = 0) and a liquid solution with solutal
Marangoni flows (C0 = 0.03, Mac = 0.54). For C0 = 0.03, results for zT and zM nearly overlap. The parameter
values are θ0 = 24.9◦ (λc = 0.32), λ = 0.5, ε = 1.7 × 10−3, fR = 0, RH = 0.45, E = 0.265, MaT = 1.81 ×
10−2, K = 9.89, δ = 1.5 × 10−5, αE = 5 × 10−3 and Pe = 4.3 × 106.

effects with and without evaporation by including (2.36) in our governing equations. To fully
fill the channel and avoid depletion of the reservoir in the absence of evaporation requires at
the maximum fR = 3/(6 − πελ) ≈ 1/2. Note that if the reservoir is initially overfilled, then
the maximum fR required to avoid reservoir depletion increases (e.g. initial VR = 3/2 requires
fR = 6/(6 − πελ) ≈ 1). As depicted in figure 8(d), for E = 0 and fR � 1/2 the reservoir size
has negligible effect on zT and zM and the liquid reaches the end of the channel (z = 1).
However, when fR > 1/2 a decrease in the total flow distances is observed due to depletion of the
reservoir, and further increasing fR results in a monotonic decrease in zT and zM .

In the presence of evaporation (E > 0; red lines), the flow distances are significantly reduced
due to faster depletion of the reservoir relative to the case where evaporation is absent (E = 0;
blue lines). We isolate the influence of the reservoir depletion due to evaporation by comparing
results for finite-size reservoirs (fR > 0; red lines) with those obtained assuming an infinite
reservoir (fR = 0; green lines). Shorter flow distances are observed for all fR > 0 compared with
fR = 0, because in the limit of fR → 0, the evaporative mass flux in the reservoir J̃R is non-zero
and asymptotically approaches the thin-film limit of J̃R = 1/(2K + 2) due to the finite reservoir
height Ĥ, while J̃R = 0 for fR = 0. Therefore, reservoir depletion results in flow termination for
all fR > 0 prior to what would be observed for fR = 0. While in this comparison we considered
λ = 0.5 (λ > λc), similar trends are seen for λ < λc.

5. Results: liquid solutions

Here, we consider the influence of solute-concentration gradients that arise during the flow of
an evaporating liquid solution, using 3 wt% aqueous PVA solutions as an example motivated
by the experiments of Lade et al. (2018). The polymer solution viscosity and surface tension
are given by the constitutive equations (2.23a) and (2.24), respectively. In this section we
chose representative parameter values RH = 0.45, �T̂ = 11 K, Ĥ = 50 μm, αE = 5 × 10−3 and
ε = 1.7 × 10−3 (table 1). Two additional dimensionless parameters that arise are the solutal
Marangoni number Mac and the Péclet number Pe (table 2).

The addition of solute affects both the viscosity and surface tension, so we initially consider
their effects separately. In figure 9, we present numerical solutions of the evolution of the finger
tip position zT and meniscus position zM of a pure solvent, a liquid solution with a constant
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Figure 10. Evolution of (a) contact angle on channel sidewall θ , (b) liquid height on channel sidewall a,
(c) cross-sectional-averaged concentration c̄ and (d) finger tip position zT and meniscus position zM . Results
for zT and zM nearly overlap. The parameter values are θ0 = 24.9◦ (λc = 0.32), λ = 0.5, ε = 1.7 × 10−3,
fR = 0, C0 = 0.03, RH = 0.45, E = 0.26, MaT = 1.81 × 10−2, K = 9.89, δ = 1.5 × 10−5, αE = 5 × 10−3,
Mac = 0.54 and Pe = 4.3 × 106.

surface tension, and a liquid solution with a concentration-dependent surface tension. Solutions
are obtained by solving (2.27) and (2.22) for each regime in figure 1.

Including a concentration-dependent viscosity significantly decreases the finger tip and
meniscus positions, and including solutal Marangoni effects further decreases the finger tip
and meniscus positions. However, it is evident from figure 9 that the concentration-dependent
viscosity is primarily responsible for the change in the finger tip and meniscus evolution for
this polymer solution. An increase in the solute concentration near the meniscus and fingers
due to solute evaporation causes an increase in the local viscosity which inhibits flow (see
figure 10). The axial temperature variations do influence the viscosity when C0 > 0, although
their effect is negligible compared with that from the solute concentration variations (see
(2.23a)). Qualitatively similar results are expected for colloidal suspensions where the viscosity
diverges (M → ∞) as the particle concentration approaches the maximum packing fraction.
Solutal Marangoni effects are expected to be primarily responsible for the change in the finger
tip and meniscus evolution for surfactant solutions, where the presence of surfactants typically
does not significantly influence the bulk viscosity (Yiantsios & Higgins 2010).

We present numerical solutions of the contact angle θ(z, t) and the liquid height a(z, t) on
the channel sidewall for λ > λc and λ < λc in figures 10 and 11, respectively. Solutions are
obtained by solving (2.27) and (2.22) for each regime in figure 1. For λ > λc, the θ(z, t) and
a(z, t) profiles in figures 10(a) and 10(b) are qualitatively similar for most of the flow domain to
those obtained for a pure solvent in figure 5, except in the fingers. This is caused by an increase in
solute concentration at the meniscus position and fingers depicted in figure 10(c), which locally
increases the viscosity and reduces the finger size. This results in the flow being dominated by
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Figure 11. Evolution of (a) contact angle on channel sidewall θ , (b) liquid height on channel sidewall a,
(c) cross-sectional-averaged concentration c̄ and (d) finger tip position zT , finger depinning position zC and
meniscus position zM . The parameter values are θ0 = 24.9◦ (λc = 0.32), λ = 0.25, ε = 1.7 × 10−3, fR = 0,
C0 = 0.03, RH = 0.45, E = 0.265, MaT = 1.81 × 10−2, K = 9.89, δ = 1.5 × 10−5, αE = 5 × 10−3, Mac =
0.54 and Pe = 4.3 × 106.

the meniscus-deformation regime as is shown in the three-dimensional free-surface profiles in
figure 12(a), where the finger size is negligible.

Similar to the pure-liquid case, the finger tip position zT and meniscus position zM approach
an asymptotic plateau seen in figure 10(d). However, the underlying cause is quite different. For
a pure liquid, a steady state is reached when capillary flow is balanced by evaporation. For a
polymer solution, the local increase in viscosity due to solute accumulation at the liquid front is
what causes termination of the flow.

For λ < λc, qualitative differences are observed between the polymer solution (figure 11)
and the pure liquid (figure 6). Like the case where λ > λc, the θ(z, t) and a(z, t) profiles in
figures 11(a) and 11(b) are qualitatively similar for most of the flow domain to those obtained
for a pure liquid in figure 6, except in the fingers. The increase in solute concentration near
the meniscus position and fingers (figure 11c) results in a local increase in viscosity, hindering
the flow in the fingers. Similar to λ > λc, the finger tip position zT , finger depinning position zC,
and meniscus position zM approach an asymptotic plateau (figure 11d) due to the local increase in
viscosity caused by solute accumulation at the liquid front, which results in flow termination. This
local increase in viscosity influences the three-dimensional free-surface profiles in figure 12(b),
where the finger size is negligible.

We consider the effect of the Péclet number Pe and the solutal Marangoni number Mac on
the maximum values of zT , zC and zM in figures 13(a) and 13(b), respectively. The Péclet number
controls the ratio of convective to diffusive solute mass transport, where larger Pe signifies weaker
solute diffusion. Thus, increasing Pe in figure 13(a) leads to a decrease in the maximum values of
zT , zC and zM , since increasing Pe (reducing solute diffusion) leads to larger solute concentration
gradients near the meniscus and fingers.
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Figure 14. (a) Comparison of solute concentration c̄ and solute distribution c̄A profiles for different λ at
the maximum flow distance. Effect of solutal Marangoni number Mac on solute distribution profile c̄A for
(b) λ = 0.5 (λ > λc) and (c) λ = 0.25 (λ < λc). Unless denoted otherwise, the parameter values are θ0 = 24.9◦
(λc = 0.32), ε = 1.7 × 10−3, fR = 0, RH = 0.45, E = 0.265, Mac = 0.7, MaT = 1.81 × 10−2, K = 9.89,
δ = 1.5 × 10−5, αE = 5 × 10−3 and Pe = 4.3 × 106.

The solutal Marangoni number Mac controls the magnitude of the surface-tension-gradient
forces caused by solute-concentration gradients. The cross-sectional-averaged concentration c̄
increases down the length of the channel (figures 10c and 11c), causing the surface tension Σ to
decrease due to (2.24). Decreasing Σ decreases the magnitude of the capillary-pressure gradients
in w̄ca (which drive flow) and increases the magnitude of the solutal Marangoni stresses in w̄cg

(which inhibit flow), thus reducing the axial velocity and propagation of the liquid front. Hence,
increasing Mac in figure 13(b) leads to a decrease in the maximum values of zT , zC and zM .

It is important to differentiate between the concentration profiles c̄ depicted in figures 10(c)
and 11(c) and the final solute deposition pattern resulting from the solvent evaporation. The
reason these can be qualitatively different is because the solute concentration is the ratio between
the amount of solute and the amount of solution. Therefore, a high solute concentration can be
obtained with a small amount of solute and a small amount of solution. Prior studies on droplets
(Deegan et al. 2000; Wray et al. 2014; Pham & Kumar 2017, 2019) and thin films (Warner,
Craster & Matar 2003) have demonstrated that a better measure of the eventual solute deposition
pattern is the solute area density c̄h. In our system, the solute deposition is characterized by the
solute linear density c̄A because our concentration is cross-sectionally averaged, in contrast to the
height-averaged concentration considered in droplets and thin films.

In figure 14(a) we compare the final concentration c̄ from figures 10(c) and 11(c) with the
final solute distribution c̄A for λ > λc and λ < λc. There is a significant qualitative difference
in the c̄ and c̄A profiles. The concentration profiles suggest an accumulation of solute near the
meniscus position (circles) and in the fingers (between circles and triangles), for λ > λc and λ <

λc. However, the distribution profiles demonstrate that the solute accumulates the most before the
meniscus position (circles) and the amount of solute in the fingers is significantly less than that

938 A22-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

14
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.140


Capillary flow of evaporating liquids in open microchannels

0

0.1

0.2

0.3

0.4

0.1

0.2

0.3

0.40.5

15 30 45
t

zM

60 0 25 50 75
t

100

Exp.

RH = 0.8
RH = 0.8

RH = 0.45
RH = 0.45

λ = 0.94 λ = 0.23

Model

(b)(a)

Figure 15. Effect of relative humidity RH on evolution of meniscus position zM for (a) λ = 0.94 and (b) λ =
0.23. Note that λc = 0.32. Symbols represent experimental results of Lade et al. (2018) and solid lines represent
lubrication-theory-based model predictions using the accommodation coefficient αE as a fitting parameter (see
table 3). Parameter values are calculated using table 1 and can be found in the supplementary material.

upstream of the meniscus position. These solute distribution profiles are in qualitative agreement
with the deposition patterns observed by Lade et al. (2018) for capillary flow and evaporation of
PVA solutions (see figure 8 in Lade et al. 2018).

In figures 14(b) (λ > λc) and 14(c) (λ < λc) we compare c̄A profiles for different solutal
Marangoni numbers Mac. In both cases it is observed that the solute accumulation can be
reduced significantly by increasing the solutal Marangoni number Mac. Increasing Mac reduces
the axial velocity and propagation of the liquid front as shown in figure 13(b) but also reduces
the convection of solute, leading to a more uniform solute deposition pattern. This suggests a
trade-off between obtaining longer flow distances and uniform deposition patterns. Additional
calculations (not shown here) reveal that solute distribution profiles also tend to become more
uniform as the thermal Marangoni number MaT increases because the thermal Marangoni
stresses drive flow away from the meniscus and fingers (§ 4.2).

6. Comparison with experiments

Kolliopoulos et al. (2019) studied capillary flow and evaporation in open rectangular
microchannels by extending the Lucas–Washburn model to include effects of concentration-
dependent viscosity and uniform evaporation, and compared model predictions with experiments
by Lade et al. (2018). Evaporative mass flux values used to fit the model to the experiments
by Lade et al. (2018) were O(10 − 102) larger than estimates obtained from the experiments.
The discrepancy was attributed to assuming a flat free surface and not accounting for axial
concentration gradients in the model.

Here, we account for the effects of evaporation on capillary flow by using the accommodation
coefficient αE as the only fitting parameter to match the predicted final meniscus position zM

to that experimentally observed by Lade et al. (2018). (All other parameters are determined
using the values in table 1 and can be found in the supplementary material.) The comparison
of the meniscus position evolution zM is depicted in figures 15(a) (λ > λc) and 15(b) (λ < λc) for
different relative humidities RH . Symbols represent experimental results of Lade et al. (2018) and
model predictions are shown in solid lines. In general, good agreement is observed between the
model predictions and the experimental results. The model predicts that the meniscus position
increases at a faster rate than what is observed in the experiments, and that the total flow distance
is reached sooner. This is likely due to channel roughness in the experiments that arises due to the
fabrication process (Lade et al. 2018), which is not accounted for in the model. Xing et al. (2020)
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RH λ J̄exp J̄R J̄C αE

0.45 0.94 9.9 × 10−2 8.5 × 10−2 4.6 × 10−2 5.0 × 10−3

0.80 0.94 20.9 × 10−2 14.1 × 10−2 8.1 × 10−2 5.4 × 10−3

0.45 0.23 9.9 × 10−2 5.8 × 10−2 3.2 × 10−2 3.3 × 10−3

0.80 0.23 20.9 × 10−2 9.3 × 10−2 5.1 × 10−2 3.3 × 10−3

Table 3. Dimensionless evaporative mass flux values from experiments J̄exp by Lade et al. (2018) for different
relative humidities RH and aspect ratios λ are compared with model predictions of the dimensionless
evaporative mass flux values for the reservoir J̄R and channel J̄C by using the accommodation coefficient
αE as a fitting parameter.

combined theory and experiment to demonstrate that channel roughness can cause significant
inhibition of capillary flow in U-shaped channels in the absence of evaporation. However, the
channel roughness in the experiments by Lade et al. (2018) was likely not as pronounced as
that in the study by Xing et al. (2020) based on micrographs of the channels and the channel
fabrication methods reported in each study.

Lade et al. (2018) obtained estimates for the evaporative mass flux J̄exp in the
capillary-flow experiments by measuring the mass loss in a cylindrical dish under the same
experimental conditions. We note that the cylindrical dish (R̂ = 2.875 mm, Ĥ = 1.25 mm)
is considerably larger than the channel reservoir (R̂ = 1.5 mm, Ĥ = 46.8 μm) used in the
capillary-flow experiments. We compare these estimates for J̄exp with the time-averaged mass
flux for the reservoir J̄R and the channel J̄C, which are given by

J̄R = 1
tF

∫ tF

0

J̃R

SR
dt, (6.1a)

J̄C = 1
tF

∫ tF

0

[
1
zT

∫ zT

0

J̃
S

dz

]
dt, (6.1b)

where tF is the total flow time.
This comparison is given in table 3 for different relative humidities RH and different channel

aspect ratios λ, along with the values of αE used in figure 15. Table 3 illustrates that the flux values
for both the reservoir J̄R and channel J̄C are comparable to the experimentally measured values
J̄exp, suggesting that the kinetically limited evaporation model provides physically reasonable
predictions.

As discussed previously, the accommodation coefficients used in the literature vary over
several orders of magnitude from O(10−6) to O(1) (Marek & Straub 2001; Murisic & Kondic
2011; Persad & Ward 2016), with αE = 1 corresponding to no barrier to phase change and αE = 0
corresponding to no phase change. In addition, interfaces that are considered contaminated
typically have αE � 1 (Cazabat & Guéna 2010; Murisic & Kondic 2011), since contaminants
likely hinder the phase change of the volatile species. The αE values in table 3 are within the
range of values used in the literature and their order of magnitude seems reasonable since PVA
at the liquid–air interface may act like a contaminant.

In figure 15 and table 3 we account for thermal and solutal Marangoni flows which
influence the flow dynamics (figures 8c and 13b). The channel-to-reservoir volume ratio in
these experiments is fR = 0.21 (λ = 0.94) and fR = 0.85 (λ = 0.23), so reservoir depletion
significantly influences the maximum meniscus position zM (figure 8d). Fitting the model to
experiments by solely accounting for the concentration-dependent viscosity and assuming the
surface tension is constant (neglecting Marangoni stresses) and an infinite reservoir size (fR = 0)

938 A22-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

14
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.140


Capillary flow of evaporating liquids in open microchannels

yields accommodation coefficients and mass flux values having the same order of magnitude
as those listed in table 3. The sensitivity of the results to the value of αE is characterized in
the supplementary material. This indicates that the dominant effect inhibiting the flow is the
concentration-dependent viscosity, which increases near the meniscus position and fingers due to
the increase in solute concentration caused by solvent evaporation (figure 9).

7. Conclusions

In this work we develop a lubrication-theory-based model to examine capillary flow of
evaporating liquid solutions in open rectangular microchannels. In addition to describing the
complex free-surface morphology, the model accounts for non-uniform solvent evaporation,
Marangoni flows due to gradients in solute concentration and temperature, and the effects of
a finite-size reservoir connected to the microchannel. These latter factors were not considered by
Kolliopoulos et al. (2021) who focused on non-volatile liquids, and by Kolliopoulos et al. (2019)
where very simplified descriptions of fluid flow and evaporation were employed.

Thermal effects on the flow dynamics are elucidated by considering a pure solvent. The flow is
shown to asymptotically approach a steady state where capillary flow is balanced by evaporation
when the reservoir is infinite. The dependence of the maximum finger tip, finger depinning,
and meniscus positions at steady state on the channel aspect ratio λ, evaporation number E
and thermal Marangoni number MaT is presented. For finite-size reservoirs, a steady state is
not obtained and the critical reservoir size is identified for which reservoir depletion results in
reduced maximum flow distances compared with the infinite reservoir case.

Solute-concentration effects on the flow dynamics are examined by considering aqueous PVA
solutions. Rather than approaching a steady state, the flow terminates due to a local increase in
viscosity caused by an increase in solute concentration at the liquid front. As a consequence,
fingers are suppressed. Notably, stronger Marangoni flows are found to lead to more uniform
solute deposition patterns, which is important for applications involving printed electronics,
where uniform solute deposition is needed for electronic devices to function well.

Finally, model predictions of the meniscus position evolution are compared with
capillary-flow experiments conducted by Lade et al. (2018). Results demonstrate that the
lubrication-theory-based model captures the evolution of the meniscus position seen in
experiments, and the evaporative mass flux values obtained from the kinetically limited model
are comparable to the experimental estimates of Lade et al. (2018).

Results from our lubrication-theory-based model reveal significant qualitative differences
in capillary flow of evaporating pure solvents and liquid solutions, and advance fundamental
physical understanding of the flow dynamics. This understanding is vital for improving
and optimizing a number of technological applications such as lab-on-a-chip devices, where
evaporation is generally undesirable, as well as evaporative lithography and printed electronics
manufacturing, where evaporation is exploited. The results of the present work provide a
foundation for designing additional experiments to more thoroughly test the model predictions, as
well as for conducting direct numerical simulations to explore phenomena and parameter regimes
beyond the scope of the present model.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2022.140.
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