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Magnetic reconnection is thought to be the dynamical mechanism underlying many
explosive phenomena observed both in space and in the laboratory, although the
question of how fast magnetic reconnection is triggered in such high Lundquist (S)
number plasmas has remained elusive. It has been well established that reconnection
can develop over time scales faster than those predicted traditionally once kinetic
scales are reached. It has also been shown that, within the framework of resistive
magnetohydrodynamics (MHD), fast reconnection is achieved for thin enough sheets
via the onset of the so-called plasmoid instability. The latter was discovered in
studies specifically devoted to the Sweet–Parker current sheet, either as an initial
condition or an apparent transient state developing in nonlinear studies. On the other
hand, a fast tearing instability can grow on an ideal, i.e. S-independent, time scale
(dubbed ‘ideal’ tearing) within current sheets whose aspect ratio scales with the
macroscopic Lundquist number as L/a∼ S1/3 – much smaller than the Sweet–Parker
one – suggesting a new way to approach to the initiation of fast reconnection in
collapsing current configurations. Here we present an overview of what we have
called ‘ideal’ tearing in resistive MHD, and discuss how the same reasoning can be
extended to other plasma models commonly used that include electron inertia and
kinetic effects. We then discuss a scenario for the onset of ‘ideal’ fast reconnection
via collapsing current sheets and describe a quantitative model for the interpretation
of the nonlinear evolution of ‘ideally’ unstable sheets in two dimensions.
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1. Introduction
Magnetic reconnection is a process whereby magnetic energy is converted locally

into particle heat and kinetic energy via some mechanism of effective magnetic
dissipation that allows for a change of magnetic field line connectivity. Magnetic
reconnection is ubiquitous in space and laboratory plasmas, and is believed to be at
the heart of many observed phenomena, such as solar flares (Masuda et al. 1994; Su
et al. 2013), geomagnetic substorms (Angelopoulos et al. 2013) and sawtooth crashes
in tokamaks (Kadomtsev 1975; Yamada et al. 1994). Apart from these transient events,
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reconnection is also invoked in coronal heating models in different extensions of the
nanoflare scenario (Parker 1988; Rappazzo et al. 2008), and plays a fundamental role
during dynamo processes in primordial galaxy clusters (Schekochihin et al. 2005).

Several phenomena in which magnetic reconnection is thought to take place exhibit
an explosive character, in the sense that magnetic energy can be stored over a long
period of time and then suddenly released on a time scale comparable with the
macroscopic ideal Alfvén time τA = L/vA, where L is the macroscopic length of
the system and vA = B0/

√
4πρ0 the Alfvén speed defined through typical values of

magnetic field magnitude B0 and plasma mass density ρ0. For many years, studies of
reconnection stumbled on understanding how fast reconnection is triggered. The major
difficulty came from the fact that the traditional models of reconnection stemming
from the original Sweet–Parker mechanism (Parker 1957; Sweet 1958) or from the
instability of macroscopic current sheets (Furth, Killeen & Rosenbluth 1963), dating
back to the 1960s, were clearly inadequate to explain the observed sudden release
of magnetic energy, as such models predict magnetic reconnection time scales –
scaling with a positive power of S, where S= LvA/η' 106 − 1014 is the macroscopic
Lundquist number, η being the magnetic diffusivity – that are far too long to be of
any consequence. Several attempts involved locally enhancing the value of diffusivity
by invoking anomalous resistivities to make the Sweet–Parker current layer transition
to the fast, steady-state Petschek configuration (Petschek 1964). However, as discussed,
e.g. in Shibata & Tanuma (2001), these also require the formation of extremely small
scales in the plasma.

The aim of the present review is to discuss how the difficulty of apparently slow
reconnection has been overcome, following the works of Biskamp (1986), studies of
the plasmoid instability (Loureiro, Schekochihin & Uzdensky 2007) and the fractal
reconnection scenario introduced by Shibata & Tanuma (2001), with emphasis on
research carried out by the present authors and in particular on the ‘ideal’ tearing
scenario introduced in Pucci & Velli (2014). Magnetic reconnection has been the
subject of intense research both theoretically and observationally, and in very different
physical as well as astrophysical contexts. A complete review on the subject would
go well beyond the purpose of the present paper. Here we have tried to include most
of the recent papers pertaining to fast reconnection, although the discussion may be
brief. A longer review can however be found for instance in Yamada, Kulsrud & Ji
(2010).

Over the past decades a vast body of literature has focussed on what might
accelerate reconnection speed up to realistic values. For the most part, these works
approach the problem by studying (two-dimensional) magnetic reconnection at a single
X-point, usually imposed by deforming an initially thick current sheet. The ensuing
dynamics at the X-point (sometimes called the developmental phase) eventually leads
to an inner current sheet (or diffusion region), in which reconnection is studied
by assuming a steady state (or asymptotic phase) is reached. Two major scenarios
for onset of fast reconnection have emerged in this way (see also Daughton &
Roytershteyn 2012; Cassak & Drake 2013; Huang & Bhattacharjee 2013; Loureiro &
Uzdensky 2015).

In resistive magnetohydrodynamics (MHD), numerical simulations show that slowly
reconnecting current sheets reminiscent of the Sweet–Parker model (SP) arise from
the X-point. The basic SP configuration is shown in figure 1: the current sheet has
an inverse aspect ratio aSP/L ∼ S−1/2, maintained by a continuous inflow of plasma
at speed uin � vA which convects the upstream magnetic field B0 into the diffusion
region, and by an outflow at speed uout ' vA which drags the reconnected magnetic
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FIGURE 1. Sweet–Parker model. The diffusion region, in yellow, has an inverse aspect
ratio aSP/L. Coloured arrows represent the plasma flow into and outward the diffusion
region.

field lines outwards, along the sheet; the resulting Alfvén-normalized reconnection
rate is uin/uout ∼ aSP/L ∼ S−1/2, assuming the steady-state configuration remains
stable. Once computational power allowed to study systems at larger values of S
(S & 104), it became clear that SP-like sheets become unstable to tearing (Biskamp
1986, 2000), the latter inducing the growth of a large number of magnetic islands
(plasmoids). In this regard, linear stability analysis shows that SP sheets are highly
unstable to a super-Alfvénic tearing instability – with a growth rate scaling with a
positive power of S, γSPτA ∼ S1/4 – as convincingly proved by Loureiro et al. (2007),
Loureiro, Schekochihin & Uzdensky (2013). Though such an instability demonstrates
the possibility of fast reconnection already in resistive MHD, Pucci & Velli (2014)
pointed out that the growth rate, which diverges in the ideal limit S → ∞, poses
consistency problems, since magnetic reconnection is prohibited in ideal MHD. In
other words, they questioned the realizability of current sheets with excessively large
aspect ratios, such as SP, which, when taking the ideal limit starting from resistive
MHD, reach an infinite growth rate, i.e. become unstable on time scales which at
large enough S are much shorter than any conceivable dynamical time required to
set-up the corresponding configuration. Although this issue of reconnection speed was
implicitly recognized in Loureiro et al. (2007) and many other works, (Bhattacharjee
et al. 2009; Cassak & Drake 2009; Samtaney et al. 2009; Huang & Bhattacharjee
2010; Uzdensky, Loureiro & Schekochihin 2010; Loureiro et al. 2012; Ni et al.
2015) the discussion of the onset of fast tearing has mostly remained anchored to the
Sweet–Parker sheet framework.

Alternatively, it has been suggested that if ion scales are of the order of, or larger
than, the thickness of the SP sheet, then two-fluid effects enhance the reconnection
rate via what is usually called Hall-mediated reconnection. It was already known
that the Hall term in Ohm’s law increases the reconnection speed because of the
excitation of dispersive waves, e.g. whistler waves (Terasawa 1983; Mandt, Denton
& Drake 1994; Biskamp, Schwartz & Drake 1995; Rogers et al. 2001). To be more
specific, it was argued, on the basis of numerical simulations, that large reconnection
rates should be achieved during the nonlinear asymptotic phase, regardless of the
mechanisms allowing reconnection (e.g. resistivity or electron inertia in collisionless
reconnection), essentially because the Hall term modifies the structure of the diffusion
region that becomes localized at scales of the order of the ion inertial length
(Shay et al. 1999, 2004; Cassak, Shay & Drake 2005; Drake, Shay & Swisdak
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2008; Shepherd & Cassak 2010). However, there is still no general agreement on
whether and how the reconnection rate depends on the system size L and plasma
parameters such as the ion and electron inertial length di and de or resistivity, in the
presence of the Hall term (Porcelli et al. 2002; Battacharjee, Germaschewski & Ng
2005). More recent numerical results from PIC (particle in cell) simulations have also
cast doubt on the necessity of exciting dispersive waves to reach higher reconnection
rates (Liu et al. 2014). The robustness of the steady-state configuration reached
during the asymptotic phase, and seen in several numerical studies (Birn et al. 2001;
Shepherd & Cassak 2010), has been called into question by both PIC and Hall-MHD
simulations employing open boundaries or larger system sizes (Daughton, Scudder &
Karimabadi 2006; Klimas, Hesse & Zenitani 2008; Huang, Bhattacharjee & Sullivan
2011). These works provide some evidence that a final steady-state configuration
may not always exist in Hall reconnection, and that the thin sheet constituting the
diffusion region tends to stretch along the outflow direction until it becomes unstable
to generation of secondary plasmoids. This would point to a strong analogy with the
dynamics of thin current sheets found in resistive MHD.

Linear analysis of the tearing mode in resistive MHD proves that there exists a
critical current sheet with an inverse aspect ratio ai/L ∼ S−1/3 (Pucci & Velli 2014),
hence much larger than the SP one, that separates slowly reconnecting sheets (growth
rate scaling with a negative power of S), from those exhibiting super-Alfvénic
plasmoid instabilities (growth rate diverging with S), and that this has the proper
convergence properties to ideal MHD: critical current sheets are unstable to a
tearing mode growing at a rate independent from S and, in this sense, the instability
is ‘ideal’. The existence of ‘ideal’ tearing therefore implies the impossibility of
constructing any configuration corresponding to sheets thinner than critical, such as
the paradigmatic Sweet–Parker sheet, suggesting a different route to the triggering
of fast reconnection. At the same time, as we shall see, reasoning in terms of the
rescaling arguments provides a clear predictive pathway to the critical events involved
in a dynamics that will trigger fast reconnection, providing an alternative framework
within which the many and different results previously obtained in simulations may
be reinterpreted. It is worth mentioning that one of the major difficulties in this kind
of numerical simulation concerns achieving sufficiently large Lundquist numbers. At
the intermediate Lundquist numbers usual to MHD simulations, say S ' 104 − 106,
the SP sheet is at most 10 times thinner than the critical current sheet predicted by
the ‘ideal’ tearing theory. Moreover, the possible presence of plasma flows along
the current sheet tends to stabilize the tearing mode (Bulanov, Syrovatskiı̌ & Sakai
1978), inducing the formation of more elongated current sheets, that is, of layers
having inverse aspect ratios smaller than S−1/3 (in the resistive case). Therefore, with
the Lundquist number not sufficiently large, the distinction between ‘ideal’ tearing
framework and SP-plasmoids might be hard to observe, although the departure from
the SP-plasmoid framework should become increasingly obvious with increasing S.

Throughout this review we summarize and complement recent results stemming
from the ‘ideal’ tearing idea, obtained from both linear theory and nonlinear numerical
simulations, providing a coherent perspective on recent studies and their relation to
previous models: ‘ideal’ tearing can explain the trigger of fast reconnection occurring
on critically unstable current sheets and can provide a guide – at least in two
dimensions – to the nonlinear evolution with a model that describes the different
stages of its evolution. Although we focus mainly on the resistive MHD description
of the plasma, the ‘ideal’ tearing idea can be extended to other regimes, such as
two fluid, Hall-MHD and so on to completely kinetic ones, providing a unified and
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FIGURE 2. Tearing mode instability. Coloured arrows represent the perturbed plasma flows
into and outward the X-point.

self-consistent framework for the onset of fast reconnection. In this paper we briefly
discuss the application to simple kinetic models of collisionless reconnection.

The paper is organized as follows: in § 2 we summarize the theory of the tearing
mode instability in its traditional form, in order to prepare the ground for the ‘ideal’
tearing, that we discuss in § 3; in § 4 we approach the problem of the trigger of fast
reconnection and we propose a new scenario relying on the ‘ideal’ tearing; in § 5 we
show that the trigger of fast reconnection via ‘ideal’ tearing can describe the evolution
of a disrupting current sheet during its different nonlinear stages, characterized by a
recursive sequence of tearing instabilities, and we compare our results with previous
existent models in § 6; a final summary and discussion are deferred to § 7. For the
sake of clarity, we mention here that in §§ 2 and 3 we show results that have been
obtained from linear theory by solving numerically the system of ordinary differential
equations of the eigenvalue problem of the tearing mode, with an adaptive finite
difference scheme based on Newton iteration (Lentini & Pereira 1987); in §§ 4 and 5
we show results obtained from 2 and 1/2 dimensional, fully nonlinear resistive MHD
simulations.

2. Background: the tearing mode instability
Magnetic reconnection can arise spontaneously within current sheets as the outcome

of an internal tearing instability when the non-ideal terms in Ohm’s law, resistivity
in our case, are taken into account. Tearing modes have been extensively studied
in the simpler case of an infinite (one-dimensional) sheet both in the linear (Furth
et al. 1963) and nonlinear (Rutherford 1973; Waelbroeck 1989) regime. Below, we
briefly summarize the basic properties of the instability, obtained from linear analysis
in the resistive MHD framework. We assume, as usually done, an incompressible,
homogeneous density plasma.

Tearing modes are long-wavelength modes, that is, unstable perturbations have
wavelengths larger than the shear length (or thickness) a of the equilibrium magnetic
field B. Such unstable modes lead to the growth of magnetic islands via reconnection
at the magnetic neutral line, or, more generally, on ‘resonant’ surfaces where k · B= 0,
k being the wave vector of the perturbation along the sheet (figure 2). Instability
grows on a time scale ∼1/γ that is intermediate between the dissipative time of the
equilibrium magnetic field, τη = a2/η, and the Alfvén crossing time τ̄ = a/vA based
on the thickness a. It is worth noting that since MHD does not have any intrinsic
scale, lengths are traditionally normalized to the thickness a of the sheet – differently
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(a) (b)

FIGURE 3. Tearing eigenfunctions for S= 106 and ka= 0.8 (small ∆′): magnetic field flux
function ψ (a) and velocity field streamfunction φ (b).

from the SP model in which, instead, L is the macroscopic length – whereas time
is normalized to τ̄ . For the sake of clarity, we therefore label with an overbar the
quantities defined through the current sheet thickness, τ̄ = a/vA and S̄= avA/η.

Since resistivity is negligible (or rather S̄−1 � 1) everywhere except close to the
resonant surface, tearing modes exhibit a quasi-singular behaviour in a small boundary
layer of thickness δ, the inner diffusion region, in which the perturbed magnetic and
velocity fields exhibit sharp gradients, and where reconnection can take place. Out of
the inner region, where resistivity can be neglected, perturbations smoothly decay to
zero far from the resonant surface. An example of the eigenfunctions of the magnetic
flux and velocity streamfunctions ψ and φ at S̄ = 106 is shown in figure 3. In this
case, the plotted eigenfunctions correspond to a Harris current sheet equilibrium,
which is the one considered most in the literature and has a magnetic field profile
B= B0 tanh(x/a)ŷ. In perfectly antisymmetric equilibria, as the one chosen here, the
eigenfunctions have a well-defined parity: the magnetic flux function is symmetric in
x, being proportional to the reconnected magnetic field component at the neutral line,
whereas the velocity streamfunction, proportional to the perturbed plasma velocity
perpendicular to the sheet, is antisymmetric. As can be seen in figure 3(b), the plasma
strongly accelerates while flowing into the inner layer, with the streamfunction ideally
diverging as φ/(avA) ∼ a/x for |x/a| → 0. Resistivity becomes non-negligible close
to the neutral line, regularizing the singularity: inside the inner layer, the plasma
decelerates to the stagnation point, where it deflects outwards along the sheet, while
the magnetic field diffuses and reconnects.

Instability is fed by the equilibrium current gradients which enter through the
parameter ∆′(k), or for brevity ∆′. The latter is defined as the discontinuity of the
logarithmic derivative of the outer flux function when approaching the singular layer,
and is a measure of the free energy of the system. The ∆′ parameter defines the
instability threshold condition, instability occurring only when ∆′ > 0 (Furth et al.
1963; Adler, Kulsrud & White 1980). For a Harris current sheet ∆′a= 2[(ka)−1− ka],
so that the unstable modes have wave vector satisfying ka< 1.

The ∆′ parameter also controls the linear evolution. There are indeed two regimes
that describe the unstable spectrum depending on the value of ∆′δ. One is the so
called constant-ψ regime, traditionally referred to as tearing mode or small ∆′ regime
(Furth et al. 1963). The other one is the non-constant-ψ regime, or large ∆′, also
known as resistive internal kink (Coppi et al. 1976). The difference between these
two regimes is in the ordering of the derivatives of ψ within the inner layer that leads
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to two different limiting cases of the dispersion relation (Ara, Basu & Coppi 1978):
in the small ∆′ regime ψ ′ ∼ ψ ∆′ and ψ ′′ ∼ ψ ∆′δ−1, that is, in the inner region ψ
is roughly constant and can be approximated by ψ(0), provided ∆′δ � 1; at larger
values of ∆′ this approximation breaks down as ψ has stronger gradients, ψ ′∼ψ δ−1

and ψ ′′ ∼ψ δ−2. In particular, the growth rate γ and the inner layer δ scale in these
two regimes as

γ τ̄ ∼ S̄−3/5(ka)2/5(∆′a)4/5,
δ

a
∼ S̄−2/5 (∆′δ� 1), (2.1a,b)

γ τ̄ ∼ S̄−1/3(ka)2/3,
δ

a
∼ S̄−1/3 (∆′δ� 1). (2.2a,b)

The expressions above can also be found as special cases of a general dispersion
relation valid for any given value of the parameter ∆′ (Pegoraro & Schep 1986).

Roughly speaking, the small and the large ∆′ regimes have wave vectors lying to
the right and to the left of the fastest growing mode km, respectively. For example,
in the case of a Harris sheet the two regimes correspond to a region in k-space
kma< ka< 1 in which the growth rate decreases with k (small ∆′) and another one
0< ka< kma where the growth rate increases with k (large ∆′). The scaling relations
for the fastest growing mode can therefore be obtained by matching the two regimes
(Bhattacharjee et al. 2009; Loureiro et al. 2013; Del Sarto et al. 2016). Since the
expressions for γ τ̄ given in (2.1)–(2.2) should coincide at the fastest growing mode,
the wave vector km can be obtained by equating the right-hand side of the growth
rate in the small and large ∆′ regimes, respectively. The scaling of the maximum
growth rate γm follows directly by either the small or the large ∆′ growth rate at
k= km, leading to

kma∼ S̄−1/4, γmτ̄ ∼ S̄−1/2,
δm

a
∼ S̄−1/4 (Fastest growing mode). (2.3a−c)

In figure 4 we show the transition from the small to the large ∆′ regime by plotting
γ τ̄ as a function of S̄ at two different wave vectors, ka= 0.01 (light-blue dots) and
ka = 0.05 (red dots). The dashed lines correspond to the asymptotic scalings of the
growth rate given in (2.1)–(2.3). As can be seen, as the Lundquist number S̄ increases,
the growth rate for a given wave vector moves from large to small ∆′ regimes. The
transition is marked by a break in the slope of γ τ̄ when the given wave vector
corresponds to the fastest growing mode for a specific pair of {γ τ̄ , S̄}k=km , so that the
envelope of the break-points for all k values scales as S̄−1/2, as expected.

3. Stability of thin current sheets and the ‘ideal’ tearing mode
In the traditional theory of tearing mode the current sheet aspect ratio is fixed and

its thickness a is assumed to be macroscopic. On the other hand if a current sheet
becomes thin enough, both the Alfvén time which normalizes the growth rate and
the Lundquist number become smaller and smaller. Therefore, even if the growth rate
appears to be small, it might actually be large when physically calculated in terms of
macroscopic quantities. Indeed, as first seen by Biskamp (1986), the thin SP current
sheet appeared to become unstable to fast reconnecting mode once a critical Lundquist
number Sc of order 104 was passed. It is therefore of interest to consider generic
current sheets whose aspect ratio scales with S as L/a ∼ Sα, where now the scaling
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FIGURE 4. Growth rate γ τ̄ versus S̄: transition from the small to the large ∆′ regime for
two different wave vectors. Dashed lines represent the asymptotic scalings of the large
and small ∆′ regimes, γ τ̄ ∼ S̄−1/3 and γ τ̄ ∼ S̄−3/5, respectively, and of the fastest growing
mode γ τ̄ ∼ S̄−1/2. The latter envelops the slope breaks occurring at the transition between
small and large ∆′.

exponent α (α = 1/2 for SP) is not specified (Bhattacharjee et al. 2009; Pucci &
Velli 2014). For the sake of simplicity, we assume that the background magnetic field
corresponds to a Harris current sheet. Note that current sheets scaling as L/a ∼ Sα
diffuse on a time scale τη that is τη∼ τA S1−2α. Plasma flows are therefore a necessary
part of SP sheet equilibrium, which otherwise would diffuse in one Alfvén time.
Indeed, the SP configuration is based precisely on the requirement that convective
transport of magnetic flux balances Ohmic diffusion. Static equilibria can instead be
constructed for thicker current sheets (α < 1/2), as they diffuse over a time scale
much longer than the ideal one, τη/τA� 1 for S� 1.

The main idea underlying ‘ideal’ tearing is the rescaling of the Lundquist
number, which in the traditional tearing analysis is based on the thickness a of
the (macroscopic) current sheet equilibrium. If instead the length L of the current
sheet is considered as the macroscopic one, then the aspect ratio L/a enters as a free
parameter in the theory by introducing the renormalized quantities τA = τ̄ (L/a) and
S = S̄(L/a). This leads to a maximum growth rate of the tearing instability which
increases with the aspect ratio:

γmτA ∼ S−1/2

(
L
a

)3/2

⇒ γmτA ∼ S−1/2+3α/2. (3.1)

Figure 5(a) shows the normalized maximum growth rate γmτA as a function of the
inverse aspect ratio, that confirms the theoretical scaling given by (3.1).

Equation (3.1) shows that current sheets having an aspect ratio that scales as a
power α of the Lundquist number α > 1/3 are tearing unstable with a maximum
growth rate that diverges for S→∞. In particular, the growth rate of the plasmoid
instability, γ τA ∼ S1/4, is recovered for the scaling exponent of the SP sheet α = 1/2.
This comes from the fact that in their original study Loureiro et al. (2007) neglect
the effects of the equilibrium flows, therefore reducing the calculation to a standard
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(a) (b)

FIGURE 5. (a) Growth rates normalized to the Alfvén time as a function of the inverse
aspect ratio. (b) Dispersion relations at a/L= S−1/3 for different values of S (from Pucci
& Velli 2014).

tearing mode boundary layer analysis (Loureiro et al. (2013) later found that flows
seem to have negligible effect on the tearing mode within a SP sheet, although
this result may be a consequence of the ordering assumptions). Current sheets
at aspect ratios scaling with a power α < 1/3, on the contrary, are quasi-stable,
i.e. γm(α < 1/3) → 0 for S → ∞. When instead α = 1/3, current sheets are
‘ideally’ unstable in the sense that the corresponding maximum growth rate becomes
independent of S, and hence of order unity: as can be seen from figure 5(b),
γmτA → γiτA ' 0.63 for S → ∞ (where the index ‘i’ stands for ‘ideal’). As such,
the aspect ratio L/a∼ S1/3 provides an upper limit to current sheets that can naturally
form in large Lundquist number plasmas, before they disrupt on the ideal time
scale. Numerical simulations of a thinning current sheet, in which the thickness a is
parameterized in time, show that indeed the current sheet disrupts in a few Alfvén
times via the onset of ‘ideal’ tearing, when the critical thickness is approached from
above (Tenerani et al. 2015b), as we will discuss in more detail in § 4.

To summarize, the ideally unstable current sheet has an inverse aspect ratio
ai/L ∼ S−1/3, with the wave vector and inner layer thickness of the fastest growing
mode scaling with the Lundquist number as

kiL∼ S1/6,
δi

L
∼ S−1/2. (3.2a,b)

An interesting point to remark is that the so-called inner diffusion or singular
layer of the ideally unstable current sheet has an aspect ratio which scales with
the Lundquist number in the same way as the SP sheet, δi/L ∼ S−1/2. Yet, it is not
a SP layer, because it does not correspond to a stationary equilibrium solution of
the resistive MHD equations. The associated plasma flows into the X-points and
along the inner sheet itself, ũin and ũout, are increasing exponentially in time together
with the reconnected flux, and their ratio does not follow the SP scaling but rather
ũin/ũout ∼ S−1/3: in this accelerating growing mode the ratio of inflow to outflow
velocity is larger. The latter scaling property can be easily verified by exploiting the
incompressibility condition ũin/δi ∼ ũoutki and (3.2). It is not a coincidence that the
inner diffusion layer of the ideally tearing sheet scales like the SP, since the magnetic
flux ψ must now diffuse and reconnect on the ideal Alfvén time scale τA there, and
the only length scale at which magnetic field diffuses on the Alfvén time is precisely
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δi/L ∼ S−1/2. Stated in another way, within the inner layer we can approximate the
diffusive term in Faraday’s equation with η ψ ′′ ∼ η δ−2 ψ = (S τA)

−1 (L/δi)
2 ψ , which

must balance the growth rate γψ ∼ τ−1
A ψ , yielding δi/L∼ S−1/2.

Although ‘ideal’ tearing has been considered here in the simpler case of resistive
MHD, it provides a general framework for understanding under which conditions
a fast tearing mode can develop. ‘Ideal’ tearing can be extended to include other
physical effects which impact unstable current sheets, some of which are discussed
below.

3.1. Effects of plasma flows on current sheet stability
The tearing mode within thin current sheets has been considered assuming static
equilibria, even though current sheets form together with plasma flows into (inflows,
uin) and along (outflows, uout) the sheet itself. As we have discussed, if α < 1/2 static
equilibria can however be constructed that do not diffuse, or rather that diffuse over
a time scale τη much longer than the ideal time scale. More precisely, inflows have
little effect on the tearing mode if the diffusion rate within the inner reconnective
layer, uin/δ, is negligible with respect to the growth rate (Dobrott, Prager & Taylor
1977), which is indeed the case for the ideal mode.

While equilibrium inflows can be neglected at large values of S, previous
works (Bulanov et al. 1978; Bulanov, Sakai & Syrovatskiı̌ 1979) showed that the
inhomogeneous outflow along the sheet has instead a stabilizing effect on the tearing
mode: outflows may therefore induce the formation of thinner sheets having an
inverse aspect ratio ai/L∼ S−αc , with αc > 1/3.

As discussed heuristically in Biskamp (1986), the tearing mode is stabilized when
the outflow rate Γ0 ∼ uout/L ' vA/L exceeds a fraction of the growth rate, Γ0 > fγm,
and this could explain the empirical critical Lundquist number Sc ' 104 for the onset
of plasmoid instability within sheets having an aspect ratio scaling as SP. The factor
f ' 0.5 takes into account that growth rates deviate from their asymptotic values at
low S. It is possible to extend this argument in order to obtain the scaling exponent
αc for ‘ideal’ tearing in current sheets with outflows (M. Velli, Private communication
2015; Tenerani et al. 2015b). Since γmτA= γiτAS−1/2+3αc/2, where γiτA' 0.63, then the
condition for an S-independent growth rate is given by Γ0 = fγiS−1/2+3αc/2, that leads
to

αc = 2 logµ+ log S
3 log S

. (3.3)

In (3.3), µ= Γ0/( fγi) and in particular the value µ= 10 (Biskamp 1986) yields the
observed αc = 1/2 for S= 104, while, as expected, limS→∞ αc = 1/3.

The impact of flows on the critical aspect ratio, expressed by (3.3), is consistent
with recent numerical results (Tenerani et al. 2015b). Nevertheless, a more rigorous
analysis of the effects of inflow–outflows on the stability of current sheets is
still lacking, and a satisfactory explanation of the empirical stability threshold at
low Lundquist numbers, S 6 104, and its possible dependence on initial/boundary
conditions, remains to be given. Note that outflows should also impact the number
of islands which develop in any given simulation close to the stability threshold.

3.2. Impact of viscosity on the critical aspect ratio
Viscosity is relevant in many astrophysical environments (e.g. the interstellar medium),
in the laboratory, and often in numerical simulations. The question therefore naturally
arises as to how viscosity may impact the ‘ideally’ unstable current sheets.
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FIGURE 6. Growth rate normalized to the Alfvén time versus inverse aspect ratio at
different Prandtl numbers. Stars correspond to the inverse aspect ratio of the viscous
Sweet–Parker (from Tenerani et al. 2015a).

Effects of perpendicular viscosity on tearing modes in both the constant-ψ and
non-constant-ψ regimes have been addressed by many authors in the past, showing
that viscosity reduces the tearing mode growth rate (Bondeson & Sobel 1984; Porcelli
1987; Grasso et al. 2008; Militello et al. 2011). As a consequence, more elongated
current sheets can form in a way similar, in some sense, to what happens in the
presence of outflows. Tenerani et al. (2015a) have shown that for large Prandtl
numbers P= ν/η� 1 (ν is the perpendicular kinematic viscosity) the fastest growing
mode has a growth rate that scales with S, P and the aspect ratio L/a as

γmτA ∼ S−1/2P−1/4

(
L
a

)3/2

(P� 1), (3.4)

while the same scaling given by (3.1) holds for P< 1. In figure 6 we plot some values
of the maximum growth rate as a function of the inverse aspect ratio at different
Prandtl numbers, for S= 1012. From (3.4) it is now possible to infer the scaling with
S and P of the critical inverse aspect ratio, i.e. the one corresponding to an ‘ideal’
growth rate. In this case, the ‘ideally’ unstable current sheet is thinner by a factor
P−1/6 than the one in a non-viscous plasma, and is given by

ai

L
∼ S−1/3P−1/6 (P� 1). (3.5)

We conclude by noting that the Sweet–Parker current sheet in the presence of viscosity
is instead thicker with respect to the inviscid case, aSP/L = S−1/2(1 + P)1/4 (Park,
Monticello & White 1984), whose inverse aspect ratio is indicated by the coloured
stars in figure 6. Therefore, for large Prandtl numbers, P > S2/5, the SP sheet can be
quasi-stable to the tearing mode.

3.3. Collisionless reconnection in the ideal regime
In low-collision regimes where resistivity is effectively negligible, the dominant effects
violating the ideal Ohm’s law are electron inertia and/or anisotropic electron pressure
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tensors. While both can allow magnetic reconnection, the latter usually requires a
kinetic model (Cai & Lee 1997; Scudder et al. 2014), so the electron skin depth
de≡ c/ωpe∝√me often appears as the only non-ideal term driving collisionless tearing
modes when a fluid description of the plasma is adopted. In this case, the small
parameter is not S−1 but rather the normalized electron skin depth de/L.

As a first step, we have considered the regime in which magnetic reconnection is
induced by electron inertia in the strong guide field limit. The latter can be described
by the Reduced MHD model in which the Hall term in Ohm’s law can be neglected
to the lowest order (Strauss 1976; Schep, Pegoraro & Kuvshinov 1994; Del Sarto,
Califano & Pegoraro 2006). This description is suited, for instance, for tokamak
and magnetically confined plasmas at low-β, where β = 8πP/B2 is the thermal to
magnetic pressure ratio. It has been shown by Del Sarto et al. (2016) that in this
regime the wave vector and growth rate of the fastest growing mode scale with the
system parameters as

kma∼ de

a
, γmτA ∼

(
de

L

)2 (L
a

)3

,
δm

a
∼ de

a
. (3.6a−c)

From the scaling of the maximum growth rate γmτA in (3.6) it follows that onset of
‘ideal’ reconnection, that is when the growth rate becomes independent of the small
non-ideal parameter de/L, occurs once a critical aspect ratio

ai

L
∼
(

de

L

)2/3

(3.7)

is reached. In the limit of strong guide field it is possible to retain also some kinetic
corrections related to electron temperature anisotropies and ion finite-Larmor-radius
(FLR) effects in a simple way (Schep et al. 1994; Waelbroeck, Hazeltine & Morrison
2009), that can be included in the reduced MHD model when approximated to their
dominant gyrotropic contribution (we then speak of gyrofluid models). These models
can be used also at relatively large β values (Grasso, Tassi & Waelbroeck 2010).
Electron temperature effects arise at length scales of the order of the ion sound Larmor
radius ρs = cs/Ωi, cs =√Te/mi being the ion sound speed and Ωi the ion cyclotron
frequency. These additional terms in the generalized Ohm’s law can be seen as the
result of an anisotropic electron pressure contribution (Schep et al. 1994), or as the
Hall term contribution when the diamagnetic drift is retained as a first-order correction
to the E×B electron drift (see also Del Sarto et al. 2016). Ion FLR effects introduce
as a further length scale the ion Larmor radius ρi = vi

th/Ωi, where vi
th is the ion

thermal speed. Depending on the way ion FLR are approximated from kinetic theory,
different gyrofluid models can be obtained, all yielding the same dispersion relation
for finite temperature tearing instabilities when ρ2

τ ≡ ρ2
s + ρ2

i � d2
e (Pegoraro & Schep

1986; Porcelli 1991; Ottaviani & Porcelli 1995). An explicit expression for the fastest
growing mode valid in this regime can be found in Comisso et al. (2013). For a Harris
sheet, when rescaled from the sheet thickness a to the length L, the wavenumber and
growth rate of the fastest growing mode are therefore the following (Del Sarto et al.
2016),

kma∼ de

L

(
ρτ

de

)1/3 L
a
, γmτA ∼

(
de

L

)2
ρτ

de

(
L
a

)3

(ρτ � de). (3.8a,b)
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In this regime, the critical inverse aspect ratio scales with both de/L and ρτ/de as

ai

L
∼
(

de

L

)2/3 (
ρτ

de

)1/3

(ρτ � de). (3.9)

In conclusion, kinetic effects increase the linear growth rate by a factor ρτ/de with
respect to the low-β case, as can be seen by comparing the growth rate in (3.6) with
the one including finite temperature effects in (3.8). As a consequence, the critical
inverse aspect ratio turns out to be thicker in the latter case by a factor scaling as
(ρτ/de)

1/3 (cf. (3.7) and (3.9)).

4. The trigger problem

Observations show that many explosive phenomena usually display an initial phase
(of long but uncertain duration) during which energy is transferred to and accumulated
in the system in question, followed by an abrupt destabilization process expressed by
an impulsive phase, often attributed to the onset, or trigger, of magnetic reconnection.
During the impulsive phase energy is suddenly released on a fast (ideal) time scale
(of the order of a few τA) in the form of heat, kinetic energy and populations of
accelerated particles. The impulsive phase is followed by main and recovery phases,
whereby energy released becomes more gradual and the system relaxes towards a quiet
configuration (Akasofu 1964; Wesson 1986; Fletcher et al. 2011). Solar flares provide
one of the most spectacular examples in this sense: a prominence can stand for weeks
in the solar corona until it erupts by releasing a huge amount of energy (the flare), of
about 1030− 1032 erg, in a few tens of minutes or hours, depending on their size. The
flare displays an impulsive phase, that can be seen as sudden intensity enhancements
in different wavelengths, especially in the hard X-ray spectrum, lasting usually no
more than a few minutes for the larger events (Ellison 1946; Kane 1974; Ajello et al.
2014).

In the weakly collisional plasmas found in many astrophysical environments, or in
fusion devices, bulk plasma motions tend to form thin current sheets spontaneously
in localized regions (Syrovatskiı̌ 1971; Biskamp 1993). There, the intense currents are
limited only by the extremely small resistivity or by other effects, such as electron
inertia, until they ultimately relax once reconnection is enabled inside these thin
boundary layers. The problem of understanding in which way thin current sheets
form is a complex and rich one, both theoretically and numerically. We therefore
do not go into details, but some recent studies about thin current sheet formation
for configurations relevant to magnetosphere dynamics and the solar corona can be
found for instance in Birn & Schindler (2002), Titov, Galsgaard & Neukirch (2003),
Aulanier, Pariat & Démoulin (2005), Rappazzo & Parker (2013), Hsieh & Otto
(2015).

Whatever the mechanism might be, one can always imagine that, during current
sheet formation, the system evolves through a sequence of similar configurations to
which the linear stability analysis can be applied in order to investigate its properties.
As shown in § 3, the growth rate of the reconnecting tearing mode instability exhibits
a strong dependence on the current sheet aspect ratio, for example in resistive MHD
γ τA∝ (L/a)3/2 (cf. (3.1)). This, together with the large values of the Lundquist number,
or L/de, suggests that the formation of small scales all the way down to the critical
thickness would naturally lead to the trigger of fast reconnection.
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4.1. Scenario
In the following, we will assume a current profile that thins exponentially in time.
Exponentially thinning current sheets are indeed of particular importance, as they are
commonly observed in simulations of solar and stellar coronal heating (Rappazzo &
Parker 2013), as self-similar solutions of X-point collapse (Sulem et al. 1985), as
well as in in situ measurements during the growth phase of substorms in the Earth’s
magnetotail (Sanny et al. 1994), to give some examples.

We therefore assume that the ambient plasma and magnetic fields evolve over a
time scale τc which is determined by ideal plasma motions and hence does not depend
on S. Consider the simpler case of resistive (incompressible) MHD, and take a Harris
current sheet of inverse aspect ratio a/L shrinking on a time scale τc∼a (da/dt)−1 & τA.
The parameter τc thus represents schematically the coupling between the local
dynamics within the current sheet and some external process inducing the thinning
itself. Within this framework, we extend the tearing mode analysis to systems that
are parameterized in time through the evolving aspect ratio (Tenerani et al. 2015b).

An investigation of the disruption of a forming current sheet germane to the
present discussion has been recently published in Uzdensky & Loureiro (2016). Since
the two scenarios differ somewhat, let us briefly comment on the differences here,
although we refer to that paper for more details. Our study focuses on the linear
stage of the tearing instability to provide a possible explanation for the onset of fast
reconnection, using a WKB approach to describe the growth of unstable modes during
the dynamical collapse of the sheet. In this way, we take into account that unstable
modes with a growth rate exceeding τ−1

c can in principle compete in disrupting the
current sheet. Uzdensky & Loureiro (2016), on the other hand, consider arbitrary
time scales for driving the sheet collapse, and start from the assumption that the
linear stage of a mode ends once its growth rate exceeds the driving rate. They then
estimate that the first mode to meet this condition will also be the one dominating
the subsequent nonlinear evolution. They therefore examine the nonlinear regime
to describe the disruption of the current sheet, which in their scenario may occur
also on time scales scaling as a positive power of S. In this sense, they do not
impose restrictions on mode growth times with respect to dissipative coefficients.
Our approach on the other hand focuses precisely on the latter aspect, our framework
being one in which things will occur on the fastest possible times compatible with the
dynamical system in question, and therefore, in analogy for example with turbulence,
we expect the fastest growing modes not to scale with the dissipative coefficients.
So in some sense the approach of Uzdensky & Loureiro (2016) is more general
than ours, but does not investigate in detail whether and under which conditions
the transition to fast reconnection (the trigger) might occur. Other recent interesting
analyses of a similar conceptual reconnection problem, the Taylor’s problem, have
been provided by Comisso, Grasso & Waelbroeck (2015) and Vekstein & Kusano
(2015). They analyse the possible time evolution of an initial macroscopic, stable
current layer which is subject to a finite-amplitude perturbation at its boundaries, and
recognize the role sufficiently fast tearing modes may play in disrupting the current
sheet. We do not discuss that problem here, although it would be interesting to study
how in the asymptotic limit of large S the ‘ideal’ tearing framework affects those
models. Let us focus now on our scenario of an exponentially thinning sheet.

On the basis of the rescaling argument, the growth rates in the small and large ∆′
regimes discussed in § 2 can now be generalized to arbitrary aspect ratios. By taking
∆′a∼ [(ka)−1 − ka] for a Harris sheet, these are given, respectively, by

γ τA ∼ S−3/5
(a

L

)−8/5
(ka)−2/5[1− (ka)2]4/5, γ τA ∼ S−1/3

(a
L

)−2
(ka)2/3. (4.1a,b)
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The fastest growing mode, as already shown in § 3, has the growth rate scaling as

γmτA ∼ S−1/2
(a

L

)−3/2
, (4.2)

whereas the wave vector and thickness of inner diffusion layer scale, respectively, as

kma∼ S−1/4
(a

L

)−1/4
,

δm

a
∼ S−1/4

(a
L

)−1/4
. (4.3a,b)

As the thinning proceeds in time, modes with increasing wave vector k are
progressively destabilized, owing to the traditional instability condition ka(t) < 1
in a Harris sheet. In this way, each newly destabilized mode lies in the small ∆′
regime and it transitions toward the large ∆′ one as time elapses, by crossing at
some point the fastest growing mode. This can be understood also by looking back
at the plot in figure 4: since S̄≡ S(a/L), if a/L decreases at fixed S, then S̄ decreases
accordingly, so that a given mode shifts from the right to left side of the plot. On the
other hand, only those modes fitting within the current sheet, that therefore satisfy
kL > 2π, can grow. This implies that at the beginning, when a . L, there are only
unstable modes in the small ∆′ regime. This initial stage in turn ends when the
smallest unstable mode, which has a wavelength of the order of the current sheet
length L, k ∼ 2π/L, coincides with km (Uzdensky & Loureiro 2016). This happens
when S−1/4(a/L)−1/4 ' 2π(a/L), or, in other words, when a/L . 0.2S−1/5. At that
point, the fastest growing mode will be always unstable, and hence it will dominate
over both the small and the large ∆′ modes. The initial stage evolving in the small
∆′ regime however does not contribute significantly to the growth of perturbations
so one can consider only the regime given by the fastest growing mode, expressed
by (4.2)–(4.3), to describe the transition to fast reconnection. Indeed, the small ∆′
(as well as the large ∆′) regime has a growth rate that, even if the current sheet is
thinning, goes to zero for S→∞ (according to (4.1)). As a consequence, modes in
that regime cannot grow during a finite interval of time of order of τc. In other words,
the small ∆′ regime corresponds to slow reconnection and it cannot in general provide
the transition to fast reconnection in quasi-ideal plasmas. Assuming a collapse of the
form a(t) = exp(−t/τc), which can be easily generalized to include an exponential
increase of the length L, then the amplitude of the reconnecting magnetic flux ψ is
given by

ψ(t)=ψ(0) exp
(∫ t

0
γ (t′) dt′

)
, (4.4)

where, by neglecting the initial small ∆′ stage (current sheets having a/L> S−1/5), the
integrand is given by

γ (t)= γm(t)= 1
τA

0.63 S−1/2

[
exp

(
t
τc

)]3/2

. (4.5)

Expressions (4.4)–(4.5) yield

ψ(t)=ψ(0) exp
[

2τc

3
0.63 S−1/2(e3t/(2τc) − 1)

]
, (4.6)

that can be approximated as follows,

ψ(t)'ψ(0)eγm(0)t, if t� τc 2/3, (4.7)
ψ(t)'ψ(0)eγm(t)2τc/3, if t> τc 2/3. (4.8)
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FIGURE 7. Temporal evolution of a thinning Harris current sheet. The out-of-plane current
density jz is colour coded and white lines represent magnetic field lines.

The onset of the tearing instability roughly takes place when unstable modes have
time to develop, hence at about the time τ∗ such that γm(τ∗)τc ' 1, as can be seen
also from (4.8). In turn, the growth rate rapidly increases while approaching the
critical thickness ai/L∼ S−1/3 from above, so one can easily be convinced that a fast
current sheet collapse naturally drives an explosive transition from a quasi-stable state
– growth rate depending on a negative power of S – to an ideally unstable one.

We have tested such scenario with fully nonlinear MHD simulations in which
a collapse of the current sheet is imposed a priori with τc in the range 1 − 10 τA

(Tenerani et al. 2015b). Figure 7 shows an example of the temporal evolution of
an exponentially thinning Harris sheet initially perturbed by a random noise of
fluctuations. The Lundquist number in these simulations is set to S = 106 and the
Prandtl number to P= 1, so that the scalings of the non-viscous case are not modified
significantly. The in-plane magnetic field is B = B0 tanh[y/a(t)]x̂ and, for numerical
convenience, a thinning of the form a(t) = a0 exp(−t/τc) + a∞(1 − exp(−t/τc))

has been chosen. For the case shown in figure 7 we have fixed a∞/a0 = 0.1, with
a0 = 0.1 L and τc = 4 τA. In figure 8 we show the temporal evolution of a(t) (a) and
of some unstable Fourier modes of ψ at the neutral line y = 0 (b) for the same
simulation. The simulation illustrates that during the linear stage of the instability
(from t' 11 to t' 22 τA) the magnetic field rapidly reconnects in a few Alfvén times
when the critical thickness ai/L∼ S−1/3' 0.01 is approached from above, and that the
current breaks up into a number of magnetic islands Ni that scales as Ni ∼ S1/6 ' 10.
As can be seen from figure 7, the following nonlinear stage is characterized by
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(a)

(b)

FIGURE 8. Temporal evolution of the current sheet thickness (a) and of the amplitude
of some Fourier modes of the flux function ψ at the neutral line (b) of the simulation
shown in figure 7. The dashed line corresponds to the integral given in (4.4) where the
functional form a(t) adopted in the simulation (see text) has been used (from Tenerani
et al. 2015b).

the competition between coalescence of magnetic islands (this can be seen also by
looking at the increasing magnitude of long-wavelength modes, kL = 5 and kL = 1,
in figure 8) and X-point collapse, in a way qualitatively similar to that discussed
in Malara, Veltri & Carbone (1992). We defer more detailed discussions about the
nonlinear evolution of an ‘ideally’ reconnecting current sheet to § 5.

To summarize, in the scenario proposed above the mechanism driving the collapse
(that can be mapped in the developmental phase, or the storage phase) is not specified.
The ambient current sheet thins on a time scale τc which is independent from S and
instability is let to freely evolve from an initial slow phase of reconnection, when the
thickness is larger than critical, to an ideally fast one while approaching the critical
inverse aspect ratio ai/L ∼ S−1/3. Numerical simulations of a thinning current sheet
with τc ' 1− 10 τA show that when approaching the critical inverse aspect ratio from
above magnetic islands significantly grow from the initial noise up to the thickness
of the inner layer of the reconnecting current sheet itself and beyond, during the
nonlinear stage, on a time scale of the order of a few τA. In the model that we have
chosen of an exponential collapse the time needed to form the ideally unstable current
sheet is about τi' (τc/3) ln(S), i.e. it depends very weakly (logarithmically) on S and
allows for a two time scale dynamics. For instance, if τc= 1–10 τA and S= 1012–1014

then τi' 10–100 τA thus one or two orders of magnitude larger than the time expected
for the onset and development of ‘ideal’ reconnection.

Nonlinearities become important when the half-width w of magnetic islands, given
approximately by w ' 2 a

√
ψ/(B0 a) (see, e.g. Biskamp 2000 pp. 82–83), is of the

order of the half-thickness of the inner diffusion region of the reconnecting sheet δm,
right equation (4.3). This condition is met when the perturbation has an amplitude
scaling as ψnl/(B0L)∼ 0.25S−1/2(a/L)1/2. For a critical current sheet ai/L∼ S−1/3 this
estimate yields a nonlinear amplitude ψnl,i/(B0L) ∼ 0.25 S−2/3, and even smaller for
thinner sheets. For example, the Sweet–Parker with aSP/L ∼ S−1/2 has a nonlinear
amplitude of about ψnl,SP/(B0L) ∼ 0.25 S−3/4. In solar active regions B0 ∼ 100 G,
L∼104 km and S'1012, yielding ψnl∼0.25×10−9× (104×100)=0.25×10−3 G km
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FIGURE 9. Blow up of the collapsing current sheet during the nonlinear stage of the
primary ideal tearing instability (from Tenerani et al. 2015b).

with background magnetic flux of about ψ0∼ (B0L)S−1/3∼ 100 G km, for a/L' S−1/3.
Therefore, the initial perturbation should be about 0.25× 10−5 times smaller than the
background. The duration of the linear phase depends on both the initial noise level
and the growth rate of the instability (and it becomes shorter and shorter with S for
sheets thinner than critical). It is certainly clear that once the ‘ideal’ instability limit
is approached the duration of the linear phase may be extremely limited. Nonetheless
if the linear theory is thought of as providing a trigger for faster, nonlinear dynamics,
as we will discuss in the next section, the ‘ideally’ unstable aspect ratio remains
an upper limit for laminar current sheets. It is reasonable to expect that an initial
nonlinear noise would lead to the disruption of the current sheet, and to a turbulent
regime, on ideal time scales via the growth of resonant (most unstable) modes. In
this regard a detailed study requires numerical simulations at different nonlinear noise
levels in some sense generalizing the paper by Matthaeus & Lamkin (1985).

5. Recursive reconnection: the ‘fractal’ reconnection model revised
X-points arising from a tearing instability at the largest wavelengths, i.e. far

from the small ∆′ regime, collapse into an elongated current sheet during the early
nonlinear stage (Waelbroeck 1989; Jemella et al. 2003). In this respect, nonlinearities
of the tearing mode provide a self-consistent mechanism for current sheet formation to
which the scenario discussed in § 4 can in turn be applied, on the basis of similarity
and rescaling of length and time scales. This simple idea led Shibata & Tanuma
(2001) to propose a phenomenological ‘fractal reconnection’ model for flares, that we
revisit here in light of the ‘ideal’ tearing scenario.

In general, it is observed that if the aspect ratio of the secondary current sheet
becomes large enough, then the latter becomes unstable to secondary tearing
generating secondary plasmoids (Malara et al. 1992; Loureiro et al. 2005). This
can be seen in the last panel of figure 7 and in a blow-up of one of the secondary
current sheets, displayed in figure 9, the latter obtained from a similar simulation
with S= 106, P= 1, τc= τA, a∞/a0= 0.1 and a0= 0.1 L. A number of past numerical
and theoretical studies have addressed the problem of the transition from the laminar
reconnection, proper of the early nonlinear stage, to the subsequent highly unsteady
one, characterized by intermittent generation of plasmoids within the sheet itself,
bearing faster average reconnection rates (Lapenta 2008; Bhattacharjee et al. 2009).
The Sweet–Parker paradigm has been constantly invoked in the interpretation of the
nonlinear evolution – both to explain the instability onset within the laminar current
sheet, and to model the following fully nonlinear plasmoid-dominated stage (Loureiro
et al. 2005; Bhattacharjee et al. 2009; Cassak & Drake 2009; Daughton et al. 2009;
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(a) (b)

(c)

FIGURE 10. Details of the time evolution of the secondary current sheet shown in figure 9.
(a,b) Plot of the intensity of the out-of-plane current density jz along ((a), at y/L= 0) and
across ((b), at x/L= 3.15) the sheet; the current half-length L1 increases (exponentially) in
time whereas its half-thickness a1 is approximately constant, a1 ' L 0.0015. (c) (adapted
from Tenerani et al. 2015b): time evolution of the inverse aspect ratio a1/L1 (blue dots)
and of the length L1/L (green dots) of the sheet; we plot for reference the thresholds
given by the ‘ideal’ tearing (red dotted line), the viscous Sweet–Parker (light blue dotted
line), and the corrected-flow ‘ideal’ threshold (dashed and dot-dashed black lines), the
latter according to (3.3).

Huang & Bhattacharjee 2010; Uzdensky et al. 2010; Ali, Jiquan & Kishimoto 2014).
However, the onset of fast reconnection may take place at smaller aspect ratios for
a given Lundquist number: in particular, ‘ideal’ tearing predicts a different instability
criterion and different scaling laws for the dependence on (macroscopic) quantities L
and S, which, when the possible effects of flows are taken into account, may provide
a better guide for inspecting the nonlinear evolution.

Recent numerical two-dimensional simulations of ‘ideally’ unstable sheets at
Lundquist numbers S = 106 − 107, have shown that the secondary current sheet
lengthens exponentially at a rate close to the growth rate of the primary tearing
(Tenerani et al. 2015b). This is seen in figure 10, where different panels describing
the time evolution of the secondary current sheet shown in figure 9 are displayed.
The (half) thickness and length of such a sheet is now labelled a1 and L1: (a) shows
the profile of the out-of-plane current density jz(x, y) intensity along the current sheet
at the neutral line y/L= 0 at different times, ranging from the end of the linear stage
of the primary tearing up to the fully developed secondary instability. The latter can
be recognized as the growth of a more intense current maximum in the middle of L1,
surrounded by two local minima, corresponding to two plasmoids, at about t= 19.2τA
(green colour); in (b) we plot a cut of jz(x, y) across the sheet at x/L= 3.15, at the
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FIGURE 11. Hierarchy of tearing modes: plot of the magnetic field component along the
inhomogeneous direction, By, versus y/L at position x/L= 3.15 of the current sheet shown
in figure 9. Black colour corresponds to the primary tearing, the red one to n = 1, and
the blue to n= 2. The inset is a blow up of the magnetic field for n= 1 and n= 2 (from
Tenerani et al. 2015b).

same times. Such a secondary current sheet arises from the inner diffusion layer of
the primary tearing: its thickness has indeed an almost constant value a1/L' 0.0015,
that consistently scales with the macroscopic quantities as a1/L ' δi/L ∼ S−1/2 (see
(3.2)). This can be seen from figure 10(b), for all times before the appearance of
fully developed plasmoids (i.e. t = 19.2τA as mentioned above); in (c) we plot the
time evolution of L1 (green dots), a1/L1 (blue dots) and the threshold conditions for
instability corresponding to the ‘ideal’ tearing (red dotted line), to the viscous SP
(light blue dotted line), and to the flow-modified ‘ideal’ tearing discussed in § 3.1
(black dashed and dot-dashed lines). As can be seen, this current sheet breaks up
during the collapse once it becomes unstable on the local Alfvén time, hence before
the SP aspect ratio is reached and in good agreement with the flow-modified ‘ideal’
tearing (Landi et al. 2015; Tenerani et al. 2015b), finally giving rise to another
thinner sheet (see the green curves in figure 10(a,b). In figure 11 we show the
profile of the magnetic field By(y, x), x/L= 3.15, across the centre of the same sheet
shown in figure 9, at three different times. The magnetic field profile displays a
striking if unsurprising similarity to the tearing eigenfunctions (compare also with
figure 3a), as well as a hierarchical structure: the black colour corresponds to the
magnetic perturbation grown during the primary instability; the red and blue colours
correspond to the first and to the second secondary instability, magnified in the inset.
In particular, note that the red profile as seen in the inset is the same as the black
profile of the main figure. What this means is that each magnetic field perturbation
that will lead to a new sheet grows within the inner diffusion layer of the unstable
mode developed within the previous sheet. This in turn suggests that formation of
ever smaller scales occurs via a recursive process of X-point formation, collapse
and break up, reminiscent of the so-called ‘fractal’ reconnection scenario originally
proposed by Shibata & Tanuma (2001), that can be accounted for by the ‘ideal’
tearing instability.
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Recursive models have been introduced for describing the different stages of such
sublayer formation (sometimes also referred to as the multiple X-point reconnection
stage) and how many plasmoids are generated during the fully nonlinear evolution
(Daughton et al. 2009; Huang & Bhattacharjee 2010; Uzdensky et al. 2010; Ji &
Daughton 2011). To this end, it is convenient now to label with an n the (half) length
Ln, thickness an, and the local Lundquist number Sn = (Ln/L) S of the nth current
sheet. Previous models assume that at each step current sheets become unstable
giving rise to smaller ones with length Ln = Ln−1/Nn−1, where Nn is the number of
plasmoids at step n and thickness defined by the SP scaling, therefore an = LnS−1/2

n .
In particular, Ji & Daughton (2011) used a phenomenological scaling for the number
of plasmoids Nn = (Sn/Sc)

β , where β is left as a free parameter, and Sc ' 104 is
the empirical critical Lundquist number for onset of plasmoid instability; such a
scaling describing the number of plasmoids has been commonly adopted by other
authors as well, motivated by the linear theory – although, strictly speaking, the
linear theory as developed does not predict a renormalization to Sc, and therefore
it yields a far larger value for Nn. Those assumptions lead to an infinite hierarchy,
where secondary current sheets never cross the presumed stability threshold Sn . Sc,
and for this reason Ji & Daughton (2011) impose a minimum number of plasmoids
Nmin as a cutoff to find the maximum index of the hierarchy, n∗. Assuming also that
each current sheet becomes unstable, they find that the total, final number N of
plasmoids is N ' (S/Sc)

z, with z ∼ 0.76, 0.96 for n∗ ' 3, 2 and β = 3/8, 0.8. This
heuristic argument then leads to values for the number of plasmoids consistent with
that found directly in numerical simulations (Cassak, Shay & Drake 2009; Daughton
et al. 2009; Huang & Bhattacharjee 2010).

Before illustrating our recursive model, it is worth commenting on the question
of the scaling of the number of islands with the Lundquist number as the plasmoid
instability develops. Numerical simulations appear to have shown a number compatible
with the scaling of the plasmoid instability on Sweet–Parker sheets, although
generally speaking simulations tend to have Lundquist numbers which, already at
the macroscopic scale, are quite close to the critical one for stability threshold (Sc)
(Bhattacharjee et al. 2009; Huang & Bhattacharjee 2010). In this sense it is surprising
that a scaling relationship such as NSP ∼ S3/8, derived under the assumptions that
flows may be completely neglected, might hold true. The same might be said of
the scaling of islands along the sheet once nonlinearities become important, where
results closer to N ∼ S are found (Huang & Bhattacharjee 2010). The reason is that
counting X-points is equivalent to precisely determining the topology of the magnetic
field at very small scales, while the (maximum possible) value of the Lundquist
number S is essentially determined by the number of grid points. A scaling N ∼ S
along an extended one-dimensional sheet implies that the number of islands grows
linearly with resolution. In such a reconnection configuration, the line is the original
central current sheet neutral line: when moving to more general two-dimensional
configurations, very high resolution simulations of fully developed turbulence show
a number of X-points appearing to scale as N ∼ S3/2 (Wan et al. 2013). Following
our previous statement, the corresponding upper limit set by resolution on the scaling
of the number of island would be N ∼ S2, so it appears that the scaling found by
Wan et al. (2013) is reasonable. In other words, as stated by Wan et al. (2013) ‘[. . .]
lack of adequate numerical resolution can easily increase the number of detected
X-points, thus producing non-physical results. Generally speaking, one requires high
spatial resolution, to at least three times the Kolmogorov dissipation wavenumber,
when using the pseudo-spectral approach that we have employed.’
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Here we reconsider the recursive reconnection model, but following more in detail
the ‘ideal’ tearing scenario guided by our numerical results. We point out that a
hierarchy of sublayers form anywhere in regions where currents have room to collapse.
In this regard, boundary conditions may play a fundamental role, if the system size is
not large enough to allow the dynamics to develop freely. Nevertheless, this limitation
is automatically overcome in simulations of ideally unstable current sheets, since the
wavelength of the ideal mode, λi ∼ 2π S−1/6, is much smaller than the length of the
current sheet (approximately given by the size of the simulation domain). Of course,
the collapse of X-points cannot and does not occur uniformly along the sheet, rather,
nonlinear evolution is determined by the competition and interplay between multiple
recursive X-point formation within the most intense currents, and an inverse cascade
of merging plasmoids, as can also be seen by inspection of figure 7. Therefore,
differently from the models discussed above, we apply the recursive idea to a given
secondary current sheet, so that our model leaves the final number of plasmoids
generated undefined. It instead provides a prediction of the total number of steps n∗
and of the time scale of the recursive process itself.

Since tearing is a multi-scale process, in the sense that it involves the formation
of an inner singular layer, we also introduce the thickness of such inner layer δn

of the nth unstable current sheet (for us n > 1), and we define the local Alfvén
time τA,n= (Ln/L) τA. We rely on the following assumptions based on observations of
our simulation results: first, that current sheets are lengthening and that they become
unstable when the local critical aspect ratio is reached; second, we do not make any
assumption on the length Ln, as is done in other recursive models (Shibata & Tanuma
2001; Ji & Daughton 2011), but, on the contrary, we observe that the thickness an

corresponds to the inner diffusion layer of the (n − 1)th tearing, δn−1. These two
requirements translate respectively into

an

Ln
∼ S−1/3

n ,
an

Ln−1
∼ S−1/2

n−1 , (5.1a,b)

where for simplicity we have neglected the stabilizing effect of viscosity and of
plasma flows, but which should be retained for the lower values of Sn (see § 3.1).
Expressions given in (5.1) yield the following scaling laws:

Ln = L S−1+(3/4)n, τA,n = Ln

L
τA, Sn = S(3/4)

n
. (5.2a−c)

Considering typical coronal conditions, for which L' 109 cm, B0' 50 G, the number
density n0'109 cm−3 and the temperature T'106 K, then the macroscopic Lundquist
number is S ' 1013 (Braginkii 1965). The sequences of Ln and of Sn for S = 1013

are represented in figure 12, showing that the formation of microscopic scales occurs
very rapidly. In this case, after a number of steps n∗ ' 4 the local Lundquist number
reaches Sn∗ ' 104, the region close to where one expects to find complete flow-driven
stabilization. The time required to reach this marginally stable state gives an indication
of the time scale for the complete disruption of the original current sheet, and is given
by the time required to trigger the first instability τ0 (τ0 ' τi) plus the time of the
recursive reconnection, that for S= 1013 is about

τ ' τ0 +
n∗∑

n=1

τA,n ' (10− 100)τA + 5× 10−4τA. (5.3)
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(a) (b)

FIGURE 12. Plot of the sequence Ln/L (a) and Sn (b) for S= 1013, see (5.2).

Formation of smaller scales can mediate the transition to a Hall (or kinetic)
reconnection regime, when the ion scales are reached dynamically (Cassak et al.
2005; Daughton et al. 2009; Shepherd & Cassak 2010; Huang et al. 2011). If ion
scales are formed during the recursive reconnection, e.g. an ' di, then different
scalings should be adopted from that moment on. For instance, with the parameters
chosen above as representative of the solar corona, the normalized ion inertial length
turns out to be about di/L' 10−7, which is of the same order of the thickness formed
at the first step, a1/L, for S = 1013. A study including the Hall effect is however
necessary to assess with more precision at which thickness the MHD scalings used
so far are modified. The main point here is that regardless of whether MHD or a
specific kinetic regime is the more suitable model, ‘ideal’ tearing provides a clear
well-defined threshold for the onset of fast reconnection (Del Sarto et al. 2016), so
that (5.2) can be extended to kinetic regimes as well.

6. Comparison with previous models
In spite of the different initial conditions, the evolution of the current sheet formed

during the nonlinear stage of the ‘ideal’ tearing, as shown for instance in figure 9,
is qualitatively reminiscent of, and can be compared to the ‘embedded reconnection’
scenario (Shay et al. 2004; Cassak & Drake 2009), in which the diffusion layer is
embedded within a thicker underlying current sheet. The argument of the embedded
layer led Cassak & Drake (2009) to take into account the increasing Alfvén speed due
to pile up just upstream the inner diffusion layer, and to find in this way the scaling
a1/L1 ∼ S−1/3

1 for onset of instability (in order to avoid confusion, we adopt here our
notation, and S1 = vAL1/η). Nevertheless, their scaling has a different origin and it
stems from the criterion to destabilize a SP sheet, when the local Lundquist number
exceeds the value Sc = 104. Cassak & Drake (2009) assumed that the diffusion layer
ultimately becomes an unstable SP sheet, which however satisfies a1/L1 ∼ S−1/2

up , Sup
being the upstream Lundquist number, defined through the upstream magnetic field
Bup and L1; Bup can be approximated near the neutral line by linearizing the magnetic
field, hence Bup ' B0(a1/a). Direct substitution of Bup into the SP scaling for the
inverse aspect ratio yields the same exponent α = 1/3 for onset of instability. On
the other hand, the ‘ideal’ tearing scaling derives from requiring an S-independent
growth rate from the complete eigenmode analysis of tearing instability, and the
presence of flows modifies the scaling exponent α according to (3.3). For their values
S1 ' 2.5 × 104 − 105 the exponent αc ' 0.48 − 0.46, that give an unstable current
sheet when a1/L1 ∼ S−αc

1 ' 0.007− 0.005. These estimates are in agreement with the
unstable inverse aspect ratios found in the Cassak & Drake (2009) paper.

https://doi.org/10.1017/S002237781600088X Published online by Cambridge University Press

https://doi.org/10.1017/S002237781600088X


24 A. Tenerani, M. Velli, F. Pucci, S. Landi and A. F. Rappazzo

It is interesting to note that the scaling exponent α = 1/3 as an instability
criterion was also derived by Shibata & Tanuma (2001) in the framework of
‘fractal’ reconnection, introduced for the first time by those authors as a possible
phenomenological model for current sheet disruption during solar flares. Based on
the argument of Biskamp (1986), Shibata & Tanuma (2001) searched for a condition
to overcome the stabilizing effect of flows on the tearing instability. They concluded
that, given a current sheet of inverse aspect ratio an/Ln, the maximum growth rate
of the tearing had to exceed the plasmoid evacuation rate Γn ' vA/Ln = 1/τA,n for
the tearing to develop (in the end, effects of flows on the growth rate are not taken
into account in their model). Shibata & Tanuma (2001) can find in this way that
the current sheet must at least have an inverse aspect ratio an/Ln 6 S−1/3

n in order
to become unstable. Again, the result of Shibata & Tanuma (2001) stems from a
different line of thought, as they searched for a maximum growth rate larger than
the inverse of the ideal time τA,n, and not for an ‘ideal’ growth rate, independent
from the Lundquist number. Next, in their ‘fractal’ model the authors assume that the
length for each sublayer corresponds to the wavelength of the fastest growing mode,
i.e. Ln= 2π/kn, that yields a different scaling law for Ln with respect to ours, having
a weaker dependence on n.

7. Summary and discussion

We have given an overview of linear tearing instabilities within thin current sheets
at arbitrary aspect ratios in resistive MHD and discussed some extensions, namely,
Reduced MHD with inclusion of kinetic effects. Theory shows that fast reconnection,
developing on time scales independent of the non-ideal terms in Ohm’s law, sets in at
a critical aspect ratio L/ai that satisfies specific scaling laws with plasma parameters
such as S and de/L. Such scaling laws can be modified by viscosity at large Prandtl
numbers, or by kinetic effects when the inner diffusion layer is of the order of, or
smaller than, ρs and ρi (Pucci & Velli 2014; Tenerani et al. 2015a; Del Sarto et al.
2016). The main result that emerges from these studies is that in the asymptotic
limit S→∞ or de/L→ 0 a violent transition from a stable state (reconnecting over
infinitely long times) to an ideally unstable one has to occur when approaching the
critical thickness ai/L from above. The onset of fast reconnection cannot take place
within current sheets that are thicker than critical, for sufficiently large values of S:
unstable modes at smaller aspect ratios, L/a< L/ai, have growth rates whose values
tend to zero in the asymptotic limit, whereas, precisely at L/ai, the full dispersion
relation γ (k) becomes rapidly peaked around km (cf. for instance, figure 5b), the
‘ideal’ mode being the only surviving one in the asymptotic limit; ‘ideal’ tearing
onset, by breaking up the current on an ideal time scale, prevents the spontaneous
formation of much larger aspect ratio current sheets, such as the Sweet–Parker one.
Fully nonlinear MHD simulations show that the inner diffusion layer of the ideally
reconnecting current sheet evolves during the nonlinear stage into an elongated
secondary current sheet, that in turn becomes unstable to ‘ideal’ tearing at the local
Alfvén time. This process of current sheet formation from of the inner diffusion layer
proceeds in a recursive way at smaller and smaller scales, that can be accounted
for by properly rescaling ‘ideal’ tearing to the local length of the sheet (Landi et al.
2015; Tenerani et al. 2015b), even though an appropriate statistical study of the fully
nonlinear stage has not been completed yet because of the incredibly high resolutions
required to resolve the recursive formation of plasmoids down to the dissipative
scales.
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In the solar corona, where inter-species collisions usually provide the dominant
dissipation mechanism for reconnection, the Lundquist numbers are S ' 1012 − 1014.
For instance, for S= 1013 the critical inverse aspect ratio is ai/L∼ S−1/3' 5× 10−5, i.e.
for a loop structure of length L' 109 cm the critical thickness would be ai ' 500 m,
with an inner layer of about δi ' 3 m, intermediate between the ion inertial length,
di ' 10 m, and the ion Larmor radius, ρi ' 10 cm. Two-fluid effects related to the
Hall term in the generalized Ohm’s law need therefore to be investigated to give a
more realistic description of ideally unstable current sheets. Inclusion of such effects
becomes however necessary when nonlinearities naturally lead to the formation of
microscopic scales, e.g. during recursive reconnection.

A different regime describes the Earth’s magnetosphere, and in particular the
magnetotail, for which a kinetic description is more suitable (Coppi, Laval &
Pellat 1966; Schindler 1974; Vasyliunas 1975; Daughton 1999; Sitnov et al. 2014).
Here, resistive reconnection, due either to inter-specie collisions or to wave–particle
scattering (Coroniti 1985), is usually dominated by reconnection induced by electron
inertia. Assuming values of plasma density n0 ' 0.1 cm−3, electron temperature
Te ' 107 K (for simplicity we consider ions and electrons at the same temperature)
and magnetic field B0 ' 10−4 G, and taking as typical sheet length L' 109 cm, then
the Lundquist number ranges from S ' 1010 (for wave–particle scattering; Eastwood
et al. (2009)) to S' 1015 (for standard collisions), whereas d2

e/L
2' 10−6. The electron

skin depth is about de' 10 km and the ion length scales are ρi' ρs' 300 km, of the
order of the ion skin depth, di'700 km. Ionic scales are not far from the thickness of
the central current sheet, that is observed to thin down to about 1000 km during the
substorm growth phase, and for these parameters the kinetic equation (3.9) predicts
ai ' 400 km. However, what is the effective driving mechanism for collisionless
reconnection, and which are the dominant kinetic effects to be retained, are still
matter of debate and the models that we have discussed can provide only indicative
estimates of the critical thickness there (recall also that they require a strong guide
field, which is rarely observed in magnetotail). The collisionless model that we have
considered includes some kinetic effects, namely, FLR corrections to a dominant
gyrotropic dynamics, but it does not include Landau resonances and the electron
pressure anisotropy, which instead are known to allow reconnection (Coppi et al.
1966; Schindler 1974; Vasyliunas 1975; Cai & Lee 1997). Other kinetic effects
relevant for the magnetotail configuration should be considered as well, including
electron meandering orbits around the neutral line in the absence of strong a guide
field (Sonnerup 1971), or particle temperature anisotropies which are known to
affect reconnection rates (Chen & Palmadesso 1983; Karimabadi, Daughton & Quest
2004; Matteini et al. 2013). In this regard, it is still unclear in which way more
realistic equilibria having a magnetic field component parallel to the shear, that is,
two-dimensional equilibria rather than a simple Harris sheet, impact the stability of
the current sheet itself, and in particular the possible onset of kinetic tearing modes
(Sitnov et al. 2014; Pritchett 2015). These problematics need to be further explored.

In the present discussion we have not considered three-dimensional effects, which
allow new instabilities and may affect both the linear (Daughton 1999; Baarlud,
Battacharjee & Huang 2012) and especially the nonlinear evolution (Dahlburg &
Einaudi 2002; Landi et al. 2008; Daughton et al. 2011) of tearing modes, allowing
a much richer dynamical evolution than in two dimensions. Magnetic islands extend
in the third direction giving rise to flux ropes, that in turn are subject to secondary
ideal instabilities. If the guide field is not sufficiently strong (Dahlburg, Klimchuk &
Antiochos 2005), flux ropes start to braid among themselves, by overcoming in the
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typical two-dimensional evolution characterized by magnetic island coalescence and
X-point collapse. By favouring in this way secondary reconnection within multiple
layers along the ropes, the nonlinear dynamics efficiently drives the system into
a turbulent state. It is therefore of interest to study how our onset scenario, but
especially the nonlinear recursive reconnection model, change in three-dimensions.
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BULANOV, S. V., SAKAI, J. & SYROVATSKIǏ, S. I. 1979 Tearing mode instability in approximately
steady MHD configurations. Sov. J. Plasma Phys. 5, 157–173.

CAI, H.-J. & LEE, L. C. 1997 The generalized Ohm’s law in collisionless magnetic reconnection.
Phys. Plasmas 4, 509.

CASSAK, P. A. & DRAKE, J. F. 2009 The impact of microscopic magnetic reconnection on pre-flare
energy storage. Astrophys. J. Lett. 707, L128–L162.

CASSAK, P. A. & DRAKE, J. F. 2013 On the phase diagrams of magnetic reconnection. Phys.
Plasmas 20, 061207,1–8.

CASSAK, P. A., SHAY, M. A. & DRAKE, J. F. 2005 Catastrophe model for fast magnetic reconnection
onset. Phys. Rev. Lett. 95, 235002.

CASSAK, P. A., SHAY, M. A. & DRAKE, J. F. 2009 Scaling of Sweet–Parker reconnection with
secondary islands. Phys. Plasmas 16, 120702.

CHEN, J. & PALMADESSO, P. 1983 Tearing instability in an anisotropic neutral sheet (no. NRL-MR-
5178). Naval Research Lab Washington DC.

COMISSO, L., GRASSO, D., WAELBROECK, F. L. & BORGOGNO, D. 2013 Gyro-induced acceleration
of magnetic reconnection reconnection. Phys. Plasmas 20, 092118.

COMISSO, L., GRASSO, D. & WAELBROECK, F. L. 2015 Extended theory of the Taylor problem in
the plasmoid-unstable regime. Phys. Plasmas 22, 042109.

COPPI, B., LAVAL, G. & PELLAT, R. 1966 Dynamics of the geomagnetic tail. Phys. Rev. Lett. 16,
1207–1210.

COPPI, B., GALVAO, R., PELLAT, R., ROSENBLUTH, M. N. & RUTHERFORD, P. H. 1976 Resistive
internal kink modes. Sov. J. Plasma Phys. 2, 533–535.

CORONITI, F. V. 1985 Space plasma turbulent dissipation: reality or myth? Space Sci. Rev. 42,
399–410.

DAHLBURG, R. B. & EINAUDI, G. 2002 MHD unstable modes in the 3D evolution of 2D MHD
structures and the dimished role of coalescence instabilities. Phys. Lett. A 294, 101–107.

DAHLBURG, R. B., KLIMCHUK, J. A. & ANTIOCHOS, S. K. 2005 An explanation for the ‘switch-on’
nature of magnetic energy release and its application to coronal heating. Astrophys. J. 622,
1191–1201.

DAUGHTON, W. 1999 The unstable eigenmodes of a neutral sheet. Phys. Plasmas 6, 1329–1343.
DAUGHTON, W. & ROYTERSHTEYN, V. 2012 Emerging parameter space map of magnetic reconnection

in collisional and kinetic regimes. Space Sci. Rev. 172, 271–282.
DAUGHTON, W., ROYTERSHTEYN, V., ALBRIGHT, B. J., KARIMABADI, H., YIN, L. & BOWERS,

K. J. 2009 Transition from collisional to kinetic regimes in large-scale reconnection layers.
Phys. Rev. Lett. 103, 065004.

DAUGHTON, W., ROYTERSHTEYN, V., KARIMABADI, H., YIN, L., ALBRIGHT, B. J., BERGEN, B.
& BOWERS, K. J. 2011 Role of electron physics in the development of turbulent magnetic
reconnection in collisionless plasmas. Nat. Phys. 7, 539–542.

DAUGHTON, W., SCUDDER, J. & KARIMABADI, H. 2006 Fully kinetic simulations of undriven
magnetic reconnection with open boundary conditions. Phys. Plasmas 13, 072101.

DEL SARTO, D., CALIFANO, F. & PEGORARO, F. 2006 Electron parallel compressibility in the
nonlinear development of two-dimensional collisionless magnetohydrodynamic reconnection.
Mod. Phys. Lett. B 20, 931–961.

DEL SARTO, D., PUCCI, F., TENERANI, A. & VELLI, M. 2016 ‘Ideal’ tearing and the transition to
fast reconnection in the weakly collisional MHD and EMHD regimes. J. Geophys. Res. 121,
1857–1873.

DOBROTT, D., PRAGER, S. C. & TAYLOR, J. B. 1977 Influence of diffusion on the resistive tearing
mode. Phys. Fluids 20, 1850–1854.

DRAKE, J. F., SHAY, M. A. & SWISDAK, M. 2008 The Hall fields and fast magnetic reconnection.
Phys. Plasmas 15, 042306.

EASTWOOD, J. P., PHAN, T. D., BALE, S. D. & TJULIN, A. 2009 Observation of turbulence
generated by magnetic reconnection. Phys. Rev. Lett. 102, 035001.

https://doi.org/10.1017/S002237781600088X Published online by Cambridge University Press

https://doi.org/10.1017/S002237781600088X


28 A. Tenerani, M. Velli, F. Pucci, S. Landi and A. F. Rappazzo

ELLISON, M. A. 1946 Visual and spectrographic observations of a great solar flare, 1946 July 25.
Mon. Not. R. Astron. Soc. 106, 500.

FLETCHER, L., DENNIS, B. R., HUDSON, H. S., KRUCKER, S. et al. 2011 An observational overview
of solar flares. Space Sci. Rev. 20, 19–106.

FURTH, H. P., KILLEEN, J. & ROSENBLUTH, M. N. 1963 Finite resistivity instabilities of a sheet
pinch. Phys. Fluids 20, 459–484.

GRASSO, D., HASTIE, R. J., PORCELLI, F. & TEBALDI, C. 2008 Critical for stability of visco-resistive
tearing modes. Phys. Plasmas 15, 072113.

GRASSO, D., TASSI, E. & WAELBROECK, F. L. 2010 Nonlinear gyrofluid simulations of collisionless
reconnection. Phys. Plasmas 17, 082312.

HSIEH, M.-S. & OTTO, A. 2015 Thin current sheet formation in response to the loading and
the depletion of magnetic flux during the substorm growth phase. J. Geophys. Res. 120,
4264–4278.

HUANG, Y.-M. & BHATTACHARJEE, A. 2010 Scaling laws of resistive magnetohydrodynamic
reconnection in the high-Lundquist-number, plasmoid-unstable regime. Phys. Plasmas 17,
062104.

HUANG, Y.-M. & BHATTACHARJEE, A. 2013 Plasmoid instability in high-Lundquist-number magnetic
reconnection. Phys. Plasmas 20, 055702.

HUANG, Y.-M., BHATTACHARJEE, A. & SULLIVAN, B. P. 2011 Onset of fast reconnection in Hall
magnetohydrodynamics mediated by the plasmoid instability. Phys. Plasmas 18, 072109.

JEMELLA, B. D., SHAY, M. A., DRAKE, J. F. & ROGERS, B. N. 2003 Impact of frustrated
singularities on magnetic island evolution. Phys. Rev. Lett. 91, 125002.

JI, H. & DAGHTON, W. 2011 IPhase diagram for magnetic reconnection in heliophysical, astrophysical,
and laboratory plasma. Phys. Plasmas 18, 111207.

KADOMTSEV, B. B. 1975 Disruptive instability in Tokamaks. Sov. J. Plasma Phys. 1, 389–391.
KANE, S. R. 1974 Impulsive (flash) phase of solar flares: hard X-ray, microwaves, EUV and optical

observations. In Coronal Disturbances; Proceedings of the Symposium, Surfer’s Paradise,
Queensland, Australia, September 7–11, 1973 (A75-37351 17-92), pp. 105–141. Dordrecht, D.
Reidel Publishing Co..

KARIMABADI, H., DAUGHTON, W. & QUEST, K. B. 2004 Role of electron temperature anisotropy
in the onset of magnetic reconnection. Geophys. Res. Lett. 31, L18801.

KLIMAS, A., HESSE, M. & ZENITANI, S. 2008 Particle-in-cell simulation of collisionless reconnection
with open outflow boundaries. Phys. Plasmas 15, 082102.

LANDI, S., DEL ZANNA, L., PAPINI, E., PUCCI, F. & VELLI, M. 2015 Resistive
Magnetohydrodynamics simulations of the ideal tearing mode. Astrophys. J. 806, 131,1–8.

LANDI, S., LONDRILLO, P., VELLI, M. & BETTARINI, L. 2008 Three-dimensional simulations of
compressible tearing instability. Phys. Plasmas 15, 012302.

LAPENTA, G. 2008 Self-feeding turbulent magnetic reconnection on macroscopic scale. Phys. Rev.
Lett. 100, 23500.

LENTINI, M. & PEREYRA, V. 1974 A variable order finite difference method for nonlinear multipoint
boundary value problems. Maths Comput. 28, 9811004.

LIU, Y.-H., DAUGHTON, W., KARIMABADI, H., LI, H. & PETER, G. S. 2014 Do disperisve waves
play a role in collisionless magnetic reconnection? Phys. Plasmas 21, 022113.

LOUREIRO, N. F., COWLEY, S. C., DORLAND, W. D., HAINES, M. G. & SCHEKOCHIHIN, A. A.
2005 X-Point collapse and saturation in the nonlinear tearing mode reconnection. Phys. Rev.
Lett. 95, 235003.

LOUREIRO, N. F., SAMTANEY, R., SCHEKOCHIHIN, A. A. & UZDENSKY, D. A. 2012 Magnetic
reconnection and stochastic plasmoid chains in high-Lundquist-number plasmas. Phys. Plasmas
19, 042303,1–5.

LOUREIRO, N. F., SCHEKOCHIHIN, A. A. & UZDENSKY, D. A. 2007 Instability of current sheets
and formation of plasmoid chains. Phys. Plasmas 14, 100703,1–4.

LOUREIRO, N. F., SCHEKOCHIHIN, A. A. & UZDENSKY, D. A. 2013 Plasmoid and Kelvin–Helmholtz
instabilities in Sweet–Parker current sheets. Phys. Rev. E 87, 013102.

https://doi.org/10.1017/S002237781600088X Published online by Cambridge University Press

https://doi.org/10.1017/S002237781600088X


Fast magnetic reconnection 29

LOUREIRO, N. F. & UZDENSKY, D. A. 2015 From the Sweet–Parker model to stochastic plasmoid
chains. Plasma Phys. Control. Fusion 58, 014021.

MALARA, F., VELTRI, P. & CARBONE, V. 1992 Competition among nonlinear effects in tearing
instability saturation. Phys. Fluids B 4, 3072–3086.

MANDT, M. E., DENTON, R. E. & DRAKE, J. F. 1994 Transition to whistler mediated reconnection.
Geophys. Res. Lett. 21, 73–76.

MASUDA, S., KOSUGI, T., HARA, H., TSUNETA, S. & OGAWARA, Y. 1994 A loop-top hard X-ray
source in a compact solar flare as evidence for magnetic reconnection. Nature 371, 495–497.

MATTEINI, L., LANDI, S., VELLI, M. & MATTHAEUS, W. H. 2013 Proton temperature anisotropy
and magnetic reconnection in the solar wind: effects of kinetic instabilities on current sheet
stability. Astrophys. J. 763, 142.

MATTHAEUS, W. H. & LAMKIN, S. L. 1985 Rapid magnetic reconnection caused by finite amplitude
fluctuations. Phys. Fluids 28, 303.

MILITELLO, F., BORGOGNO, D., GRASSO, D., MARCHETTO, C. & OTTAVIANI, M. 2011 Asymmetric
tearing mode in the presence of viscosity. Phys. Plasmas 18, 112108.

NI, L., KLIEM, B., LIN, J. & WU, N. Fast magnetic reconenction in the solar chromosphere mediated
by the plasmoid instability. Astrophys. J. 799, 79.

OTTAVIANI, M. & PORCELLI, F. 1993 Fast nonlinear magnetic reconnection. Phys. Plasmas. 2, 4104.
PARK, W., MONTICELLO, D. A. & WHITE, R. B. 1984 Reconnection rates of magnetic fields

including the effects of viscosity. Phys. Fluids 27, 147–149.
PARKER, E. N. 1957 Sweet’s mechanism for merging magnetic fields in conducting fluids. J. Geophys.

Res. 62, 509–520.
PARKER, E. N. 1988 Nanoflares and the solar X-ray corona. Astrophys. J. 330, 474–479.
PEGORARO, F. & SCHEP, T. J. 1986 Theory of resistive modes in the balloning representation.

Plasma Phys. Contol. Fusion 28, 647.
PETSCHEK, H. E. 1964 Magnetic field annihilation. In The Physics of Solar Flares, Proceedings of

the AAS-NASA Symposium held 28–30 October, 1963 at the Goddard Space Flight Center,
Greenbelt, MD (ed. W. N. Hess), p. 425. National Aeronautics and Space Administration,
Science and Technical Information Division.

PORCELLI, F. 1987 Viscous resistive magnetic reconnection. Phys. Fluids 30, 1734–1742.
PORCELLI, F. 1991 Collisionless m= 1 tearing mode. Phys. Rev. Lett. 66, 425.
PORCELLI, F., BORGOGNO, D., CALIFANO, F., GRASSO, D., OTTAVIANI, M. & PEGORARO, F.

2002 Recent advances in collisionless magnetic reconnection. Plasma Phys. Control. Fusion
44, B389–B405.

PRITCHETT, P. L. 2015 Instability of current sheets with a localized accumulation of magnetic flux.
Phys. Plasmas 22, 062102.

PUCCI, F. & VELLI, M. 2014 Reconnection of quasi-singular current sheets: the ‘ideal’ tearing mode.
Astrophys. J. Lett. 780, L19,1–4.

RAPPAZZO, A. F. & PARKER, E. N. 2013 Current sheets formation in tangled coronal magnetic
fields. Astrophys. J. Lett. 773, L2.

RAPPAZZO, A. F., VELLI, M., EINAUDI, G. & DAHLBURG, R. B. 2008 Nonlinear dynamics of the
Parker scenario for coronal heating. Astrophys. J. 677, 1348.

ROGERS, B. N., DENTON, R E., DRAKE, J. F. & SHAY, M. A. 2001 Role of dispersive waves in
collisionless magnetic reconnection. Phys. Rev. Lett. 87, 195004.

RUTHERFORD, P. H. 1973 Nonlinear growth of the tearing mode. Phys. Fluids 16, 1903.
SAMTANEY, R., LOUREIRO, N. F., UZDENSKY, D. A., SCHEKOCHIHIN, A. A. et al. 2009 Formation

of plasmoid chains in magnetic reconnection. Phys. Rev. Lett. 103, 105004.
SANNY, J., MCPHERRON, R. L., RUSSEL, C. T., BAKER, D. N., PULKKINEN, T. I. & NISHIDA, A.

1994 Growth phase thinning of the near-Earth current sheet during the CDAW 6 substorm. J.
Geophys. Res. 99, 5905–5816.

SCHEKOCHIHIN, A. A., COWLEY, S. C., KULSRUD, R. M., HAMMETT, G. W. & SHARMA, P. 2005
Plasma instabilities and magnetic field growth in cluster of galaxies. Astrophys. J. 629, 139.

SCHEP, T. J., PEGORARO, F. & KUVSHINOV, B. N. 1994 Generalized two-fluid theory of nonlinear
magnetic structures. Phys. Plasmas. 1, 2843.

https://doi.org/10.1017/S002237781600088X Published online by Cambridge University Press

https://doi.org/10.1017/S002237781600088X


30 A. Tenerani, M. Velli, F. Pucci, S. Landi and A. F. Rappazzo

SCHINDLER, K. 1974 A theory of the substorm mechanism. J. Geophys. Res. 79, 2803.
SCUDDER, J. D., KARIMABADI, H., DAUGHTON, W. & ROYTERSHTEYN, V. 2014 Frozen flux

violation, electron demagnetization and magnetic reconnection. Phys. Plasmas 22, 101204.
SHAY, M. A., DRAKE, J. F., ROGERS, B. N. & DENTON, R. E. 1999 The scaling of collisionless,

magnetic reconnection for large systems. Geophys. Res. Lett. 26, 2163–2166.
SHAY, M. A., DRAKE, J. F., SWISDAK, M. & ROGERS, B. N. 2004 The scaling of embedded

collisionless reconnection. Phys. Plasmas 11, 2199–2213.
SHEPHERD, L. S. & CASSAK, P. A. 2010 Comparison of secondary islands in collisional reconnection

to Hall reconnection. Phys. Rev. Lett. 105, 015004.
SHIBATA, K. & TANUMA, S. 2001 Plasmoid-induced-reconnection and fractal reconnection. Earth

Planets Space 53, 473–482.
SITNOV, M., MERKIN, V. G., SWISDAK, M., MOTOBA, T., BUZULUKOVA, N., MOORE, T. E.,

MAUK, B. H. & OHTANI, S. 2014 Magnetic reconnection, buoyancy, and flapping motions in
magnetotail explosions. J. Geophys. Res. Space Phys. 119, 7151–7168.

SONNERUP, B. U. Ö. 1971 Adiabatic particle orbits in a magnetic null sheet. J. Geophys. Res. 76,
8211–8222.

STRAUSS, H. R. 1976 Nonlinear, three-dimensional magnetohydrodynamics of noncircular tokamaks.
Phys. Fluids 19, 134–140.

SU, Y., VERONIG, A. M., HOLMAN, G. D., DENNIS, B. R., WANG, T., TEMMER, M. & GAN, W.
2013 Imaging coronal magnetic-field reconnection in a solar flare. Nat. Phys. 9, 489–493.

SULEM, P. L., FRISCH, U., POUQUET, A. & MENEGUZZI, M 1985 On the exponential flattening of
current sheets near neutral X-points in two-dimensional ideal MHD flow. J. Plasma Phys. 33,
191–198.

SWEET, P. A. 1958 The neutral point theory of solar flares. In Electromagnetic Phenomena in
Cosmical Physics (IAU Symposium), vol. 6, pp. 123–134. Cambridge University Press.
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