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Abstract
This paper presents a new algorithm for lidar data assimilation relying on a new forward model. Current mapping
algorithms suffer from multiple shortcomings, which can be related to the lack of clear forward model. In order to
address these issues, we provide a mathematical framework where we show how the use of coarse model parame-
ters results in a new data assimilation problem. Understanding this new problem proves essential to derive sound
inference algorithms. We introduce a model parameter specifically tailored for lidar data assimilation, which closely
relates to the local mean free path. Using this new model parameter, we derive its associated forward model and we
provide the resulting mapping algorithm. We further discuss how our proposed algorithm relates to usual occupancy
grid mapping. Finally, we present an example with real lidar measurements.

Notation
� a subspace of the usual 3D Euclidian space.
x a 3D point where x ∈ �.
t the usual time variable.
o(x) the occupancy field.
K or Kj a 3D spatial cell such that � = ∪N

j=1Kj .
oK and ōK occupied and unoccupied states in cell K .
sK distance traversed by a lidar ray in cell K .
nK number of reflected rays in cell K .
r denotes the direction of a lidar ray in 3D.
D data space.
M model space.
d an outcome of the sample space associated to D.
m an outcome of the sample space associated to M.
D measured outcome on D. Note that D represents a measurement as opposed

to d which represents a variable.
μD and μM homogeneous measures on data and model spaces.
ϕD and ϕM measurable functions on data and model spaces, respectively.
D̃ codomain of ϕD, that is new data space.
M̃ codomain of ϕM, that is new model space.
d̃ an outcome of the sample space associated to D̃.
m̃ an outcome of the sample space associated to M̃.
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μD̃ and μM̃ homogeneous measures on new data and new model spaces.
c speed of light.
{ti}i∈I first arrivals detected by the lidar instrument.
x0 lidar location in 3D.

Note: subscript K (e.g., m̃K ) denotes a constant field value associated to cell K . Throughout the
manuscipt, we use dμM in place of dμM(m) to shorten the length of equations.

1. Introduction

Lidar sensors are accurate, reliable, and highly popular sensors in mobile robotics. Current data assimi-
lation algorithms for onboard sensors mostly focus toward decreasing computation time and improving
localization accuracy for Simultaneous Localization And Mapping (SLAM). As a result, a significant
fraction of these algorithms pay little attention to map parameters and mainly operate in the data space
[1, 2]. For instance, in Lidar Odometry And Mapping (LOAM), lidar data are represented as point clouds
and robot relative location is achieved by directly matching edge and planar features extracted from point
clouds [3]. Recent advances in machine learning algorithms have further accelerated this trend [4, 5].
While relative localization and computation efficiency are essential when dealing with mobile platforms,
quantitative assessment of map parameters can also be valuable. In particular, explicitly using material
parameters requires a well-defined forward model embedding the physics at hand. An explicit link to
the underlying physics can be useful to assess relative robustness of algorithms by comparing mate-
rial parameters used in each algorithm. Mapping material parameters can also be a precious source of
information for autonomous agents operating in unknown complex environments [6, 7] or performing
scientific tasks [8, 9]. The early work of Elfes [10] has been a the forefront of map parameter estimation
using lidar Bayesian data assimilation for occupancy mapping [11, 12, 13]. Unfortunately, occupancy
mapping algorithms suffer from multiple shortcomings, which find their roots in the lack of physical
definition of the occupancy state. The absence of a clear definition of the occupied state of a cell when
using occupancy grid mapping is a good example of such shortcomings. Indeed, how much occupied a
cell needs to be in order to be defined as occupied? Can we define the degree of occupancy of a cell? How
does the occupancy state relate to physical quantities such as dielectric permittivity, reflectivity, mean
free path? These limitations eventually hamper quantitative estimations of map quality. Interestingly,
attempts to overcome occupancy mapping limitations can be found in the literature. In Thrun’s study
[12], the problem is presented as trying to recover the local probability of reflection in place of occu-
pancy. Alternatively, Deschaud et al. [14] introduce a permeability field parameter to account for random
data generation. Levinson and Thrun [15] achieve a substantial improvement through the use of prob-
abilistic infrared reflectivity parameters taking into account measured reflected intensities. In spite of
these attempts, we believe there remains a need for a sound mathematical treatment of quantitative data
assimilation with physics related map parameters.

In data assimilation, the forward model can be understood as a relation between recorded data and
model parameters. Practically, forward models often account for the physics at hand. For instance,
Maxwell’s equations along with constitutive relations allow in theory to relate measured lidar data to
dielectric permittivity and permeability fields. In such a case, dielectric permittivity and permeability
fields correspond to model parameters while Maxwell’s equations and constitutive relations act as the
forward model. This forward model can be labeled as deterministic since, for given dielectric permit-
tivity and permeability fields, if our lidar instrument is perfect, recorded lidar values are fully known.
In practice, using these model parameters and forward model for lidar data assimilation would be unre-
alistic, especially when dealing with onboard real-time computation. Thankfully, it is possible to use
coarser model parameters associated to nondeterministic (or probabilistic) forward models, which are
much less expensive to compute. These model parameters, along with their probabilistic forward mod-
els, allow to recover quantitative information on the environment from lidar recordings. In this paper,
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Figure 1. Schematic configuration of lidar data acquisition using a mobile robot. Red dotted lines
represent lidar rays. The robot record time of flight is associated to each ray. Several voxels associated
to the occupancy field discretization for mapping purpose are displayed in blue. Rover image credit:
NASA/JPL–Caltech.

we propose to use the underlying physics to derive such model parameters and their associated prob-
abilistic forward models. In particular, we show how these model parameters relate to lidar mean free
path and to the concept of local degree of occupancy. Using these new model parameters and forward
models, we introduce a new lidar data assimilation algorithm, which can be used for onboard real-time
mapping. Main advantages of the proposed algorithm lie in its ability to relate model parameters to
physics which, is of paramount importance for quantitative information retrieval, comparison of data
assimilation algorithms, and data fusion.

The paper is divided into three distinct sections. The first section discusses main shortcomings of
classic occupancy grid mapping algorithms. This section illustrates the motivations for this work. The
second section details the underlying mathematical framework, which allows to reconciliate Bayes’ infer-
ence rule and probabilistic forward models with the underlying physics. It offers a clear insight on how
to relate physics to our model parameters in theory. The last section applies results from the third section
to lidar mapping for mobile robots. It introduces a new forward model with new model parameters for
onboard lidar data assimilation. A careful and detailed analysis is provided to understand how our new
approach relates to classic occupancy mapping. An example is further provided to illustrate our results.

2. Overview of Occupancy Grid Mapping

The well-established occupancy grid formalism seeks to assimilate lidar data to deliver a real-time occu-
pancy map of the environment (see Fig. 1). Basic sensor lidar data assimilation algorithm using the
occupancy grid framework can be derived from Bayes’ rule [10, 13, 16]. We introduce the forward
model, also known as the sampling distribution, which is simply described by p(d|o) [17, 18]. It corre-
sponds to the probability to record d from a single lidar ray given an occupancy field o. The occupancy
field is a binary field which, in this framework, lives on a 3D grid. Accordingly, we let oK be the occu-
pied state in cell K and ōK be to the unoccupied state. Using Bayes’ rule, the elementary occupancy
parameter estimation equation can be derived as

p(o|d) = p(o) p(d|o)∫
O p(o) p(d|o) do (1)
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where O is to the set of all possible occupancy fields and p(o) represents our prior information on the
occupancy field. p(o|d) thus corresponds to the well-known inverse sensor model [16]. At this point, all
we need is to specify the forward model p(d|o).

2.1. Defining the occupancy state

Attempts at proper mapping and localization over the years have yielded numerous alternative expres-
sions for the forward model. Surprisingly, in many occupancy algorithms, it is common not to explicitly
provide a physical definition of the occupancy state [16]. As a result, the occupancy is implicitly defined
through its associated forward model p(d|o). However, in practice, forward models are usually derived
using real-world parameters in place of the occupancy model parameter. The lack of clear connection
between forward models and the occupancy field results in a loose definition of the occupancy parame-
ter. Note that this issue is further discussed in Section 3.3. A more formal way to inspect this definition
issue is to study the occupancy state of a cell a posteriori. A cell K is naturally defined as occupied if
its posterior probability value p(oK |{Di}i∈I ) converges toward 1 as the number of (relevant and accurate)
measurements N converges toward infinity. A cell K is unoccupied if its posterior probability value con-
verges toward 0. We introduce the true intrinsic probability α(d|W ), which is the probability to generate
a single lidar measurement d given the real world W during our experiment. This intrinsic probability
is neither p(d|ōK ) or p(d|oK ), but corresponds to the statistical response induced by the true physical
parameters that affects our measurements. We let the data space be D such that d ∈D and Di ∈D for
all i. Then, for each cell K , we can write (see Appendix A for details),

lim
N→inf

p(oK |{Di}i∈I ) = lim
N→inf

(
1 + 1 − p(oK )

p(oK )
AN
)−1

(2)

where

A = exp
(∫

D

α(d|W ) log
p(d|ōK )
p(d|oK )

dμD

)
(3)

As N converges toward infinity, p(oK |{Di}i∈I ) converges to 1 if A < 1, it converges to p(oK ) if A = 1 and
to 0 if A > 1. Thus, the previous equation provides an explicit definition of the occupancy state in cell
K given the cell lidar response. In other words, cell K is occupied if its lidar response α(d|W ) is such
that A < 1. It is possible to show, using Gibbs’ inequality, which α(d|W ) = p(d|oK ) results in A ≤ 1 and
α(d|W ) = p(d|ōK ) results in A ≥ 1. However, this definition is impractical and remains highly abstract.

2.2. Occupancy inverse models versus forward models

Occupancy grid algorithms can further suffer from issues related to the underlying prior used. We discuss
here the occupancy grid algorithm Octomap introduced by Hornung et al. [19], which is widely used in
the mobile robotics community. Octomap relies on an elementary forward model, where p(d|o) is fully
determined by ∪K{p(d|oK ), p(d|ōK )} and where measurements are usually assumed independent. As a
result, p(d|oK ) and p(d|ōK ), which correspond to the probabilities that a single lidar ray measures d if
the cell K state is occupied or unoccupied, respectively, are sufficient to describe the full forward model.
The occupancy state is thus fully determined by both values p(d|oK ) and p(d|ōK ). If we let Ke be the
set of all unoccupied cells and Kf be the set of all occupied cells, we can explicitly write the resulting
occupancy grid forward model,

p(d|o) =
( ∏

K∈K

(1 − p(d|oK ))

) ⎛
⎝ ∏

K∈Ke

(1 − p(d|ōK ))

⎞
⎠ (4)
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If we further assume uncorrelated prior information across each cell, that is p(o) fully determined by
∪K p(oK ), the associated posterior probability given multiple measurements {Di}i∈I is simply,

p(oK |{Di}i∈I ) =
(

1 + 1 − p(oK )
p(oK )

N∏
i=1

p(Di|ōK )
p(Di|oK )

)−1

(5)

where N = dim I is the number of individual lidar measurements. Note that the posterior probability
of each cell characterizes the posterior probability over all cells. It is common to use p(oK |d) (i.e., the
inverse model) in Eq. (5) in place of the forward model. However, Bayes’ rule restricts the possible range
of values of p(oK |d) as

p(oK |d) = p(d|oK ) p(oK )
p(d|oK ) p(oK ) + p(d|ōK ) p(ōK )

(6)

Consequently, setting p(oK |d) arbitrarily can result in unfortunate mis-calculus. To illustrate this, let us
assume we decide to update our prior knowledge on the occupancy value p(oK ) in a given problem.
Assuming we are using the inverse model p(oK |d), it may be very tempting in practice to simply modify
p(oK ) and to not alter p(oK |d). However, should we choose to do so, we would implicitly modify the
forward model (see Eq. (6)). While our prior knowledge p(oK ) should be updated, there is no reason
to update the forward model as well since the physics and the definition of occupancy do not change.
Instead, we should of course update both p(oK ) and p(oK |d) such that p(dK |ōK ) remains unchanged. More
practically, let us assume that our prior is such that p(oK ) = 0.8. Let us further assume that p(oK |d) is fully
characterized by p(oK |dK ) = 0.7 and p(oK |d̄K ) = 0.4. dK indicates that a lidar reflection is measured in
cell K and d̄K indicates that a ray passes through cell K . Using Eq. (6) yields for both cases p(dK |oK ) ≈
1.17 and p(dK |ōK ) = 2 ! Indeed, the prior knowledge on the occupancy value p(oK ) does not agree with
the inverse model, that is p(oK |dK ) < p(oK ) and p(oK |d̄K ) < p(oK ), which is of course not logical. All
in all, using the inverse model directly is not a limitation in itself, if carefully handled. Nevertheless, we
find that explicitly introducing forward sensor models is much needed.

2.3. Binary state model limitations

It is well understood that the occupancy field discards the distribution and density of reflectors inside
a cell. Indeed, only two states are allowed, which greatly limits the description of the environment.
As a direct consequence, binary state occupancy maps do not permit to compare occupancy values
across multiple cells, which have not been probed evenly. For instance, the posterior probability of a
cell might be high (i.e., close to 1) either because the cell reflectivity is high or because the cell has a
moderate amount of reflectors, but has been probed intensively. In other words, in Eq. (2), the rate of
convergence for two occupied (or unoccupied) cells depend on their respective true intrinsic probabilities
α(d|W ), which are usually not equal. Using binary occupancy maps alone results in the loss of much of
the information gathered from lidar recordings and prevents quantitative analysis of the robot potential
knowledge of the environment.

Overall, Bayesian schemes applied to classic occupancy grid suffer from several drawbacks. While
occupancy fields are extensively used, we find that the lack of a well-founded forward model limits map
quality assessment. On the other hand, a deterministic physics model is simply too costly to compute
for onboard applications and we must find alternative approaches.

3. Space Mapping and Data Assimilation

The probabilistic nature of the forward model p(d|o) cannot be solely explained by uncertainties on our
lidar instrument readings or by random time-evolving events. It is in reality best explained by the under-
lying physics of lidar ray interaction with the occupancy grid map. Indeed, the use of a single model
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parameter with a binary value per cell in a spatially discretized model fails to describe natural envi-
ronments with complex distributions of reflectors (i.e., leaves, particles, fractal features, local dynamic
events) [14]. We thus have to deal, in addition to model inaccuracies and instrument uncertainties, with
cells which seem to randomly reflect or let lidar ray pass through. This apparent random behavior is
precisely what p(d|o) and p(d|ōK ) encompass. Having a probabilistic forward model can appear coun-
terintuitive given the deterministic nature of the physics at hand. Thankfully, it is possible to formally
derive its mathematical expression from the underlying physics using Bayes’ rule and space mapping as
detailed in this section.

3.1. Related studies

Statistical models are introduced in Bayesian and statistical inference literature through model selection
issues [20, 21]. This approach finds its roots in the historical need for models associated to complex
systems, such as biology and human sciences, where deterministic models are not available. We choose
here to focus on probabilistic forward models induced from deterministic models. Consequent efforts
have been put to tackle discretization and model reduction issues in the inverse problem community
[22, 23, 24]. One of the most elegant approaches to tackle many parameterization or discretization
issues is Bayesian inversion on functional spaces, which has already been extensively studied (e.g., refs.
[25, 26]). However, this alternative is not always easy to manipulate and in practice, many engineering
applications perform a discretization and space mapping step ahead as in refs. [19] and [13]. In addition,
functional inverse problems usually require a numerical implementation of the forward model, which
implicitly involves model reduction and discretization [27, 28]. This numerical implementation step
may be of little consequence if the discretization is adapted to the geometry of the model parameter
field. Nevertheless, we usually do not have access to this geometry since the model parameter field is
unknown. The literature is rich in works that explore issues related to resulting model errors in inverse
problems [29, 30, 31]. Recent work by Watson et al. [32] on approximate models have highlighted the
potential of acknowledging parameterization issues. In the field of inverse problem and optimization,
the concept of space mapping has been used since the mid 1990s as recalled by Bandler et al. [33]. The
original idea of space mapping was to map the problem using coarse model parameters to speed up the
process of finding the global maximum on the original space. However, as we will see, space mapping
can be used to directly infer information on the new space. Studies of parameterization, probabilistic
model errors, and optimization naturally relate to space mapping issues discussed in this section.

3.2. Bayesian data assimilation framework

We define here data assimilation as the task of recovering information on model parameter m given
(i) recorded measurements D, (ii) a sampling distribution (i.e., forward model) p(d|m), and (iii) some
prior knowledge on the model parameter p(m). We further assume that measurements are uncertain (for
instance, due to instrument limitations) and can be derived from true data d using the sampling density
p(D|m, d). Bayes’ rule then allows us to write,

p(m, d|D) = p(m)
p(d|m) p(D|m, d)

p(D)
(7)

p(m, d|D) corresponds to the usual joint posterior probability density on the model parameter and true
data. This expression is the solution of our general inverse problem and is the basis of Bayesian data
assimilation algorithms (e.g., refs. [34, 17]). Since measurements D usually fully depend on their asso-
ciated true value d, we can write p(D|m, d) = p(D|d). This probability density induces a well-behaved
density on D since D is known. Note that in occupancy grid mapping, p(D|d) corresponds to the lidar
reading accuracy and

∫
D p(D|d) p(d|m) dμD corresponds to the sensor model. As previously stated,

sensor models in the literature such as Thrun et al. [16] do not correspond to the probability to generate

https://doi.org/10.1017/S0263574721000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000850


868 Yann Berquin and Andreas Zell

Figure 2. Model reduction is a special case of space mapping. In this example, the model parameter
space is reduced from two dimensions to one dimension. Probability densities associated to the new
model parameter space are displayed on the right. Note that in this example, the forward model is such
that p(d|m) ∝ δ(d − g(m)). This example is further detailed in Section 3.4.

a lidar data point given an occupancy map. They rather correspond to the probability to generate a lidar
data point given a real-world map, which results in probability densities not living on the same space.
In addition, recorded data, (i.e., power over time) when using lidar instruments, are not used directly
but post-processed to return time stamps. The associated data space in Eq. (4) is thus different from the
raw lidar sensor recordings. We shall now discuss how to address these issues using space mapping and
illustrate the importance of using appropriate forward models.

3.3. Space mapping

We loosely define space mapping as the mapping of a data assimilation problem on a joint probability
space D×M to a new joint probability space D̃× M̃. More explicitly, space mapping allows to trans-
port probability densities from D×M to D̃× M̃ (see Fig. 2). In order to perform space mapping, we
need to introduce a measurable function ϕ: M×D→ M̃× D̃, which acts as the map. In practice, data
and model spaces are often different in nature, and hence it is common to provide distinct maps for each
space. Consequently, we introduce two measurable functions ϕM:M→ M̃ and ϕD:D→ D̃, which act
as maps on model spaces and data spaces, respectively. It is then possible to explicitly map outcomes of
sample spaces associated to D and M to outcomes of sample spaces associated to D and M, that is,

m̃ = ϕM (m)

d̃ = ϕD (d)
(8)

Similarly, it is possible to use this mapping to transport probability densities p(m), p(D|d), and p(d|m)
living on D and M (see Eq. (7)) to probability densities living on D̃ and M̃. These new probability den-
sities are often referred to as mapped probability densities. Using mapped probability densities results
in the following new data assimilation problem on D̃× M̃:

p(m̃, d̃|D) = p(m̃)
p(d̃|m̃) p(D|d̃)

p(D)
(9)
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where

p(D) =
∫
M̃

p(m̃)
(∫

D̃

p(D|d̃) p(d̃|m̃) dμD̃

)
dμM̃ (10)

Note that in Eq. (9), p(m̃), p(D|d̃), and p(d̃|m̃) correspond to mapped probability densities p(m), p(D|d),
and p(d|m), respectively. On the other hand, the posterior probability p(m̃, d̃|D) associated to the new
data assimilation problem in Eq. (9) is usually not equal to the mapping of the posterior probability
density p(m, d|D) from Eq. (7). In other words, the mapping of products is usually not equal to the
product of mappings.

In order to derive an analytical expression of p(m̃, d̃|D), we need to provide analytical expressions of
mapped probability densities p(m̃), p(D|d̃), and p(d̃|m̃). We let D and M be measurable subsets of σ -
algebras associated to D and M. We further endow data and model spaces with homogeneous measures,
μD and μM, respectively [35, 18]. More specifically, we let μM̃ be the pushforward of μM by ϕM, that is
μM̃[m̃] = μM[ϕ−1

M (m̃)]. In a similar fashion, we explicitly let the pushforward measure by ϕD of μD be
μD̃. We can now detail the mapped forward model p(d̃|m̃),∫

M̃

∫
D̃

p(d̃|m̃) dμD̃ dμM̃

=
∫

ϕ−1
M

(
M̃
)
∫

ϕ−1
D

(
D̃
) p
(
ϕD(d)|ϕM(m)

)
dμD dμM (11)

=
∫

ϕ−1
M

(
M̃
)
∫

ϕ−1
D

(
D̃
) p(d|m) dμD dμM

We can further derive mapped probability densities p(m̃) and p(D|d̃) of p(m) and p(D|d), respectively.
We let M̃ and D̃ be measurable subsets of M̃ and D̃, respectively such that,∫

M̃
p(m̃) dμM̃ =

∫
ϕ−1

M

(
M̃
) p
(
ϕM(m)

)
dμM =

∫
ϕ−1

M

(
M̃
) p(m) dμM (12)

and ∫
D̃

p(D̃|d̃) dμD̃ =
∫

ϕ−1
D

(
D̃
) p
(
D|ϕD(d)

)
dμD =

∫
ϕ−1

D

(
D̃
) p(D|d) dμD dμD (13)

Note that μM̃ is not required to be the pushforward of μM by ϕM and μD̃ is not required to be the
pushforward of μD by ϕD. It is nevertheless practical to enforce these conditions to avoid additional
terms as discussed in ref. [35], p. 164. For regular smooth maps, which admit derivatives and local
inverse, previous equations are equivalent to the usual change of variable. In particular, we can write
locally μM̃

(
ϕM(m)

) ∣∣ det Jϕ

∣∣= μM(m), where Jϕ is the local Jacobian of ϕM. Using the new probability
densities on the new joint space, we can derive the posterior probability density p(m̃, d̃|D) given our
knowledge on the new joint space using Eq. (9). Since we are only interested in recovering information
on the model space, we marginalize the previous equation such that,

p(m̃|D) = p(m̃)
p(D)

∫
D̃

p(d̃|m̃) p(D|d̃) dμD̃ (14)
∫
D̃ p(d̃|m̃) p(D|d̃) dμD̃ corresponds to the well-known likelihood function. In essence, p(m̃|D) cor-

responds to the posterior probability density using (i) the pushforward of the forward model, (ii)
the pushforward of our prior knowledge on the model parameter, and (iii) the pushforward of our
instrument uncertainties. It usually differs from the pushforward of the posterior p(m, d|D) of the
inverse problem on the original space since the conjunction of the pushforwards is not the same as
the pushforward of the conjunction. In practice, we often use probability densities on the new joint
space without having access to their corresponding probability densities on the original space. Thus,
probability densities p(m̃) and p(D|d̃) can be chosen independently from any prior model parameter and
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Figure 3. (a) Deterministic forward function g where d = g(m) with m = {m0, m1}. (b) Nondeterministic
forward probability p(d|m0) resulting from the mapping m̃ = m0. Note: d̃ = d. Homogeneous measures
are set to constant in this example.

instrument knowledge on the original space. On the other hand, the original forward model p(d|m) is
often known from deterministic physical laws, but deriving p(d̃|m̃) can be a tedious task. It is common
to use the original forward model in place of its corresponding new forward model. Since deterministic
physical laws induce Dirac-like probability distribution densities, this permutation yields inaccurate
results in many cases and we strongly advocate against it. We now choose to discuss two interesting
cases, which involve deterministic forward models.

3.4. Model reduction

We assume that we are dealing with Riemannian manifolds probability spaces, where we can explicitly
write (dμD/dd) dd = dμD and (dμM/dm) dm = dμM. We further assume that the forward model is
p(d|m) = δ(d − g(m)) (dμD/dd)−1, where δ denotes the Dirac distribution and g is a known operator
from M to D such that d = g(m). Note that g is not necessarily linear and is often implicitly defined
through a set of differential equations. Finally, we let the map ϕD be the identity, that is d = d̃.∫

D̃

∫
M̃

p(d̃|m̃) dμM̃ dμD̃ =
∫

D

∫
ϕ−1

M

(
M̃
) δ(d − g(m))

dμM

dm
dm dd (15)

In essence,
∫
D̃

∫
M̃ p(d̃|m̃) dμM̃ dμD̃ is the number of models m that satisfies both {d = g(m)|d ∈ D} and

{m̃ = ϕM(m)|m̃ ∈ M̃ }. Of course, since we are not dealing with discrete sets, the term number should
be understood here as a measure of volumes. If we further assume g to be a smooth regular invertible
function, the previous equation reduces to a mere change of variable, that is,∫

D̃

∫
M̃

p(d̃|m̃) dμM̃ dμD̃ =
∫

D

n(d)∑
k=1

dμM

dm
(
g−1

k (d)
) ∣∣∣∣ det

dg
dm

(
g−1

k (d)
)∣∣∣∣

−1

dd (16)

where g−1
k (d) are the n(d) solutions in m for the equation g(m) = d with m ∈ ϕ−1

M

(
M̃
)
. Figure 3 shows a

basic example, where the model parameter space is reduced from two to one dimensions. In this example,
homogeneous measure densities dμD/dd and dμM/dm are set to constant. Figure 3(a) corresponds to
the usual deterministic model, whereas Fig. 3(b) corresponds to the resulting forward model density
obtained using Eq. (15). The presence of a hidden variable combined with a fully deterministic original
forward model induces an obviously new nondeterministic forward model density, as shown in Fig. 3(b).
In Fig. 4, we display probability densities associated to a typical data assimilation problem conducted on
the joint space M×D and its associated data assimilation problem on the new joint space M̃×D. We
use a constant prior density associated to model parameter m1 for both data assimilation problems. This
choice is motivated by the fact that the homogeneous density (which is constant) represents best the lack
of knowledge on m1. The resulting posterior density is shown in Fig. 4(b). Since the prior probability
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Figure 4. Probability densities associated to the forward operator and mapping ares described in Fig.
3. (a) Probability density p(D|d̃) p(m̃) over the joint space M̃×D. (b) Posterior probability density
is associated to p(m̃, d̃|D). (c) Marginal posterior probability density is associated to p(m|D). This
density is obtained using the marginal over d of p(m, d|D). (d) Marginal posterior probability densities
is associated to p(m0|D) (dashed line with circular markers) and p(m0|D) (continuous line).

density over m1 is proportional to the homogeneous measure, we obtain identical marginal posterior
probability densities for m0 regardless of the data assimilation problem used (see Fig. 4(d)), which
is in agreement with common sense expectations. In practice, model reduction often arises in multi-
scale setups when seeking a low-dimensional homogenized approximation m̃ of model parameter m
as discussed by Pavliotis and Stuart [22]. Homogenization theory introduces, for instance, an effective
model parameter m̃, which allows to derive a homogenized forward operator g̃

(
m̃
)
. As a result, the

forward model p(d̃|m̃) is often approximated by a Gaussian distribution [36] on the data space centered
on g̃

(
m̃
)

with covariance CT . Since CT is independent from model parameter m̃, everything appears as
if the original probabilistic forward model information is being transferred onto the data space. While
this can be very useful, one must, however, bear in mind that we are really dealing with a probabilistic
forward model and that in general, probabilistic forward models are not equivalent to model parameter
independent random variables [37, 38].

3.5. Model discretization

The second case of interest is what we shall call discretization. Following Kaipio and Somersalo [37]
and Alekseev and Navon [23], we now letM be a separable Hilbert space. Consequently, the unknown m
is a vector on M. To study discretization, we let M̃⊂M be such that dim (M̃) = n where its n elements
{φj} are orthonormal. We further define the discretization operator � such that m̃ =∑n

j=1〈m, φj〉φj =
�(�)T m. Discretization clearly appears as a specific case of space mapping where ϕM(m) = �(�)T m.
Consequently, performing discretization within an data assimilation problem framework often results
in dealing with what we have described as probabilistic forward models. In the literature, it is common
to write d = g̃

(
m̃
)+ w in place of explictely using the concept of probabilistic forward model [31, 37].

w corresponds to a random variable which accounts for discretization errors. Of course, the addition
of this model parameter-dependent random variable to the deterministic forward model is eventually
equivalent to our proposed probabilistic forward model.

For a given problem, model space mapping induces a new data assimilation problem on a new joint
space. The forward model associated to this new problem is different from the forward model associated
to the original data assimilation problem. Understanding the mapping from one domain to another is
essential to design proper inference algorithms. Space mapping appears thus critical when using coarse
model parameters, as in robotics lidar data assimilation.

4. Lidar Data Assimilation Using a New Probabilistic Forward Model

Using results from the previous section, we propose to introduce a new model parameter to replace the
occupancy field. Since our goal is to perform onboard real-time mapping, the forward model associated
to this new model parameter must result in a cheap update rule.
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Figure 5. Schematic representation of lidar ray propagating in a scattering environment. Bins are
associated to the spatial discretization � = ∪N

K=1VK . Recorded lidar power over time is indicated as
well as the associated returned times as discussed in the text.

4.1. Space mapping

It is well understood that lidar measurements are best modeled by radiative transfer [39]. In the case
of lidar used in mobile robotics, radiative transfer physics parameters reduce to the absorption field
μa(x, t, ν), the scattering field μs(x, t, ν), and the scattering phase function �s(x, t, ν, u, u′). u and u′ are
unit vectors indicating directions of propagation. ν is the usual lidar light frequency and t indicates time
dependency of parameter fields. These parameter fields are defined over a bounded region of interest �,
a connected open region in 3D, where x ∈ �. Prescribed parameter fields on � yield deterministic lidar
measurements, which correspond to the received power over time. Figure 5 shows a simple schematic
representation associated to this model. A lidar ray is shown propagating through a field of discrete
scatterers (dark blue) in a homogeneous low absorbing medium (light blue). The deterministic forward
model associated to radiative transfer is usually represented through a set of differential equations (see
[39], Eq. (48), p. 9). The initial conditions of this set of equations are determined by the lidar instrument.

It is common to use a set of time values (see Fig. 5) in place of received power over time. Time values
correspond usually to either multiple strong power peaks or to the first arrival. We let {ti1}i∈I be the set
of first arrival times (i.e., one first time arrival per lidar ray). Following notations used in Section 3,
we let the measurable data space associated to the received power over time be D and the data space
associated to first time value ti1 be D̃ (see Fig. 6). In other words, we let {d̃i}i∈I = {ti1}i∈I . The function
ϕD from lidar recorded power to first arrival times corresponds to the data map. We choose to use first
arrivals, which corresponds to one time stamp return per lidar ray, for practical reasons. Indeed, while
current lidar data can provide several time stamps per ray (first arrival, strongest peaks, etc.), deriving an
analytical expression for the posterior probability using multiple time stamps can be tedious and would
require additional work.

Similarly, we let the model parameter space associated to μa, μs, and �s be M, such that a point
on this space is m = {μa, μs, �s}. We impose M to be measurable, which will allow us to use results
from the previous section. It is reasonable to impose such condition as μa, μs, and �s do not account
for small scale quantum physics. Solving radiative transfer equations is impractical in real-time data
assimilation. In addition, while backscattering and radiative transfer encompass the physics at hand,
local space and time discrepancies of model parameter field values and lidar setup can greatly affect
recorded data as discussed by Deschaud et al. [14]. It is thus preferable to recover local statistics in
place of the model parameter field values. We let the spatial region of interest � be a set of N contiguous
volume elements VK such that � = ∪N

K=1VK (see Fig. 5). Using this discretization, we introduce a new
model parameter m̃(x, t, ν) = {m̃(K , t, ν)}N

K=1, which corresponds to the local probability that a lidar
ray propagating over a unit distance is not backscattered (i.e., transparent medium). Conceptually, this
probability can be derived from the local average distance traveled by a lidar ray, which is also known
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Table I. Parameters definition.

m̃(x, t, ν) Probability that no backscattering
occurs along a unit lidar ray path

−1/ log
(
m̃(x, t, ν)

)
Mean free path

1 − m̃(x, t, ν) Degree of occupancy

Figure 6. Proposed space mapping in this study. The function ϕ maps from (a) the original model
parameter space associated to radiative transfer and data space associated to recorded lidar power to
(b) the new model parameter space {m̃(K , t, ν)}N

K=1 and the new first arrival time data space.

as the mean free path. The mean free path LK in cell K can be obtained by averaging over all incoming
directions and over all incoming points on the cell boundary and corresponds to −1/ log

(
m̃
)
. It is thus

possible to explicitly derive the mapping function ϕM associated to the new model parameter. The new
model parameter space associated to m̃ is denoted M̃ by the following notations from Section 3 (see
Fig. 6).

So far, the concept of occupancy does not appear. To circumvent this issue, it is possible to define
the degree of occupancy of a cell. Remembering that m̃(x, t, ν) is the probability that no backscattering
occurs along a unit lidar ray path, we define the degree of occupancy field as the local complementary
event of m̃(x, t, ν). With the prescribed discretization, this simply means that the degree of occupancy
in cell K is 1 − m̃K (t, ν) (see Table I). Note that with our definition, model parameters in Fig. I are of
course unit dependent. In addition, working with m̃, the mean free path or the degree of occupancy is
strictly equivalent (see Section 4.4).

Mean free paths and first arrival times are not the only model and data parameters that can be used
in lidar data assimilation. For instance, in Appendix B, we provide an augmented formulation of the
problem where data records both time of flight and reflected amplitudes. We thus introduce an addi-
tional model parameter associated to the local reflected lidar power. One can also design complex new
model parameters, which more closely relate to the underlying radiative transfer physics parameters.
However, in this work, we specifically chose new model parameters, which yield simple data assimilation
algorithm, directly usable for onboard mobile robot applications.

In the following sections, we purposely omit the frequency dependency ν and time dependency of
model parameter fields.

4.2. A new probabilistic forward model

Now that we have defined a new model parameter and data space, and we need to derive the new associ-
ated forward model. In order to derive the new forward model, we make several assumptions regarding
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Figure 7. Schematic representation of lidar ray propagating in the new model parameter field
m̃(x, t) = {m̃(K , t)}N

K=1 (see Fig. 5).

the problem at hand. First, we assume that laser light propagates as a 1D ray, not as a cone or as a tube (see
Fig. 7). Indeed, using a volumetric representation of laser rays would require to take into consideration
the cross section of scatterers, the reflectivity of scatterers as well as the instrument sensitivity, which
would considerably increase the complexity of the problem at hand and would not allow for onboard
real-time computations. Second, we discard multiple reflections and additional scattering of laser light.
This amounts to a first-order approximation and will allow to derive an analytical expression for the new
forward model as we will see. We let ri denote a 3D unit vector representing, for a given measurement
lidar measurement, the direction along the laser ray (see Fig. 7) and we let c be the speed of light in the
probed medium. Finally, we let x0,i be the lidar location (see Fig. 7).

Using these assumptions and notations, the probability that no reflection occurs from the lidar instru-
ment to the point of reflection for the ith ray with its associated first arrival time ti1 can be expressed as

exp
(∫ ti1/2−δt

0
log

(
m̃(x0,i + c t ri)

)
c dt

)
(17)

m̃(x0,i + c t ri) corresponds to the field value at x = x0,i + c t ri and where δt represents an infinitely
small time increment. In order to derive this expression, we simply use the definition of the new model
parameter m̃, which corresponds to the local probability that a lidar ray propagating over a unit distance
is not backscattered. Similarly, it is possible to derive the probability that backscattering occurs at the tip
of the ray. We define the tip of the ray as [x0,i + c (ti1/2 − δt) ri, x0,i + c (ti1/2 + δt) ri]. The probability
that backscattering occurs at the tip of the ray is then,

1 − exp
(∫ ti1/2+δt

ti1/2−δt
log

(
m̃(x0,i + c t ri)

)
c dt

)
(18)

The probability of observing a first arrival time ti1 for the ith lidar ray is simply the conjunction (i.e.,
product) of (i) the probability that no reflection occurs from the lidar instrument to the point of reflection
(see Eq. (17)) and (ii) the probability that backscattering occurs at the tip of the ray (see Eq. (18)). Letting
δt → 0, we can write,

p(ti1|m̃) ∝ lim
δt→0

exp
(∫ ti1/2−δt

0
log

(
m̃(x0,i + c t ri)

)
c dt

)
·

(
1 − exp

(∫ ti1/2+δt

ti1/2−δt
log

(
m̃(x0,i + c t ri)

)
c dt

)) (19)

Using the spatial discretization m̃ = ∪N
K=1m̃K and using limδt→0 (1 − m̃K )2δt(1 + 2δt)/δt = − log (m̃K )

yields,

p(ti1|m̃) ∝ − exp

(∑
K

sK ,i log
(
m̃K

))
log (m̃Ki ) (20)
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sK ,i denotes the distance traversed by the ith lidar ray in cell K . m̃K is the scalar field value associated
to cell K and m̃Ki is the scalar field value associated to the last cell traversed by the lidar ray (i.e.,
where backscattering occurs). Assuming independent lidar measurements from one another the resulting
forward model can then be derived as

p({ti1}i∈I |m̃) ∝
∏
i∈I

p(ti1|m̃) ∝
∏
i∈I

− exp

(∑
K

sK ,i log
(
m̃K

))
log (m̃Ki ) (21)

Appendix B details an alternative forward model, which uses reflectivity parameters in addition to the
probability that no backscattering occurs along a unit lidar ray path. Adding the reflectivity parameter
can be particularly useful in exploration robotics in complex environments and where mapping the
environment is a primary task [6, 7].

4.3. Posterior probability density and update rule

From a Bayesian perspective, the update rule associated to a lidar mapping algorithm corresponds to the
computation of the posterior probability on the model parameter space given new recorded lidar data
(i.e., p(m̃|{Di}i∈I )). Using Eq. (21) in Eq. (14) and letting the homogeneous measures be constant over
the new data space yields,

p(m̃|{Di}i∈I ) = p(m̃)
∏
i∈I

∫ tmax

0
p(Di|ti1) p(ti1|m̃) dti1

∝ p(m̃)
∏
i∈I

∫ tmax

0
−p(Di|ti1) exp

(∑
K

sK ,i log
(
m̃K

))
log (m̃Ki ) dti1

(22)

where tmax is the lidar maximum recording time. Equation (22) corresponds to the update rule associated
to the new forward model. It allows to update the information in each cell given recorded lidar data.
Note that robot pose and lidar orientation are also parameters of the forward model (see Eq. (21)).
Consequently, replacing m̃ in Eq. (22) with robot pose, lidar orientation parameters and field parameter
m̃ allows to jointly inverse these different parameters. The new forward model thus naturally enables
Simultaneous Localization And Mapping (SLAM).

Equation (22) is the general solution to our mapping problem. Unfortunately, this equation is not
always practical to implement due to onboard computation resources limitation. Thankfully, the pos-
terior probability density expression can be further simplified provided additional assumptions on
prior and data uncertainty probability densities. Assuming data uncertainties are such that p(Di|ti1) ∝
δ (ti1 − Ti1) and assuming uncorrelated cells such that the prior probability on the new model parameter
space p(m̃) reduces to p(m̃) =∏

K p(m̃K ) allows to write,

p(m̃|{Di}i∈I ) =
∏
K

p
(
m̃K |{Di}i∈I

)
(23)

where

p
(
m̃K |{Di}i∈I

)∝ p(m̃K )
(− log (m̃K )

)nK (
m̃K

)sK (24)

sK =∑
i∈I sK ,i is the cumulated distance traveled by all lidar rays in cell K and nK corresponds to the

number of rays being reflected in cell K . While assuming uncorrelated prior densities might seem rea-
sonable in practice, assuming no data uncertainty is of course not realistic. On the other hand, such
assumption is commonly used in occupancy mapping [19]. The underlying reasoning is that spurious
measurements on lidar instruments are statistically sparse and do not result in meaningful bias. In addi-
tion, inaccuracies regarding first arrival times are often significantly smaller than cell dimensions and
consequently can be discarded. The resulting posterior density can be expressed in closed form for each
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Figure 8. Posterior probability density distributions p(m̃K |{Di}i∈I ) in cell K for different sK and nK
values.

cell and can be readily implemented. Having access to a closed-form expression for the posterior prob-
ability allows to significantly reduce computation costs and is very well suited for real-time onboard
applications.

4.4. Constant prior probability density and mean free path parameter

Using different prior model parameter probability densities in Eq. (24) results in different update rules.
Figure 8 shows posterior model parameter densities using constant prior probability densities such that,

p
(
m̃K |{Di}i∈I

)=
(− log (m̃K )

)nK (m̃K )sK

nK ! (sK + 1)−nK −1
(25)

In such a case, the posterior probability is unimodal and admits a single maximum for m̃K =
exp (−nK/sK). The mean and variance associated to the posterior probability density in Eq. (25) can
further be obtained analytically using the following relation:

E
[
m̃z

K
]=(

sK + 1
sK + 1 + z

)nK +1
(26)

where z ∈N. Typical probability densities associated to different values of sK and nK are shown in Fig.
8. From Fig. 8, it is clear that standard deviation decreases as sK and nK increase while their ratio
remains constant. This behavior is in agreement with the expected information gain from repeated prob-
ing within a cell K . Interestingly, the mean free path value associated to the maximum likelihood (i.e.,
− log (exp (−nK/sK))) is the ratio of the sum of the distances of all ray, which is passed through the
cell (i.e., sK ) over the number of lidar ray reflected within the cell (i.e., nK ). Hence, the best mean free
path value corresponds to the intuitive result one would provide as a best estimate of the mean free path
within a given cell.

All equations so far have been expressed using the local probability that a lidar ray propagating over
a unit distance is not backscattered m̃. It is, however, possible to use the local mean free path or the
local degree of occupancy (see Table I) in place of m̃K . For instance, letting the local mean free path be
denoted LK be such that LK = −1/ log (m̃K ) and μL be the associated homogeneous measure then we
can replace Eq. (24) with,

p (LK |{Di}i∈I) ∝ p(LK )
(

1
LK

)nK

exp
(

−LK

sK

)
(27)
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where p(LK ) = p(m̃K ) dμM̃/dμL and p(LK |{Di}i∈I ) = p(m̃K |{Di}i∈I ) dμM̃/dμL. In other words, using
the local mean free path or the local degree of occupancy in place of m̃K does not affect forward
models or data uncertainties, but requires to transport prior probability densities from one space to
the other. For example, let us assume constant homogeneous measures for both m̃K and LK and let us
further assume the prior probability p(m̃K ) is constant, as shown in Fig. 8. The associated prior probabil-
ity p(LK ) is then such that p(LK ) ∝ dm̃K/dLK , which yields p(LK ) ∝ exp ( − 1/LK )/L2

K . Consequently,
assuming constant prior probability densities for m̃K results in assuming prior probability densities
p(LK ) ∝ exp ( − 1/LK )/L2

K for the mean free path. All in all, working with m̃K , the mean free path or the
degree of occupancy is strictly equivalent provided prior probabilities are carefully taken into account.

4.5. Dynamic environment

In the previous section, we have implicitly assumed the environment to be static over time. To account for
dynamic environment, we use a time decay function f (t − t′) = exp ( − |t − t′|/T ), where T is a fixed
time constant characterized by the environment dynamics and t > t′ corresponds to different times at
which we acquire different independent data D(t) and D(t′). Using this function, we let,

p(m̃K (t)|D(t′)) ∝ p(m̃K (t′)|D(t′))f (t−t′) (28)

For instance, using Eq. (28) along with Eq. (25), we can derive the following dynamic environment
posterior probability density:

p
(
m̃K (t)|D(t), D(t′)

)=
(− log (m̃K (t))

)nK (t) (m̃K (t))sK (t)

nK (t)! (sK (t) + 1)−nK (t)−1
(29)

with
nK (t) = nK (t′) f (t − t′) + nK (D(t))

sK (t) = sK (t′) f (t − t′) + sK (D(t))
(30)

nK (D(t)) corresponds to 1 or 0, depending on whether the lidar ray D(t) was reflected in cell K . Similarly,
sK (D(t)) corresponds to the distance traveled in cell K associated to lidar ray D(t). The resulting maxi-
mum likelihood is such that m̃K (t) = exp (−nK (t)/sK (t)). The time decay function allows to forget older
measurements (i.e., decrease the confidence) while preserving the value of the best estimate of the degree
of occupancy. If no new data are recorded, the uncertainty increases over time while the best estimate of
the mean free path, that is nK (t)/sK (t), remains unchanged. The different steps of the resulting algorithm
are displayed in Algorithm 1.

4.6. What about occupancy parameters?

In this section, we compare results from our approach to the ones from classic occupancy grid. As
discussed in Section 2, the occupancy field suffers from a lack of clear definition. In order to compare
the approach detailed in this study to the occupancy field, we use the degree of occupancy of a cell
which corresponds to 1 − m̃K .

We recall that the occupancy field is a binary field, where 1 locally denotes the occupied state and
0 the nonoccupied state (see Section 2). In other words, in the occupancy grid setup, a cell occupancy
state is equal to 1 if it is occupied and equal to 0 otherwise. Let us now consider a simple model, where
a single cubic cell of dimension 10 × 10 × 10 cm3 is repeatedly probed by a lidar instrument. Figure 9
shows associated degree of occupancy of this cell for different lidar readings. The probability of the cell
to be occupied given successive lidar measurements is detailed in Eq. (5). In Fig. 9(a), the most likely
occupancy state of the cell is first 1 (i.e., p(oK |{Di}i∈I ) > 0.5) as the first 10 first lidar rays are reflected
in the cell. Remaining lidar rays simply pass through the cell without being reflected which eventually
sets the most likely occupancy state to 0 (i.e., p(oK |{Di}i∈I ) < 0.5).
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Algorithm 1 Lidar data assimilation algorithm
1: while new lidar ray D(t) do
2: Get robot pose
3: Get new time t
4: Cast ray in the grid
5: for each intersected cell K do
6: Compute distance sK (D(t)) traversed by the ray in cell K
7: Update cumulated distance sK in cell K: sK = sK f (t − t′) + sK (D(t))
8: if ray reflected in cell K then
9: nK = nK f (t − t′) + 1

10: else
11: nK = nK f (t − t′)
12: end if
13: Compute and display best value of the degree of occupancy in cell K , 1 − exp ( − nK/sK )
14: Compute and display standard deviation of the degree of occupancy in cell K
15: end for
16: Set t′ = t
17: end while

Recalling parameter definitions (see Table I), it is possible to study the probability p(dK |{Di}i∈I ) that
a lidar ray is being reflected in a cell, that is the probability of hit in Fig. 9,

p(dK |{Di}i∈I ) (31)

=
∫
M̃K

p(dK |m̃K , {Di}i∈I ) p(m̃K |{Di}i∈I ) dm̃K (32)

=
∫
M̃K

(
1 − m̃s0K

K
) (− log (m̃K )

)nK (m̃K )sK

nK ! (sK + 1)−nK−1 dm̃K (33)

= 1 −
(

sK + 1
sK + s0K + 1

)nK+1

(34)

where s0K is the characteristic length of the cell (i.e., 0.1 in the example shown in Fig. 9). In the previous
equation, we have used p(dK |m̃K , {Di}i∈I ) = p(dK |m̃K ) = 1 − m̃s0K

K . In the case of the occupancy grid
mapping, p(dK |D) = p(dK |ōK ) p(ōK |D) + p(dK |oK ) p(oK |D). Consequently, in occupancy grid mapping,
the probability to observe lidar reflection in a cell is bounded by its forward model values p(dK |ōK ) and
p(dK |oK ). In the example shown in Fig. 9, the values of the occupancy grid mapping forward model
are 0.2 and 0.47, respectively. As the first 10 lidar rays are reflected in the cell, the probability to hit
rapidly converges toward 0.47. However, all remaining lidar rays pass through the cell. This induces
a decrease in the probability to hit which eventually converges to 0.2. On the contrary, our proposed
approach allows the probability to hit to freely converge to any values between 0 and 1. In the exam-
ple, the probability to hit first converges toward 1 as the number of lidar rays being reflected in the cell
increases. It then converges toward 0 as all lidar rays pass through the cell. Overall, convergence rates
for occupancy parameter and degree of occupancy parameter are in agreement with the analytical forms
of their respective update rules. It is important to bear in mind that for the most likely degree of occu-
pancy to converge toward 0, its associated mean free path must converge toward infinity. For example,
in Fig. 9, the first 10 rays are being reflected in the cell. For the most likely degree of occupancy to
reach 0.63 (i.e., mean free path equals to 1), this requires at least 10/0.1 = 100 rays to pass through
the cell as observed in Fig. 9. In other words, small changes in the value degree of occupancy can be
associated to large changes in the mean free path value. Standard deviations are further shown in Fig. 9.
We recall that the standard deviation associated to the occupancy model described in Section 2 is equal
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Figure 9. Evolution in a single cell of (i) the value of the model associated to the maximum likelihood
(left), (ii) the associated standard deviation (center), and (iii) the probability p(dK |{Di}i∈I ) of a ray to be
reflected (i.e., hit) in the cell. Occupancy grid approach results are diplayed using a continuous line while
dotted lines correspond to the degree of occupancy with our proposed approach (see legend boxes). The
y-axis corresponds to the cumulated number of lidar rays being assimilated. The characteristic length
of the cell is set to 10 cm. Note that 
s corresponds to the update of the cumulated distance traveled
through the cell (i.e., sK), after a single measurement. Occupancy prior is set to p(oK ) = 0.5. We use
the following values for the occupancy forward model: p(dK |ōK ) = 0.2 and p(dK |oK ) = 0.47. The first 10
lidar rays are reflected (see red dotted line) while the remaining ones pass through the cell. When a lidar
ray is reflected, we use different 
s values (see legend box), which results in different behaviors. When a
ray passes through, we set 
s = 0.1, which corresponds to the length of the cell. After i measurements,
we let sK (i) be the associated sK such that: sK (i + 1) = sK (i) + 
s.

to p(oK |{Di}i∈I ) (1 − p(oK |{Di}i∈I )). The standard deviation associated to our new model can be simply
derived using Eq. (26).

Main advantages of the proposed approach can be summarized as follows. Unlike occupancy grid
mapping, there is no need to specify ad hoc values associated to the forward model. Prior knowledge
on the mean free path and measurements are sufficient to update our knowledge on the mean free path.
The mean free path is clearly defined with regard to the underlying radiative transfer parameters, and so
is the degree of occupancy. In addition, the posterior probability density over the mean free path allows
quantitative comparison between cells and across maps.

4.7. A practical case

This section presents results obtained using real lidar data in an outdoor environment. Lidar data were
acquired on a mobile robot platform (customized SUMMIT-XL from Robotnik) in an outdoor environ-
ment with a Velodyne Puck sensor placed on top (see Fig. 10). We used ∼1 s acquisition time from
which ∼320, 000 lidar rays were recorded. Using a short window of time for lidar acquisition allows to
identify better individual rays on the map (see Fig. 12). Robot location and orientation were estimated
using an onboard inertial sensor. The resulting short trajectory of the robot is approximated by a thick
red line in Figs. 11 and 12.

Figure 12 shows maps obtained using the approach detailed in this paper. More explicitly, for this
example, Algorithm 1 was used. The original scene is shown in Fig. 11. It corresponds to a highly
diverse environment with buildings, windows, roads, mown grass, and different types of trees. Buildings,
pedestrian tracks, and landmark vegetation are highlighted in the different figures. The black arrow in
Figs. 11 and 12 points to the tree used in Fig. 13. On the elevation map, the ground (grass and pedestrian
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Figure 10. Experimental setup for lidar data acquisition. The lidar sensor is highlighted in red on the
picture. The lidar sensor operates with a 360◦ vertical field of view (∼0.2◦ angular resolution) and a
±15◦ vertical field of view (2.0◦ angular resolution).

track) can be clearly identified by the blue cells surrounding the robot path. Note that lidar returns
from two persons, in the back and in front of the robot, can be seen in the robot’s vicinity in both the
elevation map and Fig. 12. The spatial discretization used is a 3D rectilinear grid. Cubic voxels are of size
10 × 10 × 10 cm3, which is identical to the cell size used in Fig. 9. The dimension of the scene displayed
is 55 × 55 × 12 m3. Most likely degrees of occupancy and degree of occupancy standard deviations
are shown in Fig. 12. We recall that the most likely degree of occupancy corresponds, for each cell,
to 1 − exp ( − nK/sK ). We also recall that the standard deviation associated to the occupancy model
described in Section 2 is equal to p(oK |{Di}i∈I ) (1 − p(oK |{Di}i∈I )). The standard deviation associated
to our new model can be simply derived using Eq. (26).

As expected, the degree of occupancy in each cell converges toward 0 where no reflectors are present
(i.e,. empty cells). It converges toward nonzero in partially occupied or occupied cells according to the
degree of reflectivity of the cell (walls, trees, grass, etc.). Associated standard deviation decreases in
cells, which have been probed most effectively, by incorporating the amount of information gained from
recursive probing. This can be clearly seen on the grass and concrete around the robot as well on building
walls and tree trunks. Cells which have not been probed are visible in Fig. 12 on the slice and the edge
of the clipped area. For instance, windows mostly act as transparent cells since returns from lidar data
correspond to corridor walls and roofs. The wall facing the robot in the bottom left building contains
several windows, which can be clearly seen in Figs. 11 and 12. Since these cells have not been probed, the
probability density of the degree of occupancy is set to constant. This results in a degree of occupancy
standard deviation of approximately 0.29 (dark red in Fig. 12(b)). For visualization purpose, we have
arbitrarily set the associated most likely degree of occupancy of these cells to 0.5 (dark blue on the slice
in Fig. 12(a)). The probability density of the degree of occupancy in each cell K only depends on the
cumulated ray distance cell value sK and on the cumulated number of hits nK . The most likely degree
of occupancy used for visualization in Fig. 12 is obtained by simply computing 1 − exp ( − nK/sK ) and
the standard deviation.

In practice, the map structure obtained using our proposed forward model is nearly identical to any
other map structure obtained using classic occupancy algorithm (see Algorithm 1). Major reflectors
such as walls, floors, vegetation yield high probabilities of being occupied as well as high degrees of
occupancy. However, partially occupied cells converge to either occupied or unoccupied in a classic
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Figure 11. Top: real 3D image scene are obtained using Google Maps. Credits: Images @2019,
Google, Landsat/Copernicus, Data SIO, NOAA, U.S. Navy, NGA, GEBCO, Map Data, Âľ2019
GeoBasis-DE/BKG (Âľ2009), Google Germany. Bottom: elevation. Cells displayed are cells with most
likely degree of occupancy values larger than 0.5.

approach while their degree of occupancy will converge toward any value between 0 and 1. It is important
to recall that the occupancy value in a given cell converges either to 0 or 1 as the amount of information
increases infinitely (see Eq. (2)). As a result, differences can be observed locally, especially in vegetated
areas.

Figure 13 offers a detailed insight as to how algorithms operate on partially occupied cells due to
vegetation. In the top row (i.e., Fig. 13(a), (b), and (c)), cells displayed are cells with most likely degree
of occupancy values larger than 0.5. In the bottom row (i.e., Fig. 13(d), (e), and (f)), cells displayed are
cells with probabilities of being occupied larger than 0.5. Figure 13(a) corresponds to the view in Figs.
12(a) while 13(b) corresponds to 12(b). Note that in Fig. 13, the back of the tree is facing opposite from
the robot. Consequently, lidar rays being reflected on leaves from the back of the tree must have passed
through the front leaves and branches. From Fig. 13, it is possible to verify that our algorithm accounts
well for partially occupied cells. Most likely degrees of occupancy range from 0.5 to 0.8 in cells occupied
by leaves while cells occupied by denser vegetation, such as the trunk or branches, display most likely
degree of occupancy values closer to 1. On the other hand, the occupancy value, as defined in Section 2,
converges toward 0 in cells occupied by leaves and converges toward 1 in cells occupied by the tree

https://doi.org/10.1017/S0263574721000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000850


882 Yann Berquin and Andreas Zell

Figure 12. Reconstructed scene derived from lidar data (∼320, 000 rays) using the proposed algorithm.
Coloring is associated to the degree of occupancy value of the cells (i.e., most likely degree of occupancy
left and standard deviation right).

Figure 13. Details of the tree highlighted by the black arrow are shown in Figs. 11 and 12. In (a), (b),
and (c), cells displayed are cells with most likely degree of occupancy values larger than 0.5. In (d), (e),
and (f), cells displayed are cells with probabilities of being occupied larger than 0.5. (a) and (d): most
likely degree of occupancy. (b) and (e): degree of occupancy standard deviation. (c) and (f): probability
of the occupancy state to be 1 (i.e., p(o)).

trunk and branches. As a result, partially occupied cells are simply set as either occupied or unoccupied
in classic occupancy mapping, and much of the information from lidar data are eventually lost.

One of the main asset of our algorithm lies also in the ability to properly relate degree of occupancy
values to physics properties. Interestingly, standard deviations in cells with leaves are higher than in the
trunk cells. This behavior is in agreement with our equations and with Fig.9. Overall, most likely degree
of occupancy values and occupancy values are in agreement with equations detailed in this paper and
follow the trends shown in Fig. 9. Using degree of occupancy parameter in place of occupancy parameter
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Figure 14. Run times associated to lidar data assimilation for different grid resolutions. (a) Ray casting
time. (b) Grid update time.

results in a precious information gain on the environment. In practice, autonomous agents’ decision-
making process can benefit from this additional knowledge, for instance, when assessing traversability,
especially in vegetated areas. Figure 13 further highlights limitations of occupancy mapping when sparse
reflectors are present in the map. For example, setting partially occupied cells as empty or occupied can
result in collision, impairment or suboptimal path planning.

The proposed data assimilation algorithm requires to cast lidar rays in the grid and fruther requires
to compute the update rule in intersected cells (see Algorithm 1). Classic occupancy grid algorithms
also requires to cast lidar rays in the grid and to compute the posterior probability in intersected cells.
Consequently, computation time and memory load are expected to be fairly identical for both algorithms.
In terms of memory load, algorithms require to allocate sufficient memory for grid representation and
cell data. In classic occupancy grid, stored data in an intersected cell corresponds to the posterior proba-
bility which can be represented efficiently using a float number per intersected cell. In the new proposed
approach, the posterior probability is fully characterized by the cumulative distance traveled as well as
the number of hits. These can be represented efficiently using a float number and an integer per inter-
sected cell. The memory load is thus not significantly different for both algorithms. Figure 14 shows
run times obtained with classic occupancy mapping and our mapping algorithm. For these experiments,
the number of lidar rays (i.e., ∼320, 000) and the volume of the scene (i.e., 55 × 55 × 12 m3) were kept
constant, but the grid resolution was incrementally changed from 10 cm to 1.2 m. For instance, 0.1 m
grid resolution (i.e., 10 × 10 × 10 cm3 cell dimensions) corresponds to the grid used in Figs. 11, 12,
and 13. The total run time for a given resolution is the sum of both ray casting time and grid update
time. It is important to stress that while run times depend on data assimilation algorithms, they are
also very dependent on data structures and on the overall quality of the implementation. For instance,
queries to find intersected cells greatly depend on the grid representation. Similarly, grid update times
can often be reduced using sparse data structures. In terms of hardware, all run times were evaluated on
a single core of a laptop CPU (Intel Core i5-7300HQ, 2.5 GHz). Both classic occupancy grid mapping
and our own algorithm share an identical ray casting core. Both algorithms were implemented using a
home developed code in C++ relying on a dense grid and on dense arrays for data storage. Note that
our implementation is not well suited for large-scale problems or real-time onboard applications. For
real-time onboard applications, more efficient data structure relying on sparse arrays or spatial hierarchy
such as octrees can be used [19]. Such data structures can significantly speed up ray casting and cell data
access. They also scale better as the environment volume or resolution increases. Nevertheless, inde-
pendently of the implementation, it is legitimate to argue from Fig. 14 that the main bottleneck in terms
of run times for both algorithms is ray casting and not the update rule. Slight differences in ray casting

https://doi.org/10.1017/S0263574721000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000850


884 Yann Berquin and Andreas Zell

run times between both algorithms can be explained by the need to compute geometric distances with
the new proposed approach, which is not needed in classic occupancy mapping. Similarly, differences
in grid update run times can be mostly explained by the need to maintain and update geometric dis-
tances in probed cells in the first case and not in the latter. All in all, Fig. 14 indicates that the additional
knowledge gained from using degree of occupancy parameter requires similar computation costs when
compared to occupancy mapping.

5. Conclusion

The need for coarse maps of the environment, combined with lidar instrument’s high sensitivity, makes
onboard lidar data assimilation on mobile robots a challenge from the physics perspective. Nevertheless,
this study introduces a new probabilistic forward model with new model parameters using radiative
transfer, space mapping, and Bayesian data assimilation. Results show that it is possible to preserve low
computation costs while also maintaining a clear relation between map parameters and material param-
eters (i.e., mean free paths and reflectivity). Having access to an analytic expression of the forward
model further allows to work with multiple parameters such as map parameters, but also lidar instru-
ment parameters and robot pose. Hence, using an explicit expression for the forward model offers the
possibility in the future to perform Simultaneous Localization And Mapping (SLAM) tasks. In addition,
explicitly using map parameters with a forward model can be useful to compare robustness of algorithms
based on material parameters and approximations used in each algorithm. Mapping increasingly real-
istic material parameters increases computation and memory loads. As a result, the approach detailed
in this study does not aim at replacing current algorithms, but rather intends to fill a niche in robotic
exploration where unknown and unstructured environments require robust algorithms and where mate-
rial mapping is a primary task. Such scenarios include, for instance, planetary exploration robots [6, 8]
and unmanned aerial vehicles flying in complex environments [40, 7]. Material parameters can also be
helpful to improve autonomous agents’ decision-making process in obstacle avoidance and trajectory
planning by projecting more information in the map [41, 42, 43]. Currently, the approach described in
this paper would benefit from additional work. For instance, alternative parameters, which better account
for heterogeneous scatterers and material absorption should be considered. Absorption is particularly
critical for autonomous vehicles operating underwater or at sea [40, 44]. Going beyond first arrival and
using returned lidar power over time could also be investigated in order to take advantage of all the
information collected. The ability to map material parameters should eventually also be a strong asset
when conducting onboard or offline data fusion.
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Appendix
A. Deriving Eq. (2)
We study the evolution of the occupancy parameter for a given cell K as the number of lidar data grows to infinity. We use as a
starting point Eq. (5), which can be derived from Bayes’ rule. We let n(d) be the number of lidar rays associated to measurement d
in cell K . We recall that we assume d ∈D. For the sake of simplicity, we first assume D is discrete such that d can take L different
values, that is D= {dl}l∈[1,L]. Equation (5) now reads,

p(oK |{Di}i∈[1,N]) =
(

1 + 1 − p(oK )
p(oK )

L∏
l=1

(
p(dl|ōK )
p(dl|oK )

)n(dl )
)−1

(A1)

where
∑L

l=1 n(dl) = N and n(dl) is the number of measurements {Di}i∈[1,n(dl )] such that Di = dl . We can also write,

p(oK |{Di}i∈[1,N]) =
(

1 + 1 − p(oK )
p(oK )

AN
)−1

(A2)

where

A = exp

( L∑
l=1

n(dl)
N

log
p(dl|ōK )
p(dl|oK )

)
(A3)

As N goes to infinity, we can use the definition of the intrinsic probability α(d|W ), which is the probability to generate a single
lidar measurement d given the real world W . We deduce that limN→inf n(dl)/N = α(dl|W ). Using the limit in Eq. (A4), we can
now write,

lim
N→inf

p(oK |{Di}i∈[1,N]) = lim
N→inf

(
1 + 1 − p(oK )

p(oK )
AN
)−1

(A4)

where

A = exp

( L∑
l=1

α(dl|W ) log
p(dl|ōK )
p(dl|oK )

)
(A5)

Finally, using a continuous data manifold in place of discrete data manifold yields Eq. (2).

B. Lidar Aata Assimilation Using a Reflectivity Field
Following the work of Levinson and Thrun [15], we propose to augment model parameters with the reflectivity field. The data
are now composed of a time stamp ti1 along with its associated recorded reflected power ai . In order to account for this additional
information, we add a new parameter space R to which we associate a new field, which is the reflectivity field � (a, x). This field
corresponds to the local probability of the media to reflect a fraction a of the incoming power when the lidar ray is reflected along
a unit lidar ray path. For the sake of simplicity, we discard absorption in the model, although it could be taken into account if
we assume constant absorption along the lidar ray (see Fig. 5). We now introduce the following associated probabilistic forward
model, which is a slightly modified version of the one detailed in Eq. (21),

p(ti1, ai|m̃, �) ∝
∏
i∈I

�

(
ai , x0,i + 1

2
c ti1 ri

)

exp
(∫ ti1/2−δt

0
2 log

(
m̃(x0,i + c t ri)

)
c dt

)
· (B1)
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(
1 − exp

(∫ ti1/2+δt

ti1/2−δt
log

(
m̃(x0,i + c t ri)

)
c dt

))

Recalling the prescribed spatial discretization on �, we introduce the cell-dependent parameter �K associated to a given cell K .
We further choose to discretize the local probability density �K (ai) such that for ai ∈ [aj , aj+1], �K (ai) = �j,K .

p(ti1, ai|m̃, �) ∝
∏
i∈I

− exp

(∑
K

sK ,i log
(
m̃K

))
log (m̃Ki ) �j,Ki (B2)

Using homogeneous priors, assuming uncorrelated cells and no measurement uncertainty, it is possible to follow the same steps
as in Section 4.3 to finally obtain,

p
({m̃K , {�j,K }j∈J |{Di}i∈I

)∝
∏
K

⎡
⎣p

({m̃K , {�j,K }j∈J
) (− log (m̃K )

)nK m̃sK
K

∏
j∈J

�j,K
nj,K

⎤
⎦ (B3)

where nj,K denotes the number of rays being reflected in the cell K with reflected power a ∈ [aj , aj+1]. sK denotes the cumulated
length of all rays going through cell K . The posterior probability density now provides estimation of two independent sets of
parameters for each cell K : (i) m̃K and (ii) {�j,K }j∈J . Let us further assume constant prior probability density p

({m̃K , {�j,K }j∈J
)
.

Estimating m̃K has already been detailed in Eq. (24). In addition, it is then easy to show that {�j,K }j∈J admits a maximum at
{�j,K }j∈J = {nj,K/

(∑
i∈J ni,K

)}j∈J . This maximum corresponds to the usual best estimate for data binning histograms.
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