ON k-CONJUGACY IN A GROUP

by PETER YFF
(Received 2nd August 1963)

All elements mentioned herein are in a group G. A well-known definition states that x and y are conjugate if there exists an element a such that $y=a^{-1} x a$. Conjugacy is an equivalence relation in G. In the present paper this will be called 1-conjugacy.

When $k>1$, the following definition is in effect: y is k-conjugate to $x\left(y_{k} x\right)$ if there exist r and s such that $y=r^{-1} x s$ and $s_{k} \sim_{1} r$. While k-conjugacy is not generally an equivalence relation, it will be seen that there are groups (for example, all finite groups) in which it is so for some $k>1$. Moreover, this concept is related to that of the number of commutators required to express each element of the commutator subgroup.

These properties are easily verified:
P1. If $y_{k} x$, then $y_{\tilde{n}} x$ for every $n>k$.
P2. k-conjugacy is reflexive.
P3. k-conjugacy is symmetric.
P4. If $y_{k} x$, then $y^{-1}{ }_{k} x^{-1}$.
To prove P 1 , let $y_{k} x$. Then $y=x^{-1} x y$, so $y_{k} \tilde{F_{1}} x$, and the result follows by induction. Also, since $x_{i} x$ is always true, $P 2$ is a direct consequence of Pl for every k.

P3 and P4 are proved simultaneously by induction. If $y_{i} x$, then $x_{i} y$ and $y^{-1}{ }_{\mathrm{i}} x^{-1}$, so both are true when $k=1$. Now assume P 3 and P 4 when $k=m$, letting $v_{\tilde{m}} u$ and $y=u^{-1} x v$. Then $x=u y v^{-1}$, but $v^{-1}{ }_{\tilde{m}} u^{-1}$, so $x_{m} \tilde{q}_{1} y$. Also $y^{-1}=v^{-1} x^{-1} u$, but $u_{\tilde{m}} v$, so $y^{-1}{ }_{m \sim 1} x^{-1}$. Thus the results are true when $k=m+1$ and hence for every k.

If 1 is the identity element of G, and $x=a^{-1} b^{-1} a b$, then $1=a x b^{-1} a^{-1} b$, so $l_{z} x$. Conversely, if $1=c^{-1} y d^{-1} c d$, then $y=c d^{-1} c^{-1} d$. Therefore 1 is 2-conjugate to an element if and only if the element is a commutator.

Theorem 1. 2-conjugacy is not always transitive.
Proof. There exist groups in which the product of two commutators is not necessarily a commutator. Let $x=\left(a^{-1} b^{-1} a b\right)\left(c^{-1} d^{-1} c d\right)$ be such an element. Then $d x d^{-1}=d\left(a^{-1} b^{-1} a b\right) c^{-1} d^{-1} c$, so $d x d^{-1}{ }_{z} a^{-1} b^{-1} a b$. Now $1_{\xi} a^{-1} b^{-1} a b$, but 1 is not 2-conjugate to $d x d^{-1}$ since the latter, like x, is not a commutator.

Theorem 2. $y_{k} x$ if and only if there exist a_{1}, \ldots, a_{k+1} such that $x=a_{1} \ldots a_{k+1}$ and $y=a_{k+1} \ldots a_{1}$.

Proof. Let $x=a_{1} \ldots a_{k+1}$ and $y=a_{k+1} \ldots a_{1}$. Since $a_{2} a_{1}=a_{1}^{-1}\left(a_{1} a_{2}\right) a_{1}$, $y_{\mathrm{I}} x$ when $k=1$. Assume that $y_{\dot{m}} x$ when $k=m$. Then

$$
a_{m+2} \ldots a_{1}=\left(a_{1} \ldots a_{m+1}\right)^{-1}\left(a_{1} \ldots a_{m+2}\right)\left(a_{m+1} \ldots a_{1}\right)
$$

and $y_{m} \tilde{+1} x$ when $k=m+1$. Therefore $y_{k} x$ for every k.
Conversely, let $y_{k} x$. When $k=1, y=a^{-1}(x a)$ for some a, and $x=(x a) a^{-1}$. Now assume the result when $k=m$. Let $y_{m \sim} x$, or $y=u^{-1} x v, v_{\tilde{m}} u$. By the inductive hypothesis, $u=b_{1} \ldots b_{m+1}, v=b_{m+1} \ldots b_{1}$. Select b_{m+2} such that $x=\left(b_{1} \ldots b_{m+1}\right) b_{m+2}$. Then $y=b_{m+2} \ldots b_{1}$, and the theorem is proved.

Let C be the commutator subgroup of G. It is known from (2) that C is the set of all elements expressible in the form $a^{-1} \ldots a_{k}^{-1} a_{1} \ldots a_{k}$, for some k. This result may be strengthened by the following:

Theorem 3. (a) Any product of k commutators is expressible in the form $a_{1}^{-1} \ldots a_{2 k}^{-1} a_{1} \ldots a_{2 k}$.
(b) Conversely, the element $a_{1}^{-1} \ldots a_{m}^{-1} a_{1} \ldots a_{m}$, in which $m=2 k$ or $2 k+1$, may be written as a product of k commutators.

Proof. (a) This is true when $k=1$; assume it when $k=n$. Let c_{1}, \ldots, c_{n}, and $u^{-1} v^{-1} u v$ be commutators. Then

$$
\begin{aligned}
& u^{-1} v^{-1} u v\left(c_{1} \ldots c_{n}\right) \\
& =u^{-1} v^{-1} u v\left(a_{1}^{-1} \ldots a_{2 n}^{-1} a_{1} \ldots a_{2 n}\right) \\
& \quad=\left(a_{1} v^{-1}\right)^{-1}\left(u v a_{1}^{-1}\right)^{-1}\left(a_{1} v^{-1} u^{-1} v\right)^{-1} a_{2}^{-1} \ldots a_{2 n}^{-1}\left(a_{1} v^{-1}\right) \\
& \quad\left(u v a_{1}^{-1}\right)\left(a_{1} v^{-1} u^{-1} v\right) a_{2} \ldots a_{2 n}
\end{aligned}
$$

$$
=b_{1}^{-1} \ldots b_{2 n+2}^{-1} b_{1} \ldots b_{2 n+2}
$$

(b) Since $a_{1}^{-1} a_{2}^{-1} a_{1} a_{2}$ and

$$
a_{1}^{-1} a_{2}^{-1} a_{3}^{-1} a_{1} a_{2} a_{3}=\left(a_{2} a_{1}\right)^{-1}\left(a_{2} a_{3}\right)^{-1}\left(a_{2} a_{1}\right)\left(a_{2} a_{3}\right)
$$

are both commutators, the statement is true when $m=2$ and $m=3$. Suppose it is true when $m=r$. Then

$$
\begin{aligned}
& a_{1}^{-1} \ldots a_{r+2}^{-1} a_{1} \ldots a_{r+2} \\
& \quad=a_{1}^{-1} \ldots a_{r}^{-1} a_{1} \ldots a_{r}\left(a_{r+1} a_{1} \ldots a_{r}\right)^{-1}\left(a_{r+1} a_{r+2}\right)^{-1}\left(a_{r+1} a_{1} \ldots a_{r}\right)\left(a_{r+1} a_{r+2}\right)
\end{aligned}
$$

By the inductive hypothesis, the expression $a_{1}^{-1} \ldots a_{r}^{-1} a_{1} \ldots a_{r}$ may be written as $\frac{1}{2} r$ or $\frac{1}{2}(r-1)$ commutators, according as r is even or odd. The remaining expressions constitute a single commutator, and the proof is complete.

Remark: Clearly, when m is odd, the product $a_{1}^{-1} \ldots a_{m}^{-1} a_{1} \ldots a_{m}$ may be reduced to $b_{1}^{-1} \ldots b_{m-1}^{-1} b_{1} \ldots b_{m-1}$.

Theorem 4. $t \in C$ if and only if $t=y^{-1} x$ and $y_{k} x$ for some k.
Proof. If $t \in C$, then $t=a_{1}^{-1} \ldots a_{k+1}^{-1} a_{1} \ldots a_{k+1}$ for some k (Theorem 3). Let $x=a_{1} \ldots a_{k+1}$ and $y=a_{k+1} \ldots a_{1}$. By Theorem 2, $y_{k} x$. Conversely, assume that $y_{k} x$. Then $x=a_{1} \ldots a_{k+1}$ and $y=a_{k+1} \ldots a_{1}$ (Theorem 2), and $y^{-1} x \in C$ (Theorem 3).

As a generalisation of the fact that $1_{2} x$ if and only if x is a commutator, we obtain the following:

Theorem 5. If $y_{k} x$, then x equals y times $\frac{1}{2} k$ or $\frac{1}{2}(k+1)$ commutators according as k is even or odd. Conversely, if x equals y times m commutators, then $y_{2 m} x$.

Proof. By Theorem 2, if $y_{k} x$, then $y^{-1} x=a_{1}^{-1} \ldots a_{k+1}^{-1} a_{1} \ldots a_{k+1}$, which may be written as a product of $\frac{1}{2} k$ or $\frac{1}{2}(k+1)$ commutators, according as k is even or odd (Theorem 3). This proves the first part.

Now suppose that $x=y c_{1} \ldots c_{m}$, each c_{i} being a commutator. If $m=1$, $x=y a^{-1} b^{-1} a b=\left(y a y^{-1}\right)^{-1} y(y b)^{-1}\left(y a y^{-1}\right)(y b)_{2} y$. Assume that $y_{2_{r}} x$ when $m=r$. If $m=r+1$, then $x=y c_{1}\left(c_{2} \ldots c_{r+1}\right)$, so $x \tilde{2}_{r} y c_{1}$. Therefore $x=u^{-1}\left(y c_{1}\right) v$, in which $v_{2 r-1} u$. Then since $y c_{1 z} y$, we have

$$
x=u^{-1}\left(s^{-1} y t^{-1} s t\right) v=(s u)^{-1} y t^{-1}(s u)\left(u^{-1} t v\right)
$$

Now $u^{-1} t v \tilde{2_{r}} t$, so $t^{-1}(s u)\left(u^{-1} t v\right)_{2 r+1} s u$, and $x_{2 r+2} y$.
A variation of this proof may be obtained by using an alternative definition of k-conjugacy; namely, that $y_{k} x$ if there exist a_{1}, \ldots, a_{k} such that

$$
y=x\left(x^{-1} a_{1}^{-1} x a_{1}\right)\left(a_{1}^{-1} a_{2}^{-1} a_{1} a_{2}\right) \ldots\left(a_{k-1}^{-1} a_{k}^{-1} a_{k-1} a_{k}\right) .
$$

This definition may be shown without difficulty to be equivalent to the one we have used. The number of commutators may then be reduced by noting that a product $\left(a^{-1} b^{-1} a b\right)\left(b^{-1} c^{-1} b c\right)$ reduces to a single commutator [(1), p. 37, Ex. 11], for example, $\left(a^{-1} b a\right)^{-1}\left(a^{-1} c\right)^{-1}\left(a^{-1} b a\right)\left(a^{-1} c\right)$. This process may be reversed to prove the converse.

Theorem 6. Let there be a fixed k such that $t \in C$ implies $t=a_{1}^{-1} \ldots a_{k}^{-1} a_{1} \ldots a_{k}$. (By the remark after Theorem 3,we may assume k to be even.) Then k-conjugacy is an equivalence relation separating G into the cosets of C. Furthermore, each element of C is expressible as a product of $\frac{1}{2} k$ commutators.

Proof. For any k, if $y_{k} x$, then $y^{-1} x \in C$ (Theorem 5), so x and y are in the same coset of C. Conversely, assume $y^{-1} x \in C$. By hypothesis,

$$
y^{-1} x=a_{1}^{-1} \ldots a_{k}^{-1} a_{1} \ldots a_{k}
$$

and therefore is a product of $\frac{1}{2} k$ commutators (Theorem 3). By Theorem 5, it follows that $y_{k} x$, and this establishes k-conjugacy as an equivalence relation.

REFERENCES

(1) R. D. Carmichael, Introduction to the theory of groups of finite order (Boston, 1937).
(2) P. Yff. A representation of the commutator subgroup, Mathematics Magazine (1956), 161.

American University of Beirut Beirut, Lebanon

