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Abstract

We determine the index of five of the seven hypergeometric Calabi–Yau operators that have finite index
in Sp4(Z) and in two cases give a complete description of the monodromy group. Furthermore, we find
six nonhypergeometric Calabi–Yau operators with finite index in Sp4(Z), most notably a case where the
index is one.
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1. Introduction
The 14 hypergeometric fourth-order operators related to mirror symmetry for complete
intersections in weighted projective space have always been treated as a single group,
with very similar properties. An explicit description of monodromy matrices has been
known for a long time. It came therefore as a surprise to us that recently Singh and
Venkataramana [19] showed that in at least three of the 14 cases the monodromy is of
finite index in Sp4(Z). On the other hand, the work of Brav and Thomas [6] showed that
in at least seven of the 14 cases the monodromy is of infinite index. In a further paper,
Singh [20] has shown that the monodromy is finite in the four remaining cases. So
an interesting dichotomy has arisen in the class of Calabi–Yau operators. In this note
we give a precise determination of two of the groups of finite index and determine the
index in three more cases. Furthermore, six nonhypergeometric Calabi–Yau operators
are identified which have finite index in Sp4(Z).

2. The 14 hypergeometric families
The general quintic hypersurface in P4 and the remarkable enumerative properties

of the Picard–Fuchs operator of the mirror family

θ4 − 55x(θ + 1
5 )(θ + 2

5 )(θ + 3
5 )(θ + 4

5 )
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discovered by Candelas et al. [7] stand at the beginning of much of the interest in
the mirror symmetry phenomenon that continues up to the present day. The above
example was readily generalised to the case of smooth Calabi–Yau threefolds in
weighted projective space, producing three further cases [12, 16]. Then Libgober and
Teitelbaum [15] produced mirror families for the other four Calabi–Yau complete
intersections in ordinary projective spaces. A final generalisation consisted of looking
at smooth complete intersection Calabi–Yau threefolds in weighted projective spaces,
leading to a further five cases, [13]. In all these 13 cases the Picard–Fuchs operator is
hypergeometric and takes the form [3]

θ4 − Nz(θ + α1)(θ + α2)(θ + α3)(θ + α4).

It was remarked by several authors that in fact there is an overlooked 14th case,
corresponding to the complete intersection of hypersurfaces of degree 2 and 12 in
P5(1,1,1,1,4,6), which represents a Calabi–Yau threefold with a singularity, [1, 9, 18].
From the point of view of differential equations the 14 hypergeometric equations are
characterised as fourth-order hypergeometrics with exponents 0, 0, 0, 0 at 0 that carry a
monodromy invariant lattice. This leads to a monodromy group that is (conjugate to) a
subgroup of Sp4(Z), and a necessary (and, after the fact, sufficient) condition for this to
happen is that the characteristic polynomial of the monodromy around ∞ is a product
of cyclotomic polynomials, which leads immediately to the 14 cases. We summarise
the situation in Table 1. The last column gives the number as it appears in the table in
the paper by Almkvist, van Enckevort, van Straten and Zudilin (AESZ) [2].

The factor N is introduced to make the power series expansion around 0 of the
holomorphic solution have integral coefficients in a minimal way. We call N the
discriminant of the operator; the critical point is then located at x = 1/N =: xc. In
terms of the exponents α1, α2, α3 = 1 − α2, α4 = 1 − α1, it can be given as (see [5])

N =

4∏
i=1

N(αi)

where
N
( r

s

)
:= m(s), m(s) := s

∏
p|s

s1/p−1,

so
s 2 3 4 5 6 8 10 12

m(s) 22 33/2 23 55/4 2233/2 24 2255/4 2333/2

3. Monodromy matrices

The explicit description of the monodromy of the general hypergeometric operator

(θ + β1 − 1) · · · (θ + βn − 1) − x(θ + α1) · · · (θ + αn)
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Table 1. The 14 hypergeometric cases.

Case N α1, α2, α3, α4 AESZ

P4[5] 55 1
5 ,

2
5 ,

3
5 ,

4
5 1

P4(1, 1, 1, 1, 2)[6] 2436 1
6 ,

1
3 ,

2
3 ,

5
6 8

P4(1, 1, 1, 1, 4)[8] 216 1
8 ,

3
8 ,

5
8 ,

7
8 7

P4(1, 1, 1, 2, 5)[10] 2855 1
10 ,

3
10 ,

7
10 ,

9
10 2

P5[3, 3] 36 1
3 ,

1
3 ,

2
3 ,

2
3 4

P5[2, 4] 210 1
4 ,

2
4 ,

3
4 ,

3
4 6

P6[2, 2, 3] 2433 1
3 ,

1
2 ,

1
2 ,

2
3 5

P7[2, 2, 2, 2] 28 1
2 ,

1
2 ,

1
2 ,

1
2 3

P5(1, 1, 1, 1, 2, 2)[4, 4] 212 1
4 ,

1
4 ,

3
4 ,

3
4 10

P5(1, 1, 1, 1, 1, 2)[3, 4] 2633 1
4 ,

1
3 ,

2
3 ,

3
4 11

P5(1, 1, 1, 2, 2, 3)[4, 6] 21033 1
6 ,

1
4 ,

3
4 ,

5
6 12

P5(1, 1, 2, 2, 3, 3)[6, 6] 2836 1
6 ,

1
6 ,

5
6 ,

5
6 13

P5(1, 1, 1, 1, 1, 3)[2, 6] 2833 1
6 ,

1
2 ,

1
2 ,

5
6 14

P5(1, 1, 1, 1, 4, 6)[2, 12] 21236 1
12 ,

5
12 ,

7
12 ,

11
12 9

has a long history. In his thesis, Levelt [14] showed the existence of a basis where
the monodromies around ∞ and 0 are given by the companion matrices of the
characteristic polynomials

f (T ) =

n∏
k=1

(T − e2πiαk ), g(T ) =

n∏
k=1

(T − e2πiβk ).

However, for our purpose it is natural to work with other bases. First of all, for all our
operators there is a unique Frobenius basis of solutions around 0 of the form

Φ0(x) = f0(x),
Φ1(x) = log(x) f0(x) + f1(x),
Φ2(x) = 1

2 log(x)2 f0(x) + log(x) f1 + f2(x),

Φ3(x) = 1
6 log(x)3 f0(x) + 1

2 log2(x) f2(x) + log(x) f1(x) + f3(x),
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where f0 = 1 + · · · ∈ Z[[x]] and f1, f2, f3 ∈ xQ[[x]]. The basis of solutions

yk(x) :=
1

(2πi)k Φk(x)

is called the normalised Frobenius basis; the monodromy around 0 in this basis is
given by

MF =


1 1 1

2
1
6

0 1 1 1
2

0 0 1 1
0 0 0 1

 .
In this basis the monodromy invariant symplectic form is given by

SF =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0


and the monodromy around xc is a symplectic reflection

v −→ v −
1
d
〈C, v〉C

in a vector C that represents the vanishing cycle and which has the form

C = (d, 0, b, a),

where d := H3 is the degree of the ample generator, b := c2(X)H/24 and a := λc3(X)
are the characteristic numbers of the corresponding Calabi–Yau threefold X, and

λ =
ζ(3)

(2πi)3 .

A further important invariant is the number

k =
H3

6
+

c2(X) · H
12

=
d
6

+ 2b

which is equal to the dimension of the linear system |H|.
The base-change by the matrix

A =


0 0 1 0
0 0 0 1
0 d d/2 −b
−d 0 −b −a


conjugates the matrices MF and NF to

M := AMF A−1 =


1 1 0 0
0 1 0 0
d d 1 0
0 −k −1 1

 , N := ANF A−1 =


1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1
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which are now in the integral symplectic group

Sp4(Z) = {M | Mt · S · M = I}

realised as set of integral matrices that preserve the standard symplectic form

S :=


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 .
This is the form of the generators that can be found in [8].

So the monodromy group G(d, k) of the differential operator is the group generated
by these two matrices M and N. It was observed in [8] that the monodromy group in
fact is contained in a congruence subgroup

G(d, k) ⊂ Γ(d, gcd(d, k))

where Γ(d1, d2), d2 | d1, consist of those matrices A in Sp4(Z) for which

A ≡


1 ∗ ∗ ∗

0 ∗ ∗ ∗

0 0 1 0
0 ∗ ∗ ∗

 mod d1, A ≡


1 ∗ ∗ ∗

0 1 ∗ ∗

0 0 1 0
0 0 ∗ 1

 mod d2.

The index of this group in Sp4(Z) was computed by Erdenberger [8, Appendix] as

|Sp4(Z) : Γ(d1, d2)| = d4
1

∏
p|d1

(1 − p−4)d2
2

∏
p|d2

(1 − p−2),

where the product runs over the primes dividing d1 and d2, respectively.
The parameters (d, k) suggest a natural way to order the list of 14 hypergeometric

cases (see Table 2). Remarkably, this ordering coincides with the one obtained by
using either the first instanton number n1 (rational curves of degree one) or the
discriminant N.

We remark further that the invariants d and k can be expressed directly in terms of
the defining exponents α1, α2 as

d = 4(1 − cos(2πα1))(1 − cos(2πα2)), k = 4 − 2 cos(2πα1) − 2 cos(2πα2),

which can be expressed as saying that

2 − 2 cos(2πα1) and 2 − 2 cos(2πα2)

are roots of the quadratic polynomial X2 − kX + d = 0.
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Table 2. Invariants for the 14 hypergeometric cases.

(d, k) α1, α2 H3 c2 · H c3 n1 N AESZ
(1, 4) 1

12 ,
5

12 1 46 −484 678 816 2 985 984 9

(1, 3) 1
10 ,

3
10 1 34 −288 231 200 800 000 2

(1, 2) 1
6 ,

1
6 1 22 −120 67 104 86 624 13

(2, 4) 1
8 ,

3
8 2 44 −296 29 504 65 536 7

(2, 3) 1
6 ,

1
4 2 32 −156 15 552 27 648 12

(3, 4) 1
6 ,

1
3 3 42 −204 7884 11 664 8

(4, 5) 1
6 ,

1
2 4 52 −256 4992 6912 14

(4, 4) 1
4 ,

1
4 4 40 −144 3712 4096 10

(5, 5) 1
5 ,

2
5 5 50 −200 2875 3125 1

(6, 5) 1
4 ,

1
3 6 48 −156 1944 1728 11

(8, 6) 1
4 ,

1
2 8 56 −176 1280 1024 6

(9, 6) 1
3 ,

1
3 9 54 −144 1053 729 4

(12, 7) 1
3 ,

1
2 12 60 −144 720 432 5

(16, 8) 1
2 ,

1
2 16 64 −128 512 256 3

4. Results

During the last year important progress has been made in understanding the nature
of the monodromy group G(d, k).

Theorem 4.1 [6]. The group G(k, d) has infinite index for the seven pairs

(d, k) = (1, 4), (2, 4), (4, 5), (5, 5), (8, 6), (12, 7), (16, 8).

Theorem 4.2 [19, 20]. The group G(k, d) has finite index for the other seven pairs

(d, k) = (1, 3), (1, 2), (2, 3), (3, 4), (4, 4), (6, 5), (9, 6).

To these results we add

Theorem 4.3. The index |Sp4(Z) : G(d, k)| is given by the following table:

(d, k) (1, 3) (1, 2) (2, 3) (3, 4) (4, 4) (6, 5) (9, 6)

Index G(d, k) 6 10 960 293552 220325 2103652(?) 2831352(?)
Index Γ(d, gcd(d, k)) 1 1 15 245 26325 243152 27345
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The index of the last two entries is at least as big as the number indicated. For easy
comparison we have also included the index of the corresponding group Γ(d,gcd(d, k))
in Sp4(Z).

On the first two groups we can be very precise:

Theorem 4.4.
(i) The group G(1,3) of index 6 in Sp4(Z) is exactly the group of matrices A ∈ Sp4(Z)

with the property the that A mod 2 preserves the quintuple of vectors of (Z/2)4,


0
0
0
1

 ,


0
1
0
1

 ,


0
1
1
0

 ,


1
1
0
0

 ,


1
1
1
0


 .

(ii) The group G(1, 2) of index 10 in Sp4(Z) is exactly the group of matrices
A ∈ Sp4(Z) with the property the that A mod 2 preserves the pair of triples of vectors
of (Z/2)4, 




0
0
1
0

 ,


1
1
0
0

 ,


1
1
1
0


 ,




0
0
1
1

 ,


0
1
0
0

 ,


0
1
1
1



 .

5. Explanation of Theorems 4.3 and 4.4

In order to determine the index of a subgroup in a given group, there is the classical
method of Todd and Coxeter called coset enumeration. This has been developed into
an effective computational tool that is implemented in GAP [10], the main tool for
computational group theory. For details on this circle of ideas we refer to [17].

For this to work one needs a good presentation of Sp4(Z) in terms of generators
and relations. We used a presentation of Sp4(Z) described by Behr in [4], that uses six
generators and 18 relations, and that is based on the root system for the symplectic
group. The six generating matrices are:

xα =


1 1 0 0
0 1 0 0
0 0 1 0
0 0 −1 1

 , xβ =


1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

 , xα+β =


1 0 0 1
0 1 1 0
0 0 1 0
0 0 0 1


x2α+β =


1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

 , wα =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , wβ =


1 0 0 0
0 0 0 −1
0 0 1 0
0 1 0 0

 .
We used results by Hua and Curtis [11], to extract an algorithm that expresses an

arbitrary element A ∈ Sp4(Z) as a word in certain generators, which were then re-
expressed into the Behr generators

xα, xβ, xα+β, x2α+β,wα,wβ.
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For example, the group of generators of G(d, k) can be written as

g1 = xβ,
g2 = (wαwβ)−2x−d

2α+βxk
βx−1

α w−3
α x−1

α (wαwβ)−2.

Hence, if the generators of a finite index subgroup M = 〈A1, . . . , An〉 of Sp4(Z) are
given, we can try to use algorithms from computational group theory for finitely
presented groups to compute the index [Sp4(Z) : M]. In this way the results of
Theorem 4.3 were found.

To understand Theorem 4.4, one has to look a bit closer to the geometry associated
to the finite symplectic group. It is a classical fact that Sp4(Z/2), the reduction of
Sp4(Z) mod 2, is isomorphic to the permutation group S6. A way to realise Sp4(Z/2)
naturally as a permutation group of six objects is as follows. The 15 points of P3 :=
P3(Z/2) correspond to the 15 transpositions in S6; the point pairs having symplectic
scalar product equal to one correspond to transpositions with a common index. The
six quintuples of transpositions all having a common index thus correspond to six
quintuples of points in P3 that have pairwise symplectic scalar product equal to one.
Let us call such quintuples a pentade of points. These six pentades are permuted by
Sp4(Z/2), thus defining an isomorphism with the permutation group S6. A subgroup
fixing such a pentade has index six and is a copy of S5. Furthermore, there are 10
synthemes, that is, ways to divide six elements into two subsets of cardinality three.
These correspond, however, precisely to the pairs of triples of elements of P3 with the
property that the elements have symplectic scalar product one if they belong to the
same triple, and zero otherwise. The stabiliser of such a syntheme is a subgroup of
index 10.

To make this explicit, let us label the elements of P3 by the letters from a to o:

a = (0, 0, 0, 1), b = (0, 0, 1, 0), c = (0, 0, 1, 1), d = (0, 1, 0, 0),
e = (0, 1, 0, 1), f = (0, 1, 1, 0), g = (0, 1, 1, 1), h = (1, 0, 0, 0),
i = (1, 0, 0, 1), j = (1, 0, 1, 0), k = (1, 0, 1, 1), l = (1, 1, 0, 0),

m = (1, 1, 0, 1), n = (1, 1, 1, 0), o = (1, 1, 1, 1).

One verifies at once that the six pentades are given by

1 = {a, d, g,m, o}, 2 = {a, e, f , l, n}, 3 = {b, h, k, n, o},
4 = {b, i, j, l,m}, 5 = {c, d, e, i, k}, 6 = {c, f , g, h, j}.

These are permuted by Sp4(Z/2). Indeed, a transvection mod 2 of an element p ∈ P3,

Tp : v 7→ v + (v, p)p,

acts as a transposition on the set {1, 2, 3, 4, 5, 6}. For example, one verifies that Ta acts
as the transposition (1, 2). For the matrices with d = k = 1 mod 2 one finds

M · a = a, M · d = o, M · g = m, M · g = m, M · m = d, M · o = g,
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so that M maps the pentade 1 to itself, M · 1 = 1. In a similar way we obtain

M · 1 = 1, M · 2 = 2, M · 3 = 6, M · 4 = 5, M · 5 = 3, M · 6 = 4
N · 1 = 5, N · 2 = 2, N · 3 = 3, N · 4 = 4, N · 5 = 1, N · 6 = 6,

so that only the pentade 2 = {a, e, f , l, n} is fixed by both M and N and one readily
verifies that they generate the stabiliser.

The 10 synthemes, given as pairs of triples, are given by

I = {{a, d, e}, {b, h, j}}, II = {{a, f , g}, {b, i, k}}
III = {{a, l,m}, {c, h, k}}, IV = {{a, n, o}, {c, i, j}}
V = {{b, l, n}, {c, d, g}}, VI = {{b,m, o}, {c, e, f }}

VII = {{d, i,m}, { f , h, n}}, VIII = {{d, k, o}, { f , j, l}}
IX = {{e, i, l}, {g, h, o}}, X = {{e, k, n}, {g, j,m}}.

The group Sp4(Z/2) permutes these synthemes, and one verifies that in the case where
d = 1 mod 2 and k = 0 mod 2 the matrix M induces the permutation

(I, IV, II, III) (VII, X, IX, IIIV),

and N the permutation
(II, VI) (III, IX) (VI, X),

so that precisely the syntheme V = {{b, l, n}, {c, d, g}} is preserved.

Remark. There is another set of six objects that Sp4(Z/2) permutes, which reflects the
famous outer automorphism of S6. In the finite symplectic geometry these correspond
to disjoint quintuples of Lagrangian lines. In the notation used above, these are

1′ = {{a, b, c}, {d, h, l}, {e, j, o}, { f , k,m}, {g, i, n}},
2′ = {{a, b, c}, {d, j, n}, {e, h,m}, { f , i, o}, {g, k, l}},
3′ = {{a, j, k}, {b, e, g}, {c,m, n}, {d, h, l}, { f , i, o}},
4′ = {{a, h, i}, {b, d, f }, {c,m, n}, {e, j, o}, {g, k, l}},
5′ = {{a, h, i}, {b, e, g}, {c, l, o}, {d, j, n}, { f , k,m}},
6′ = {{a, j, k}, {b, d, f }, {c, l, o}, {e, h,m}, {g, i, n}}.

The stabiliser of such a pentade of lines is also isomorphic to S5, but is not conjugate
to the stabiliser of a pentade of points. The fact that the monodromy group G(1, 3)
preserves a pentade of points rather than a pentade of lines is an intrinsic property and
is independent of any choices.

6. An observation

The dichotomy between cases of finite and infinite index is rather mysterious. The
finiteness of the index does not seem to correlate to any simple geometrical invariant

https://doi.org/10.1017/S1446788715000014 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788715000014


[10] Some monodromy groups of finite index in Sp4(Z) 57

of the Calabi–Yau. On the other hand, when we plot the 14 cases in a diagram where
black boxes represent the cases of infinite index, a pattern arises:

k

d

There is a tendency for the finite index cases to be lie ‘under’ the infinite cases. Also,
in the cases of finite index, the index increases monotonously with d. Apparently one
may look at the quantity

Λ :=
7k − 2d

24
,

so that the cases with Λ > 1 have infinite index and those with Λ < 1 have finite index.
There are three cases where Λ = 1, (2, 4), (9, 6), (16, 8), of which only (9, 6) has finite
index.

7. Nonhypergeometric operators with finite index

An obvious question to ask is which cases of Calabi–Yau operators from the list
[2] have finite and which infinite index. Many of these are ‘conifold operators’, which
means that the singularity nearest to the origin has exponents 0, 1, 1, 2. In such cases
one can define the invariants d and k, and one is tempted to make the following wild
guess. Let G ⊂ Sp4(Z) be the monodromy group of a conifold Calabi–Yau operator. If
Λ > 1 then the index is infinite, and if Λ < 1 then the index is finite.

Using this heuristic, we went through the list of Calabi–Yau operators and
discovered the following result.

Theorem 7.1. The following nonhypergeometric operators have monodromy of finite
index in Sp4(Z).

AESZ H3 = d k c2 · H c3 Index G(d, k)-index
289 2 2 20 −16 360 5 760
292 3 3 30 −92 6 933 120
241 4 3 28 −60 3 840 122 880
257 4 3 28 −32 122 880 122 880
337 5 4 38 −102 1 3 900 000

33 6 4 24 −144 1 036 800 ?

We included the index of the corresponding G(d, k)-group, as far as we could
determine it. Note that these groups do not belong to the family of 14. We note that

https://doi.org/10.1017/S1446788715000014 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788715000014


58 J. Hofmann and D. van Straten [11]

Table 3. Monodromy matrices for nonhypergeometric cases.

Case Extra matrix Reflection vector

289


−1 4 2 2
−2 5 2 2
−2 4 3 2
4 −8 −4 −3

 (−21/2, 81/2, 21/2, 21/2)

292


0 2 1 2
−2 5 2 4
−1 2 2 2
2 −4 −2 −3

 (−1, 2, 1, 2)

241


−1 2 1 2
−4 5 2 4
−4 4 3 4
4 −4 −2 −3

 (−2, 2, 1, 2)

257


−3 3 1 0
0 1 0 0
−16 12 5 0
12 −9 −3 1

 (−4, 3, 1, 0)

337


1 0 0 0
1 1 0 1
−1 0 1 −1
0 0 0 1

 (1, 0, 0, 1)

33


1 0 0 0
2 1 0 2
−2 0 1 −2
0 0 0 1

 (21/2, 0, 0, 21/2)

the cases appearing here are all rather similar: all operators have, apart from 0 and∞,
two conifold points (exponents 0, 1, 1, 2) and a further apparent singularity (exponents
0, 1, 3, 4).

In Table 3 we list here the monodromy matrices around the extra conifold point in
the basis explained in Section 2. This monodromy transformation is also a symplectic
reflection; we list the corresponding reflection vector.

Case 337 is remarkable in apparently having the full Sp4(Z) as monodromy group.
The index of G(5, 4) is rather large, so in this case the extra monodromy matrix makes
a big difference. On the other hand, for case 257 the extra monodromy transformation
does nothing, as in this case the index is the same as for the group G(4, 3).

We believe that there are many more of cases of finite index in the list; this is
currently under investigation. No geometrical incarnation of these operators on the A-
side of mirror symmetry, that is coming from quantum cohomology, is known to us,
although we believe they should exist.
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Operator AESZ 289 and Riemann symbol

θ4 −24x(400θ4 + 2720θ3 + 1752θ2 + 392θ + 33)
+ 215x2(−4272θ4 − 6288θ3 + 3184θ2 + 1484θ + 177)
+ 2245x3(−4688θ4 + 1536θ3 + 1384θ2 + 336θ + 27)
+ 23652x4(4θ + 1)(2θ + 1)2(4θ + 3)
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Operator AESZ 292 and Riemann symbol

9θ4 −223x(4636θ4 + 7928θ3 + 5347θ2

+ 1383θ + 126) + 29x2(59 048θ4 + 50 888θ3

− 26 248θ2 − 16 827θ − 2205) + 2167x3

(−9004θ4 + 2304θ3 + 2511θ2 + 504θ + 27)
− 22472x4(4θ + 1)(2θ + 1)2(4θ + 3)
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Operator AESZ 241 and Riemann symbol

θ4 −24x(152θ4 + 160θ3 + 110θ2 + 30θ + 3)
+ 2103x2(428θ4 + 176θ3 − 299θ2 − 170θ − 25)
+ 21732x3(−136θ4 + 216θ3 + 180θ2 + 51θ + 5)
− 22433x4(3θ + 1)(2θ + 1)2(3θ + 2)
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Operator AESZ 257 and Riemann symbol

θ4 − 24x(112θ4 + 416θ3 + 280θ2 + 72θ + 7)
+ 212x2(−656θ4 − 896θ3 + 216θ2 + 160θ + 23)
− 223x3(96θ4 + 24θ3 + 12θ2 + 6θ + 1)
− 230x4(2θ + 1)4
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Operator AESZ 337 and Riemann symbol

25θ4 − 3 · 5x(3483θ4 + 6102θ3 + 4241θ2

+ 1190θ + 120) + 2532x2(31 428θ4 + 35 559θ3

+ 243θ2 − 4320θ − 740) − 2835x3(7371θ4

+ 4860θ3 + 2997θ2 + 1080θ + 140)
+ x421338x4(3θ + 1)2(3θ + 2)2
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Operator AESZ 33 and Riemann symbol

θ4 −22x(324θ4 + 456θ3 + 321θ2 + 93θ + 10)
+ 29x2(584θ4 + 584θ3 + 4θ2 − 71θ − 13)
− 216x3(324θ4 + 192θ3 + 123θ2 + 48θ + 7)
+ 224x4(2θ + 1)4
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8. Monodromy group mod N
Using GAP, we can also try to determine the structure of the monodromy group in

Sp4(Z/NZ) for various N. Note that

|Sp4(Z/NZ)| = N10
∏
p|N

(1 − p−2)(1 − p−4).

For the convenience of the reader in Table 4 we list the result of a GAP-computation.
Table 4 contains some redundancies: if N and M have no common factor, the index

in Sp4(Z/NM) is the product of the indices in Sp4(Z/N) and Sp4(Z/M). The table also
shows some remarkable phenomena. The case (1, 4) is of infinite index in Sp4(Z), but
the reductions mod N suggest that the index is 160 when considered 2-adically, that is,
in the group Sp4(Z2). The columns (1, 3), (1, 2), (2, 3) look very similar, but here the
index in Sp2(Z) is indeed 6, 10, 960, respectively. For (5, 5) the numbers probably will
grow further; note the prime number 13 entering in the index. All other columns have
only 2, 3 and 5 appearing in the prime factorisation. The column (9, 6) shows that the
index in the last case of finite index is at least

90 · 113374080 = 10203667200 = 2831352

and might very well be equal to this number.
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