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ON THE IRREDUCIBILITY OF A CLASS OF 
EULER FROBENIUS POLYNOMIALS 

BY 

A. SHARMA AND E. G. STRAUS* 
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which we shall call Euler-Frobenius polynomials were considered and it was con
jectured that these polynomials are irreducible in Q[x] for all odd values of n. 
Since Unr(x) is a monic reciprocal polynomial and degUnr(x)=n—2r+l it is 
clear that for even values of n one of zeros must be (— l) r and thus Hn r(x) must have 
a factor of first degree, JC+(—l) r + 1 . Since all roots of Unr(x) have sign (— l) r and 
all roots are simple it follows that there can be only one integral zero so that for 
even n we get 

n n » = (x+(~ir1)n*r(x) 
where U*r(x) is a reciprocal monic polynomial without rational roots and it 
might be reasonable to conjecture that U*r(x) is also irreducible. 

Eisenstein's criterion. The polynomial 

P(x) = a0x
n+a1x

n~1+ . . . +an_1x+an 

with integral ai is irreducible in Q[x] if there exists a prime p so that 

(2) a0 5É 0 (mod p), ax = a2 = • • • = an_x = an = 0 (mod p) 

(3) a M = É 0 ( m o d / ) . 

With its help we can prove the two cited conjectures in a number of cases. 
We first set j = l — x and use the recursion relation for binomial coefficients to 

transform the last r—1 rows in (1) 

(4) n w » = p w » 

(;) - u " 
(7) \ n - r - l / 

C7-V) 
/ n - r + l \ 
\n-r-l) 

/n-r+l\ 
\n-2r+l) 

https://doi.org/10.4153/CMB-1974-052-x Published online by Cambridge University Press

file:///n-r-l
https://doi.org/10.4153/CMB-1974-052-x


1974] EULER-FROBENIUS POLYNOMIALS 

Thus ifn—r+l=p, a prime, then 
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(5) pn,(y) = 
1 

0 

0 

1 

y 

0 

0 

y\ 

s ± j n " 2 r + 1 (mod p), 

so that condition (2) of Eisenstein's criterion is satisfied. To check condition (3) 
we set j = 0 in (5) and factor out a factor/? from last column. The terms in the last 
column are 

(0= p (P-l)...(P-s+l) , p 
s ( s - l ) - - - l K ' sK y ) 

with 5 = 1 , 2 , . . . , r. Thus 

^ n . r ( 0 ) = 

' 0 - UO 
> (r) - n (7) • 
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Now 
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so that 
r+1 (1+C-ir1) 

- P n . r ( 0 ) = ± ~ 7 7 ^ 0 ( m o d p ) 
p r+1 

for odd r, that is for even degree/?—r. We have thus proved: 

6. THEOREM. Ifr is an odd integer andp a prime greater than r then Uv+r_lr(x) is 
irreducible over Q[x], 

If r is even and n=p+r—l then 

n„.r(i) = P . , /0) = o 
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and 

n w » = (i-x>n;if(x) = yPUy) 

Obviously P*tf(y)= ±yn~2r(modp) so that condition (2) of Eisenstein's Criterion 
is satisfied. In order to verify condition (3) we check the coefficient of y in Pntr(y). 

We get this term by setting all but one of the j ' s in (4) equal to 0 and summing 
the/?—r determinants obtained in this manner. All terms, except those in which the 
y is in the (1, r+ l ) or in the (p—r,p) position, are =0(mod/?2) by the same argu
ment as that showing that Pnr(0)=0(mod p2). Thus 

JPU0)s 

' ( T ) •• 

,• c r ) •• 

• et1) 
| i 

0 

• et;) 1 
• et2) 

0 

1 

0 

a 

0 

0 

0 

1 

-h 

(-i)r+1 

r 

+ 

• G) U J 

' e;2) 
1 0 

0 1 

0 . . . 

0 

. 0 

0 

-i 
* 

(- ' l ) r 

r+l 1 

(mod p) 

https://doi.org/10.4153/CMB-1974-052-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1974-052-x


A. SHARMA AND E. G. STRAUS [June 

(T) - a 
1 , (P-1)!I 

P (r+l)! 

C-iy 

+ l (p -2 ) ! 
2 r! 

(;) - u 
^ 1 
3 A 

( -1 /2 

r+l 

(r+l)!\ 2\ 1 / r \ r - l / / 

= - T T ^ ; f1((i-xr1-(r+iK+x'+i)dx 
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7. THEOREM. Ifr is an even integer and p a prime greater than r, then 

where TL*+r_lr(x) is irreducible over Q[x]. 
Another application of Eisenstein's criterion yields 

8. THEOREM. Ifp is an odd prime then USp_2 fJ>(x) is irreducible in Q[x]. 

Proof. According to (4) we have 

*-*-3p-2.j>\X) ~~ 

1 (I) - ( ' , ) >-* • 
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If we subtract 2 times the i-th column from the (p+i)-th column, i=1,2, . . . , /?—1 
we get 

n32)_2.3)(x) = 

1 

1 

1 

1 

0 

- 1 

0 

• 

. . . 
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0 
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- 1 
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0 
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. . 1 

s (1+x)»-1 (mod p). 
Thus condition (2) of Eisenstein's criterion is satisfied if we set n3j)_2il)(x)=P(r) 

where z=\+x. In order to check condition (3) we have to evaluate P(0)= 
n „ _ , . , ( - l ) (mod/>2). Now 

(9) n3î>_2.J>(-i) = 

1 (î) - ( ' , ) 2 ° - 0 

(?) e;) - L : J 
so that by subtracting the first row from the (p+l)st row and using the fact that 

= ( - i r l £ ( m o d / ) ; i = l , 2 , . . . , j » - l 
i 

pj» \_ 2 = 2 / / 2 p - i \ 1 \ = 2(i+p)(2+j>) • • • (p-i+p)-(p-iy. 
(p-1)! 

= 2p( l+i+ . . . + - 1 - ) == 0 (mod p2) 
\ 2 p—1/ 

/ 2 p \ = 2 p / 2 p - l \ ( _ i y . l 2 p ( m o d / ) 

\ ; / j\j-l/ j 
; = p + l , . . . , 2 p - 2 ; 
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we get from (9) 
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(io) n33,_2>2,(-i) = p 
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(modp2). 

If we subtract twice the i-th column from the (p+i)th column / = 1 , 2, 

and then expand according to the 1st, ( p + 2 ) n d , . . . , last rows we get 
. , / > - ! 

n 3j>—2 . p ( - l ) = 

0 - 1 
0 

-(P-2) 0 
1 
0 

Thus condition (3) is satisfied and the theorem is proved. 

= 1 (mod p) 
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