ON k-CONJUGACY IN A GROUP

by PETER YFF (Received 2nd August 1963)

All elements mentioned herein are in a group G. A well-known definition states that x and y are conjugate if there exists an element a such that $y = a^{-1}xa$. Conjugacy is an equivalence relation in G. In the present paper this will be called 1-conjugacy.

When k > 1, the following definition is in effect: y is k-conjugate to $x(y_k x)$ if there exist r and s such that $y = r^{-1}xs$ and $s_k \sim 1$ r. While k-conjugacy is not generally an equivalence relation, it will be seen that there are groups (for example, all finite groups) in which it is so for some k > 1. Moreover, this concept is related to that of the number of commutators required to express each element of the commutator subgroup.

These properties are easily verified:

- P1. If $y_k x$, then $y_n x$ for every n > k.
- P2. k-conjugacy is reflexive.
- P3. k-conjugacy is symmetric.
- P4. If $y_{k} x$, then $y^{-1}_{k} x^{-1}$.

To prove P1, let $y_k x$. Then $y = x^{-1}xy$, so $y_k \neq x$, and the result follows by induction. Also, since $x_i x$ is always true, P2 is a direct consequence of P1 for every k.

P3 and P4 are proved simultaneously by induction. If $y_{\bar{1}} x$, then $x_{\bar{1}} y$ and $y^{-1}{}_{\bar{1}} x^{-1}$, so both are true when k = 1. Now assume P3 and P4 when k = m, letting $v_{\bar{m}} u$ and $y = u^{-1}xv$. Then $x = uyv^{-1}$, but $v^{-1}{}_{\bar{m}} u^{-1}$, so $x_{m+1} y$. Also $y^{-1} = v^{-1}x^{-1}u$, but $u_{\bar{m}} v$, so $y^{-1}{}_{m+1} x^{-1}$. Thus the results are true when k = m+1 and hence for every k.

If 1 is the identity element of G, and $x = a^{-1}b^{-1}ab$, then $1 = axb^{-1}a^{-1}b$, so $1_2 x$. Conversely, if $1 = c^{-1}yd^{-1}cd$, then $y = cd^{-1}c^{-1}d$. Therefore 1 is 2-conjugate to an element if and only if the element is a commutator.

Theorem 1. 2-conjugacy is not always transitive.

Proof. There exist groups in which the product of two commutators is not necessarily a commutator. Let $x = (a^{-1}b^{-1}ab)(c^{-1}d^{-1}cd)$ be such an element. Then $dxd^{-1} = d(a^{-1}b^{-1}ab)c^{-1}d^{-1}c$, so $dxd^{-1} a^{-1}b^{-1}ab$. Now $1 a^{-1}b^{-1}ab$, but 1 is not 2-conjugate to dxd^{-1} since the latter, like x, is not a commutator.

1 +

E.M.S.—A

P. YFF

Theorem 2. $y_k x$ if and only if there exist a_1, \ldots, a_{k+1} such that $x = a_1 \ldots a_{k+1}$ and $y = a_{k+1} \ldots a_1$.

Proof. Let $x = a_1 \dots a_{k+1}$ and $y = a_{k+1} \dots a_1$. Since $a_2a_1 = a_1^{-1}(a_1a_2)a_1$, $y \downarrow x$ when k = 1. Assume that $y_{\downarrow m} x$ when k = m. Then

$$a_{m+2}...a_1 = (a_1...a_{m+1})^{-1}(a_1...a_{m+2})(a_{m+1}...a_1),$$

and $y_{m+1} x$ when k = m+1. Therefore $y_k x$ for every k.

Conversely, let $y_k x$. When k = 1, $y = a^{-1}(xa)$ for some a, and $x = (xa)a^{-1}$. Now assume the result when k = m. Let $y_{m+1} x$, or $y = u^{-1}xv$, $v_m u$. By the inductive hypothesis, $u = b_1 \dots b_{m+1}$, $v = b_{m+1} \dots b_1$. Select b_{m+2} such that $x = (b_1 \dots b_{m+1})b_{m+2}$. Then $y = b_{m+2} \dots b_1$, and the theorem is proved.

Let C be the commutator subgroup of G. It is known from (2) that C is the set of all elements expressible in the form $a^{-1} \dots a_k^{-1} a_1 \dots a_k$, for some k. This result may be strengthened by the following:

Theorem 3. (a) Any product of k commutators is expressible in the form $a_1^{-1} \dots a_{2k}^{-1} a_1 \dots a_{2k}$.

(b) Conversely, the element $a_1^{-1}...a_m^{-1}a_1...a_m$, in which m = 2k or 2k+1, may be written as a product of k commutators.

Proof. (a) This is true when k = 1; assume it when k = n. Let $c_1, ..., c_n$, and $u^{-1}v^{-1}uv$ be commutators. Then

$$u^{-1}v^{-1}uv(c_{1}...c_{n})$$

$$= u^{-1}v^{-1}uv(a_{1}^{-1}...a_{2n}^{-1}a_{1}...a_{2n})$$

$$= (a_{1}v^{-1})^{-1}(uva_{1}^{-1})^{-1}(a_{1}v^{-1}u^{-1}v)^{-1}a_{2}^{-1}...a_{2n}^{-1}(a_{1}v^{-1})$$

$$(uva_{1}^{-1})(a_{1}v^{-1}u^{-1}v)a_{2}...a_{2n}$$

$$(uva_{1}^{-1})(a_{1}v^{-1}u^{-1}v)a_{2}...a_{2n}$$

(b) Since $a_1^{-1}a_2^{-1}a_1a_2$ and

$$a_1^{-1}a_2^{-1}a_3^{-1}a_1a_2a_3 = (a_2a_1)^{-1}(a_2a_3)^{-1}(a_2a_1)(a_2a_3)$$

are both commutators, the statement is true when m = 2 and m = 3. Suppose it is true when m = r. Then

$$a_{1}^{-1} \dots a_{r+2}^{-1} a_{1} \dots a_{r+2}$$

= $a_{1}^{-1} \dots a_{r}^{-1} a_{1} \dots a_{r} (a_{r+1}a_{1} \dots a_{r})^{-1} (a_{r+1}a_{r+2})^{-1} (a_{r+1}a_{1} \dots a_{r}) (a_{r+1}a_{r+2}).$

By the inductive hypothesis, the expression $a_1^{-1} \dots a_r^{-1} a_1 \dots a_r$ may be written as $\frac{1}{2}r$ or $\frac{1}{2}(r-1)$ commutators, according as r is even or odd. The remaining expressions constitute a single commutator, and the proof is complete.

Remark: Clearly, when *m* is odd, the product $a_1^{-1} \dots a_m^{-1} a_1 \dots a_m$ may be reduced to $b_1^{-1} \dots b_{m-1}^{-1} b_1 \dots b_{m-1}$.

https://doi.org/10.1017/S0013091500011160 Published online by Cambridge University Press

2

Theorem 4. $t \in C$ if and only if $t = y^{-1}x$ and $y_k x$ for some k.

Proof. If $t \in C$, then $t = a_1^{-1} \dots a_{k+1}^{-1} a_1 \dots a_{k+1}$ for some k (Theorem 3). Let $x = a_1 \dots a_{k+1}$ and $y = a_{k+1} \dots a_1$. By Theorem 2, $y_k x$. Conversely, assume that $y_k x$. Then $x = a_1 \dots a_{k+1}$ and $y = a_{k+1} \dots a_1$ (Theorem 2), and $y^{-1}x \in C$ (Theorem 3).

As a generalisation of the fact that $1_{\frac{1}{2}x}$ if and only if x is a commutator, we obtain the following:

Theorem 5. If $y_k x$, then x equals y times $\frac{1}{2}k$ or $\frac{1}{2}(k+1)$ commutators according as k is even or odd. Conversely, if x equals y times m commutators, then $y_{2m} x$.

Proof. By Theorem 2, if $y_k x$, then $y^{-1}x = a_1^{-1} \dots a_{k+1}^{-1} a_1 \dots a_{k+1}$, which may be written as a product of $\frac{1}{2}k$ or $\frac{1}{2}(k+1)$ commutators, according as k is even or odd (Theorem 3). This proves the first part.

Now suppose that $x = yc_1...c_m$, each c_i being a commutator. If m = 1, $x = ya^{-1}b^{-1}ab = (yay^{-1})^{-1}y(yb)^{-1}(yay^{-1})(yb)_2 y$. Assume that $y_{2r} x$ when m = r. If m = r+1, then $x = yc_1(c_2...c_{r+1})$, so $x_{2r} yc_1$. Therefore $x = u^{-1}(yc_1)v$, in which $v_{2r-1}u$. Then since $yc_{12} y$, we have

$$x = u^{-1}(s^{-1}yt^{-1}st)v = (su)^{-1}yt^{-1}(su)(u^{-1}tv).$$

Now $u^{-1}tv \tilde{z}rt$, so $t^{-1}(su)(u^{-1}tv) \tilde{z}r+1}su$, and $x \tilde{z}r+2}y$.

A variation of this proof may be obtained by using an alternative definition of k-conjugacy; namely, that $y_k x$ if there exist $a_1, ..., a_k$ such that

$$y = x(x^{-1}a_1^{-1}xa_1)(a_1^{-1}a_2^{-1}a_1a_2)\dots(a_{k-1}a_k^{-1}a_{k-1}a_k)$$

This definition may be shown without difficulty to be equivalent to the one we have used. The number of commutators may then be reduced by noting that a product $(a^{-1}b^{-1}ab)(b^{-1}c^{-1}bc)$ reduces to a single commutator [(1), p. 37, Ex. 11], for example, $(a^{-1}ba)^{-1}(a^{-1}c)^{-1}(a^{-1}ba)(a^{-1}c)$. This process may be reversed to prove the converse.

Theorem 6. Let there be a fixed k such that $t \in C$ implies $t = a_1^{-1} \dots a_k^{-1} a_1 \dots a_k$. (By the remark after Theorem 3, we may assume k to be even.) Then k-conjugacy is an equivalence relation separating G into the cosets of C. Furthermore, each element of C is expressible as a product of $\frac{1}{2}k$ commutators.

Proof. For any k, if $y_k x$, then $y^{-1}x \in C$ (Theorem 5), so x and y are in the same coset of C. Conversely, assume $y^{-1}x \in C$. By hypothesis,

$$y^{-1}x = a_1^{-1} \dots a_k^{-1} a_1 \dots a_k$$

and therefore is a product of $\frac{1}{2}k$ commutators (Theorem 3). By Theorem 5, it follows that $y_k x$, and this establishes k-conjugacy as an equivalence relation.

REFERENCES

(1) R. D. CARMICHAEL, Introduction to the theory of groups of finite order (Boston, 1937).

(2) P. YFF. A representation of the commutator subgroup, Mathematics Magazine (1956), 161.

American University of Beirut Beirut, Lebanon