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Abstract
In this paper we unveil novel monotonicity conditions applicable to Mean Field Games through the exploration of
finite dimensional canonical transformations. Our findings contribute to establishing new global well-posedness
results for the associated master equations, also in the case of potentially degenerate idiosyncratic noise. Additionally,
we show that recent advancements in global well-posedness results, specifically those related to displacement semi-
monotone and anti-monotone data, can be easily obtained as a consequence of our main results.
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1. Introduction

Mean field games (MFGs for short) have been introduced in the pioneering works of Lasry–Lions and
Huang–Malhamé–Caines (see [24, 21]). The main motivation of both groups was to model strategic
decision making in systems involving a large number of rational agents, arising from (stochastic)
differential games. Ever since, this theory witnessed a great success, both from the theoretical viewpoint
and the point of view of applications. We refer to [11, 12, 15] for a thorough, relatively up-to-date
description of the evolution of this field, from the probabilistic and analytic aspects.

Already early on, Lions in his lecture series at Collège de France ([23]) has introduced the so-
called master equation, associated to MFGs. This is a nonlocal and nonlinear PDE of hyperbolic type
set on R𝑑 × 𝒫2(R𝑑), where R𝑑 models the state space of a typical agent, while 𝒫2(R𝑑) (the set of
Borel probability measures with finite second moment, supported on R𝑑) encodes the distribution of
the agents. One of the main motivations for the solvability of the master equation is that it provides a
deep link between games with finite, but large number of agents and the corresponding MFG: classical
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solutions to the master equation serve as great tools to obtain quantitative rates of convergence of closed
loop Nash equilibria of games with finite number of agents, when the number of agents tends to infinity.

The master equation that we consider in this paper writes as follows. As data, we are given a
Hamiltonian 𝐻 : R𝑑 × 𝒫2(R𝑑) × R𝑑 → R and a final cost 𝐺 : R𝑑 × 𝒫2 (R𝑑) → R. We emphasise
that throughout the text we assume that H and G are smooth enough (we detail the specific assumptions
later), and in particular they are defined and finite at any probability measure with finite second
moment. Therefore, they will be assumed to be non-local and regularising in the measure variable.
Furthermore, we are given a time horizon 𝑇 > 0 and the intensities of the Brownian idiosyncratic and
common noises 𝛽, 𝛽0 ∈ R, respectively. Then, the master equation, written for the unknown function
𝑉 : (0, 𝑇) × R𝑑 ×𝒫2(R𝑑) → R reads as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−𝜕𝑡𝑉 (𝑡, 𝑥, 𝜇) + 𝐻 (𝑥, 𝜇, 𝜕𝑥𝑉) +N𝑉 (𝑡, 𝑥, 𝜇)
− 𝛽

2

2 Δ ind𝑉 − 𝛽2
0

2 Δcom𝑉 (𝑡, 𝑥, 𝜇) = 0,
in (0, 𝑇) × R𝑑 ×𝒫2 (R𝑑),

𝑉 (𝑇, 𝑥, 𝜇) = 𝐺 (𝑥, 𝜇),
in R𝑑 ×𝒫2 (R𝑑),

(1)

where

N𝑉 (𝑡, 𝑥, 𝜇) =
∫
R𝑑
𝜕𝜇𝑉 (𝑡, 𝑥, 𝜇, 𝑥) · 𝜕𝑝𝐻 (𝑥, 𝜇, 𝜕𝑥𝑉 (𝑡, 𝑥, 𝜇))d𝜇(𝑥)

Δ ind𝑉 = tr(𝜕𝑥𝑥𝑉 (𝑡, 𝑥, 𝜇)) +
∫
R𝑑

tr(𝜕𝑥̃𝜇𝑉 (𝑡, 𝑥, 𝜇, 𝑥))d𝜇(𝑥)

and

Δcom𝑉 = tr(𝜕𝑥𝑥𝑉 (𝑡, 𝑥, 𝜇)) +
∫
R𝑑

tr(𝜕𝑥̃𝜇𝑉 (𝑡, 𝑥, 𝜇, 𝑥))d𝜇(𝑥)

+ 2
∫
R𝑑

tr(𝜕𝑥𝜇𝑉 (𝑡, 𝑥, 𝜇, 𝑥))d𝜇(𝑥)

+
∫
R𝑑×R𝑑

tr(𝜕𝜇𝜇𝑉 (𝑡, 𝑥, 𝜇, 𝑥, 𝑥))d𝜇(𝑥)d𝜇(𝑥).

Here 𝜕𝜇𝑉 stands for the so-called Wasserstein gradient whose definition is given later in the text.
The search for well-posedness theories for (1) has initiated a great program in the theory. In general,

this poses great challenges because of the non-local and infinite-dimensional character of the PDE. In
particular, this PDE does not possess a comparison principle which means that the consideration of
viscosity solutions, for instance, would not be feasible in this setting. Therefore, notions of suitable
weak solutions could lead to debates, especially if these lack uniqueness principles. However, there is
no ambiguity regarding classical solutions. Our focus in this paper will also be on classical solutions,
and so, unless otherwise specified, the term well-posedness should be understood in the sense of
classical solutions. Similarly to the theory of finite-dimensional conservations laws, when aiming for
global classical solutions, it is quite clear that these should be expected only under suitable monotonicity
conditions on the data H and G. Such monotonicity conditions are also strongly related to the uniqueness
of MFG Nash equilibria.

Literature review on the well-posedness of master equations. To date, there have been different
notions of monotonicity conditions proposed on the data H and G, which could serve as sufficient
conditions for the global well-posedness theory of (1). The diversity and richness of these conditions
are deeply related to the geometry under the lens of which we look at 𝒫2(R𝑑). For instance, 𝒫2(R𝑑)
can be seen as a flat convex space, but it is natural to look at it also as a non-negatively curved infinite-
dimensional manifold, when equipped with suitable metrics. Historically, the so-called Lasry–Lions (LL)
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monotonicity condition was the first one, introduced already in the seminal work [24]. Geometrically,
this is linked to the flat geometry, imposed on 𝒫2 (R𝑑). When it comes to nonlocal Hamiltonians, this
notion has been defined and exploited so far only for so-called separable Hamiltonians, that is, the ones
which have the structure

𝐻 (𝑥, 𝜇, 𝑝) := 𝐻0(𝑥, 𝑝) − 𝐹 (𝑥, 𝜇), ∀(𝑥, 𝜇, 𝑝) ∈ R𝑑 ×𝒫2(R𝑑) × R𝑑 , (2)

for some 𝐻0 and F. An alternative monotonicity condition is the so-called displacement monotonicity
condition, which does not require the separable structural assumption on H. This stems from the notion
of displacement convexity, used widely in the context of optimal transport theory. Thus, this is linked to
the curved geometry on 𝒫2 (R𝑑). We now give a brief overview of the well-posedness theories for (1)
in these settings and we also mention some alternative, more recently proposed notions of monotonicity
conditions.

In [12, Theorem 5.46] the authors have shown that the master equation (1) is globally well-posed if
the data are LL monotone and possess additional regularity assumptions. Several other works provide
similar conclusions. We refer to [14, Theorem 2.4.5] for the case when the physical space is the flat
torus instead of R𝑑 and to [9, Theorems 56 and 58] to the case without common noise (i.e., 𝛽0 = 0).
We refer also to [22] for new results and clarifications regarding the results from [14]. However, [12,
Theorem 5.46] is the closest result for our purposes.

It is also important to mention that all these global well-posedness results in the context of Lasry–
Lions monotonicity impose both the separable structure on the Hamiltonian and the presence of a
non-degenerate idiosyncratic noise.

In the context of displacement monotonicity global in time well-posedness have been obtained
chronologically as follows. [16] provided this in the context of deterministic and potential (in particular
𝛽 = 𝛽0 = 0 and H separable) games (for similar results, see also [6]). [19] provided the first global in
time well-posedness result in the case of non-separable displacement monotone Hamiltonians and non-
degenerate idiosyncratic noise (i.e., 𝛽 ≠ 0). Finally, [8] provided the result in the case of degenerate
idiosyncratic noise (i.e., 𝛽 = 0) and compared to [19], under lower level regularity assumptions on the
data, and the weaker version of the displacement monotonicity condition on H.

Recently, in [26] and [27] the authors have proposed a notion of anti-monotonicity condition on final
data of master equations, which together with other sufficient structural conditions on the Hamiltonian
resulted in the global in time well-posedness of the master equation. We would like to emphasise that for
this to hold, the anti-monotonicity condition on the final data has to be carefully chosen in line with the
structural conditions on the Hamiltonian. As we show below, this framework can entirely be embedded
into our main results under the umbrella of our newly proposed canonical transformation.

Several other recent developments have seen the light in the context of the well-posedness of MFG
master equations. For a non-exhaustive list we refer to [3, 5, 10, 13, 18, 17].

Our contributions. In this paper our main objective is to explore some geometric features of
Hamiltonian systems which could lead to the global well-posedness of the master equation (1). The
heart of our analysis consist of so-called canonical transformations which in particular reveal new
perspectives on existing and new monotonicity conditions on the Hamiltonians and final data associated
to (1), and in turn lead to new well-posedness theories. The values of the noise intensities, 𝛽, 𝛽0 will not
be significant in our consideration, and our main results hold true also for degenerate problems, that is,
when 𝛽 = 0 or 𝛽0 = 0.

In classical Hamiltonian mechanics, canonical transformations are coordinate transformations on the
phase space, which preserve the structure of Hamilton’s equations. In symplectic geometry, canonical
transforms are known as symplectomorphisms (where the phase space is a cotangent bundle and the
symplectic form is the canonical 2-form). Since in our setting we are only concerned with Euclidean
space we do not use the symplectic terminology. However, it would be interesting to study how sym-
plectomorphisms could potentially generate new well-posedness theories for Hamilton–Jacobi equations
and the master equation in more general settings (i.e., when the underlying space is not Euclidean).

https://doi.org/10.1017/fms.2025.10130 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10130


4 M. Bansil and A. R. Mészáros

We refer the reader to [4] for an introduction to applications of symplectic geometry in classical me-
chanics. We refer also to our companion short note [7], where we explain the regularisation effect of
such transformations in the case of deterministic finite-dimensional HJB equations.

As the master equation has in particular a natural character arising from infinite-dimensional Hamil-
tonian dynamics, we will show below that such transformations play a deep role in revealing hidden
features of it.

Let us describe the driving idea behind our results. For Hamiltonians𝐻 : R𝑑×𝒫2(R𝑑)×R𝑑 → R and
final data 𝐺 : R𝑑 ×𝒫2 (R𝑑) → R we consider a family of prototypical linear canonical transformations
as follows. Let 𝛼 ∈ R and define 𝐻𝛼 : R𝑑 ×𝒫2 (R𝑑) × R𝑑 → R and 𝐺𝛼 : R𝑑 ×𝒫2(R𝑑) → R as

𝐻𝛼 (𝑥, 𝜇, 𝑝) := 𝐻 (𝑥, 𝜇, 𝑝 − 𝛼𝑥) and 𝐺𝛼 (𝑥, 𝜇) := 𝐺 (𝑥, 𝜇) + 𝛼
2
|𝑥 |2. (3)

In particular, this means that the corresponding canonical transformation has the form of

R
𝑑 ×𝒫2 (R𝑑) × R𝑑 � (𝑥, 𝜇, 𝑝) ↦→ (𝑥, 𝜇, 𝑥 − 𝛼𝑝).

This is a ‘finite-dimensional’ transformation, as there is no change in the measure variable 𝜇. Having
defined these transformations, the heart of our analysis is based on the following observation: fix any
𝛼 ∈ R, then the master equation with data (𝐻,𝐺) is well-posed if and only if it is well-posed with data
(𝐻𝛼, 𝐺𝛼) (see Theorem 3.2; in particular the solutions to the corresponding master equations differ
only by an explicit function of (𝑡, 𝑥), parametrised by 𝛼).

The message of this result is that if one produces a well-posedness theory for the master equation,
this will lead to a whole one parameter family of well-posedness theories, with the transformed data.
A deeper consequence of this theorem is the opposite implication. Suppose that one is given the data
(𝐻,𝐺). If one is able to find a suitable range of the parameter 𝛼 such that (𝐻𝛼, 𝐺𝛼) satisfies some
well-known monotonicity conditions, then the problem with the original data must be well-posed. This
second one will be the direction that we investigate in this paper.

Fix 𝛼 ∈ R. It is easy to see that G is LL monotone, if and only if𝐺𝛼 is LL monotone and the situation
is the same for separable H. However, as we will show below, this phenomenon is much different in the
displacement monotone regime. Therefore the previously described result has powerful applications in
the context of displacement monotonicity but not for LL monotonicity.

In the main theorem of this paper, Theorem 3.6, we propose easily verifiable sufficient conditions on
H to ensure that 𝐻𝛼 is displacement monotone. As a consequence, we discover new regimes of global
well-posedness of the master equation. In an informal way, this result can be summarised as follows (we
refer to Theorem 3.6 for the precise statement).

Theorem 1.1. Suppose that 𝐻 : R𝑑 ×𝒫2(R𝑑) × R𝑑 → R is twice continuously differentiable with uni-
formly bounded second-order derivatives. Suppose moreover that H is strongly convex in the p-variable.

Suppose that the symmetric part of 𝜕𝑥𝑝𝐻 is bounded below by an explicit quantity depending on
the other second derivatives of H. Then, 𝐻𝛼 is displacement monotone for a suitable range of 𝛼 ∈ R,
depending on the size of the second derivatives of H in a precise way.

Furthermore, if 𝐺 : R𝑑 × 𝒫2(R𝑑) → R is twice continuously differentiable and displacement 𝛼-
monotone for such specific 𝛼, then the master equation is globally well-posed.

This theorem has an immediate implication, coming from a sort of ‘regularisation phenomenon’ of
𝜕𝑥𝑝𝐻. This can informally be formulated as follows.

Corollary 1.2. Suppose that 𝐺 : R𝑑 × 𝒫2(R𝑑) → R and 𝐻 : R𝑑 × 𝒫2 (R𝑑) × R𝑑 → R are twice
continuously differentiable with uniformly bounded second-order derivatives. Suppose moreover that H
is strongly convex in the p-variable.

We have that there exists 𝐶 > 0 depending on second derivatives of H and G (but independent
of T) so that if 𝛼 ≥ 𝐶, then the master equation is globally well-posed with data (𝐻̃, 𝐺), where
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𝐻̃ : R𝑑 ×𝒫2 (R𝑑) × R𝑑 → R is given by

𝐻̃ (𝑥, 𝜇, 𝑝) := 𝐻 (𝑥, 𝜇, 𝑝) + 𝛼𝑝 · 𝑥.

Hence even if we did not know that the original master equation was solvable, the modified master
equation is solvable for 𝛼 large enough. One can compare the Hamiltonian 𝐻̃ with the one in [27,
Example 7.2].

Remark 1.3. Corollary 1.2 has a deep message: if the Hamiltonian is such that 𝜕𝑥𝑝𝐻 is sufficiently
large compared to other second-order derivatives of H and the second-order derivatives of G, then we
have a global well-posedness theory for the master equation. Therefore 𝜕𝑥𝑝𝐻, and in particular adding
suitable multiples of the function (𝑥, 𝑝, 𝜇) ↦→ 𝑝 · 𝑥 to H can produce a ‘regularisation effect’ for the
master equation, independently of 𝑇 > 0. By carefully examining Lemma 3.4, we see that what is going
on is that the 𝑝 ·𝑥 term is transformed into a multiple of |𝑥 |2

2 , which provides displacement monotonicity
for the problem and hence regularises the master equation. It is easy to see that adding a suitable
multiple of the term |𝑥 |2

2 to H produces displacement monotonicity. Clearly, these regularisation effects
are independent of the noise intensities.

Remark 1.4. We emphasise that the regularisation provided by the function (𝑥, 𝑝, 𝜇) ↦→ 𝛼𝑝 · 𝑥 in the
statement of Corollary 1.2 produces indeed a genuinely new class of data, not covered in the literature
before, for which the master equation is globally well-posed. In particular, if we take an arbitrary pair of
data (𝐻,𝐺), not satisfying any monotonicity condition (either displacement or LL, if H is separable),
it is immediate to check that 𝐻̃ will satisfy neither displacement monotonicity nor LL monotonicity.
Therefore, the monotonicity of the pair (𝐻̃, 𝐺) is indeed hidden.

Further implications of our main results. Having our main results in hand, we have revisited some
previous well-posedness results from the literature.

When G is displacement semi-monotone, then the well-posedness of (1) can be guaranteed if 𝐻𝛼 is
displacement monotone for sufficiently large 𝛼. It turns out that our characterisation for this given in
Proposition 3.4 coincides with the respective assumptions on H discovered recently in [26].

In the recent paper [27], the authors proposed a notion of anti-monotonicity for final data G. They
have described some sufficient conditions on H and G which result in a global well-posedness theory
of (1), if 𝛽 ≠ 0, and G is suitably anti-monotone. There was an emphasis on the fact that G needed to
be ‘sufficiently’ anti-monotone.

It turns out that these well-posedness results from [27], under the additional assumptions that H is
strictly convex in the p-variable fall directly into the framework of the canonical transformations and
they are an easy consequence of our main results, in particular Corollary 1.2. More precisely, first in
Proposition 3.8 we show that if G is 𝜆-anti-monotone, this implies that it is displacement semi-monotone
with a constant which depends only on 𝜆 (in particular, the displacement semi-monotonicity constant is
independent of the second derivative bounds of G). Having strong convexity of H in the p-variable, which
has also bounded second derivatives allows us to use our Corollary 1.2. The Hamiltonian considered in
[27] has the form of

𝐻 (𝑥, 𝜇, 𝑝) := 𝐻0(𝑥, 𝜇, 𝑝) + 〈𝐴0𝑝, 𝑥〉,

for some constant matrix 𝐴0 ∈ R𝑑×𝑑 . This is slightly different than 𝐻̃ from our Corollary 1.2, but the
term 〈𝐴0𝑝, 𝑥〉 has exactly the same role as 𝛼𝑝 · 𝑥 in our consideration. Therefore, for completeness,
as our last contributions, in Proposition 3.12 and Remark 3.13 we show that the assumptions from
the main theorem in [27] essentially imply our assumptions. Furthermore, in the case of Hamiltonians
which are strongly convex in the p-variable, our results need less and weaker assumption, and they
hold true without the presence of a non-degenerate idiosyncratic noise. In particular, we demonstrate
that the emphasis on the sufficient anti-monotonicity of G in [27] is misleading, and this is not needed.
Specifically, in [27] it is remarked: ‘. . . we will need to require our data to be sufficiently anti-monotone
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in appropriate sense’. However we will see that anti-monotonicty is not needed (as anti-monotonicity
implies semi-monotonicity) and that [27] has other, more essential assumptions on H which are what
really give the well-posedness result.

We would like to emphasise that in this paper we provide a general mechanism leading to a global
well-posedness theory of master equations, beyond [27], and the main results from this reference are a
consequence of this general theory.

Some concluding remarks.

◦ For simplicity and transparency of our main ideas, in this manuscript we have decided to focus only
on linear canonical transformations of the form R𝑑 × 𝒫2 (R𝑑) × R𝑑 � (𝑥, 𝜇, 𝑝) ↦→ (𝑥, 𝜇, 𝑥 − 𝛼𝑝).
Without much philosophical effort but with significant technical effort, one could consider canonical
transformations of the form

R
𝑑 ×𝒫2(R𝑑) × R𝑑 � (𝑥, 𝜇, 𝑝) ↦→ (𝑥, 𝜇, 𝑥 − ∇𝜑(𝑥)),

where 𝜑 : R𝑑 → R is any given smooth potential function, with bounded second derivatives. In the
case of noise, this transformation would lead to the modified Hamiltonians and final data as

𝐻𝜑 (𝑥, 𝜇, 𝑝) := 𝐻 (𝑥, 𝜇, 𝑥 − ∇𝜑(𝑥)) +
𝛽2 + 𝛽2

0
2

Δ𝜑(𝑥)

and

𝐺𝜑 (𝑥, 𝜇) := 𝐺 (𝑥, 𝜇) + 𝜑(𝑥).

It is easy to see that Theorem 3.2 holds true if in its statement (𝐻𝛼, 𝐺𝛼) is replaced with (𝐻𝜑 , 𝐺𝜑).
However, in order to obtain new global well-posedness theory (in the case of potentially degenerate
noise), we would need to have a ‘convexifying regularisation’ on 𝐺𝜑 , which means that 𝜑 would
need to be taken to be convex with sufficiently large Hessian eigenvalues. From this point of view,
𝜑(𝑥) = 𝛼

2 |𝑥 |
2 would be a natural choice, and this is why we have decided to reduce our study to this

particular family of potentials.
We remark that in general Hamiltonians are only defined up to an additive constant. In classical

mechanics, this is saying that we may pick any value to correspond to the ‘zero energy’. In the
presence of noise the attentive reader will notice that our 𝐻𝛼 is not the same as the 𝐻𝜑 defined above,
when 𝜑(𝑥) is taken to be 𝛼

2 |𝑥 |
2. However, this is not an issue as the difference between the two is a

constant. In particular, the two Hamiltonians are equivalent. Thus, we could have defined our 𝐻𝛼 as
𝐻𝛼 (𝑥, 𝜇, 𝑝) := 𝐻 (𝑥, 𝜇, 𝑝 − 𝛼𝑥) + (𝛽2+𝛽2

0 )𝑑
2 𝛼 which would then be the exactly the same as 𝐻𝜑 defined

above, however this would introduce unnecessary notational clutter.
◦ In this paper we have considered only ‘finite-dimensional’ canonical transformations (where the

measure component stayed fixed). These have proved to have a deep effect on new global well-
posedness theories for the master equation. It is a very interesting, but seemingly challenging task to
analyse truly infinite-dimensional canonical transformations in the context of MFG master equations.
In particular it seems that the infinite-dimensional canonical transformations do not preserve the
structure of MFG, they only preserve the structure of optimal control problems. In this we see a
significant difference between games and variational problems.

Remark 1.5. If the Hamiltonian H has an associated Lagrangian with bounded second derivatives we
must have that H is strongly convex in p. Similarly, the master equation only corresponds to a game,
when H is convex in p. To the best of the authors’ knowledge there is no motivation for the master
equation outside of this case.

We remark that if one is interested in the case of non-convex H in p then one can adapt our results by
using the Hamiltonian system directly. We refer to the Lagrangian purely for pedagogical reasons and
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it is not needed for any technical reason. In particular our canonical transformation and main theorem,
Theorem 3.2, holds regardless of the convexity of H in p.

2. Preliminaries

In order to keep this discussion self-contained, let us recall some definitions and notations.
Let 𝑝 ≥ 1. Based on [1], we recall that the p-Wasserstein between 𝜇, 𝜈 ∈ 𝒫𝑝 (R𝑑) (probability

measures with finite p-order moment supported on R𝑑) is defined as

𝑊 𝑝
𝑝 (𝜇, 𝜈) := inf

{∫
R𝑑×R𝑑

|𝑥 − 𝑦 |𝑝d𝛾(𝑥, 𝑦) : 𝛾 ∈ Π(𝜇, 𝜈)
}
,

where Π(𝜇, 𝜈) :=
{
𝛾 ∈ 𝒫𝑝 (R𝑑 × R𝑑) : (𝑝𝑥)♯𝛾 = 𝜇, (𝑝𝑦)♯𝛾 = 𝜈

}
stands for the set of admissible

transport plans in the transportation of 𝜇 onto 𝜈, and 𝑝𝑥 , 𝑝𝑦 : R𝑑 × R𝑑 → R
𝑑 denote the canonical

projection operators, that is, 𝑝𝑥 (𝑎, 𝑏) = 𝑎 and 𝑝𝑦 (𝑎, 𝑏) = 𝑏. We refer to the metric space (𝒫𝑝 (R𝑑),𝑊𝑝)
as the Wasserstein space.

We refer to [1, 20] and to [11, Chapter 5] for the notion of Wasserstein differentiability and fully 𝐶𝑘
functions defined on the Wasserstein space, respectively. Based on [2, 11, 19, 25] we recall the notion
of displacement monotonicity.

Definition 2.1. Let 𝐺 : R𝑑 ×𝒫2 (R𝑑) → R be a fully 𝐶1 function.

1. We say that G is displacement monotone if∫
R𝑑×R𝑑

[𝜕𝑥𝐺 (𝑥, 𝜇) − 𝜕𝑥𝐺 (𝑦, 𝜈)] · (𝑥 − 𝑦)d𝛾(𝑥, 𝑦) ≥ 0,

for any 𝛾 ∈ Π(𝜇, 𝜈) and for any 𝜇, 𝜈 ∈ 𝒫2(R𝑑). If G is more regular, say fully 𝐶2, this definition is
equivalent to ∫

R𝑑
〈𝜕𝑥𝑥𝐺 (𝑥, 𝜇)𝜉 (𝑥), 𝜉 (𝑥)〉d𝜇(𝑥)

+
∫
R𝑑×R𝑑

〈𝜕𝑥𝜇𝐺 (𝑥, 𝜇, 𝑥)𝜉 (𝑥), 𝜉 (𝑥)〉d𝜇(𝑥)d𝜇(𝑥) ≥ 0,

for all 𝜇 ∈ 𝒫2(R𝑑) and for all 𝜉 ∈ 𝐶𝑐 (R𝑑;R𝑑).
2. Based on [19, Definition 2.7], we say that G is displacement semi-monotone or displacement
𝛼-monotone, if there exists 𝛼 ∈ R such that (𝑥, 𝜇) ↦→ 𝐺 (𝑥, 𝜇) + 𝛼

2 |𝑥 |
2 is displacement monotone.

For the corresponding Hamiltonians, we can define the displacement monotonicity condition as
follows.

Definition 2.2. Let 𝐻 : R𝑑 × 𝒫2(R𝑑) × R𝑑 → R be such that 𝐻 (·, 𝜇, ·) ∈ 𝐶1 (R𝑑 × R𝑑) for all
𝜇 ∈ 𝒫2(R𝑑). We say that H is displacement monotone, if

−
∫
R𝑑×R𝑑

[𝜕𝑥𝐻 (𝑥, 𝜇, 𝑝1 (𝑥)) − 𝜕𝑥𝐻 (𝑦, 𝜈, 𝑝2(𝑦))] · (𝑥 − 𝑦)d𝛾(𝑥, 𝑦) (4)

+
∫
R𝑑×R𝑑

[𝜕𝑝𝐻 (𝑥, 𝜇, 𝑝1 (𝑥)) − 𝜕𝑝𝐻 (𝑦, 𝜈, 𝑝2 (𝑥))] · (𝑝1 (𝑥) − 𝑝2 (𝑦))d𝛾(𝑥, 𝑦),

for all 𝜇, 𝜈 ∈ 𝒫2(R𝑑), 𝛾 ∈ Π(𝜇, 𝜈) and for all 𝑝1, 𝑝2 ∈ 𝐶𝑏 (R𝑑;R𝑑).

https://doi.org/10.1017/fms.2025.10130 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10130


8 M. Bansil and A. R. Mészáros

Remark 2.3. 1. Suppose that 𝐻 : R𝑑 ×𝒫2(R𝑑) ×R𝑑 → R is fully 𝐶2, strictly convex in the p-variable
and satisfies∫

R𝑑×R𝑑

[
𝜕𝑥𝜇𝐻 (𝑥, 𝜇, 𝑥, 𝑝(𝑥))𝑣(𝑥) + 𝜕𝑥𝑥𝐻 (𝑥, 𝜇, 𝑝(𝑥))𝑣(𝑥)

]
· 𝑣(𝑥)d𝜇(𝑥)d𝜇(𝑥) (5)

+ 1
4

∫
R𝑑

{


[𝜕𝑝𝑝𝐻 (𝑥, 𝜇, 𝑝(𝑥))]−
1
2

∫
R𝑑
𝜕𝑝𝜇𝐻 (𝑥, 𝜇, 𝑥, 𝑝(𝑥))𝑣(𝑥)d𝜇(𝑥)




2}d𝜇(𝑥)

≤ 0,

for all 𝜇 ∈ 𝒫2 (R𝑑), for all 𝑝 ∈ 𝐶 (R𝑑;R𝑑) and for all 𝑣 ∈ 𝐿2
𝜇 (R𝑑;R𝑑). Then H satisfies the

displacement monotonicity condition from Definition 2.2. For the proof of this fact we refer to [25,
Lemma 2.7].

Definition 2.4 [27, Definition 3.8], [26, Definition 3.4]. Let 𝜆 = (𝜆0, 𝜆1, 𝜆2, 𝜆3) ∈ R4 be such that
𝜆0 > 0, 𝜆1 ∈ R, 𝜆2 > 0 and 𝜆3 ≥ 0. Let 𝐺 : R𝑑 × 𝒫2 (R𝑑) → R be fully 𝐶2. It is said that G is
𝜆-anti-monotone, if

𝜆0

∫
R𝑑

〈𝜕𝑥𝑥𝐺 (𝑥, 𝜇)𝜉 (𝑥), 𝜉 (𝑥)〉d𝜇(𝑥)

+ 𝜆1

∫
R𝑑×R𝑑

〈𝜕𝑥𝜇𝐺 (𝑥, 𝜇, 𝑥)𝜉 (𝑥), 𝜉 (𝑥)〉d𝜇(𝑥)d𝜇(𝑥)

+
∫
R𝑑

|𝜕𝑥𝑥𝐺 (𝑥, 𝜇)𝜉 (𝑥) |2d𝜇(𝑥) + 𝜆2

∫
R𝑑




 ∫
R𝑑
𝜕𝑥𝜇𝐺 (𝑥, 𝜇, 𝑥)𝜉 (𝑥)d𝜇(𝑥)




2d𝜇(𝑥)

≤ 𝜆3

∫
R𝑑

|𝜉 (𝑥) |2d𝜇(𝑥)

for all 𝜇 ∈ 𝒫2(R𝑑) and for all 𝜉 ∈ 𝐿2
𝜇 (R𝑑;R𝑑).

3. New Well-Posedness theories for MFG and master equations

We impose a set of assumptions which are going to be imposed for our main results. These are relatively
standard assumptions, which appear naturally in the literature on the well-posedness theories for master
equations.
Assumption 1. Suppose that 𝐺 : R𝑑 ×𝒫2 (R𝑑) → R is fully 𝐶2, bounded below and is such that
◦ 𝜕𝑥𝑥𝐺 is uniformly continuous and it is uniformly bounded by 𝐿𝐺 on R𝑑 ×𝒫2(R𝑑);
◦ 𝜕𝑥𝜇𝐺 is uniformly continuous and it is uniformly bounded by 𝐿𝐺 on R𝑑 ×𝒫2(R𝑑) × R𝑑 ,
for some 𝐿𝐺 > 0.
Assumption 2. Suppose that 𝐻 : R𝑑 ×𝒫2 (R𝑑) × R𝑑 → R is fully 𝐶2 and satisfies the following:
◦ 𝜕𝑝𝑝𝐻 is uniformly continuous and 𝜕𝑝𝑝𝐻 (𝑥, 𝜇, 𝑝) ≥ 𝑐−1

0 𝐼, for some 𝑐0 > 0 and for all (𝑥, 𝜇, 𝑝) ∈
R
𝑑 ×𝒫2(R𝑑) × R𝑑;

◦ 𝜕𝑥𝑝𝐻, 𝜕𝑝𝑝𝐻, 𝜕𝑥𝑥𝐻 are continuous and are uniformly bounded by 𝐿𝐻 on R𝑑 ×𝒫2 (R𝑑) × R𝑑;
◦ 𝜕𝑝𝜇𝐻, 𝜕𝑥𝜇𝐻 are uniformly continuous and are uniformly bounded by 𝐿𝐻 onR𝑑×𝒫2(R𝑑) ×R𝑑×R𝑑;
◦ 𝜕𝑝𝐻 (𝑥, 𝜇, 𝑝) · 𝑝 − 𝐻 (𝑥, 𝜇, 𝑝) ≥ −𝐿𝐻 for all (𝑥, 𝜇, 𝑝) ∈ R𝑑 ×𝒫2(R𝑑) × R𝑑 ,
for some 𝐿𝐻 > 0.
Remark 3.1.
1. When continuity of functions is assumed in the measure variable, this is with respect to the𝑊2 metric.
2. Assumptions 1 and 2 from above are the standing assumptions imposed in [8].

Let us now restate our crucial observation from the introduction in form of a theorem.
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Theorem 3.2. Fix any 𝛼 ∈ R. The master equation with data (𝐻,𝐺) is well-posed if and only if it is
well-posed with data (𝐻𝛼, 𝐺𝛼).

Proof. Via direct computation we can verify that V is a solution of the master equation with data (𝐻,𝐺)
if and only if 𝑉̃ (𝑡, 𝑥, 𝜇) := 𝑉 (𝑡, 𝑥, 𝜇) + 𝛼

2 |𝑥 |
2 − (𝛽2

0+𝛽
2)𝛼𝑑

2 (𝑡 −𝑇) is a solution of the master equation with
data (𝐻𝛼, 𝐺𝛼). �

Remark 3.3. Because of the connection between the solvability of the master equation with data
(𝐻,𝐺) and (𝐻𝛼, 𝐺𝛼) described in Theorem 3.2, the same connection holds true for the solutions to the
corresponding finite-dimensional mean field games systems as well.

Recall the definition (3). Now we give some sufficient conditions on Hamiltonians H which would
result in the displacement monotonicity of the transformed Hamiltonians 𝐻𝛼.

Lemma 3.4. Let H be fully 𝐶2. Then 𝐻𝛼 is displacement monotone if and only if∫
R𝑑

[(
𝜕𝑥𝑥𝐻 (𝑥, 𝜇, 𝑝(𝑥)) − 2𝛼𝜕𝑥𝑝𝐻 (𝑥, 𝜇, 𝑝(𝑥))

)
𝑣(𝑥)

]
· 𝑣(𝑥)d𝜇(𝑥) (6)

+
∫
R𝑑×R𝑑

[(
𝜕𝑥𝜇𝐻 (𝑥, 𝜇, 𝑥, 𝑝(𝑥)) − 2𝛼𝜕𝑝𝜇𝐻 (𝑥, 𝜇, 𝑥, 𝑝(𝑥))

)
𝑣(𝑥)

]
· 𝑣(𝑥)d𝜇(𝑥)d𝜇(𝑥)

+ 1
4

∫
R𝑑

{



[𝜕𝑝𝑝𝐻 (𝑥, 𝜇, 𝑝(𝑥))]−
1
2

[ ∫
R𝑑
𝜕𝑝𝜇𝐻 (𝑥, 𝜇, 𝑥, 𝑝(𝑥))𝑣(𝑥)d𝜇(𝑥)

+ 2𝛼𝜕𝑝𝑝𝐻 (𝑥, 𝜇, 𝑝(𝑥))𝑣(𝑥)
] 



2}d𝜇(𝑥)

≤ 0,

for all 𝜇 ∈ 𝒫2 (R𝑑), for all 𝑝 ∈ 𝐶 (R𝑑;R𝑑) and for all 𝑣 ∈ 𝐿2
𝜇 (R𝑑;R𝑑).

Proof. We readily compute

𝜕𝑥𝑥 𝐻̃ (𝑥, 𝜇, 𝑝) = 𝜕𝑥𝑥𝐻 (𝑥, 𝜇, 𝑝 − 𝛼𝑥) − 2𝛼Re(𝜕𝑥𝑝𝐻 (𝑥, 𝜇, 𝑝 − 𝛼𝑥))
+ 𝛼2𝜕𝑝𝑝𝐻 (𝑥, 𝜇, 𝑝 − 𝛼𝑥),

𝜕𝑥𝜇𝐻̃ (𝑥, 𝜇, ·, 𝑝) = 𝜕𝑥𝜇𝐻 (𝑥, 𝜇, ·, 𝑝 − 𝛼𝑥) − 𝛼𝜕𝑝𝜇𝐻 (𝑥, 𝜇, ·, 𝑝 − 𝛼𝑥),
𝜕𝑝𝜇𝐻̃ (𝑥, 𝜇, ·, 𝑝) = 𝜕𝑝𝜇𝐻 (𝑥, 𝜇, ·, 𝑝 − 𝛼𝑥),
𝜕𝑝𝑝𝐻̃ (𝑥, 𝜇, 𝑝) = 𝜕𝑝𝑝𝐻 (𝑥, 𝜇, 𝑝 − 𝛼𝑥).

The result now immediately follows by writing the inequality (5) for 𝐻̃ in terms of H, after noting that
we may replace Re(𝜕𝑥𝑝𝐻) with 𝜕𝑥𝑝𝐻 since the quadratic form induced by a skew-symmetric operator
is null. �

Remark 3.5. The inequality in (6) can be equivalently rewritten as∫
R𝑑×R𝑑

[
𝜕𝑥𝜇𝐻 (𝑥, 𝜇, 𝑥, 𝑝(𝑥))𝑣(𝑥) − 𝛼𝜕𝑝𝜇𝐻 (𝑥, 𝜇, 𝑥, 𝑝(𝑥))𝑣(𝑥)

]
· 𝑣(𝑥)d𝜇(𝑥)d𝜇(𝑥) (7)

+
∫
R𝑑

[
𝜕𝑥𝑥𝐻 (𝑥, 𝜇, 𝑝(𝑥))𝑣(𝑥) − 2𝛼𝜕𝑥𝑝𝐻 (𝑥, 𝜇, 𝑝(𝑥))𝑣(𝑥)

+ 𝛼2𝜕𝑝𝑝𝐻 (𝑥, 𝜇, 𝑝(𝑥))𝑣(𝑥)
]
· 𝑣(𝑥)d𝜇(𝑥)

+ 1
4

∫
R𝑑

{


[𝜕𝑝𝑝𝐻 (𝑥, 𝜇, 𝑝(𝑥))]−
1
2

∫
R𝑑
𝜕𝑝𝜇𝐻 (𝑥, 𝜇, 𝑥, 𝑝(𝑥))𝑣(𝑥)d𝜇(𝑥)




2}d𝜇(𝑥)

≤ 0,
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for all 𝜇 ∈ 𝒫2 (R𝑑), for all 𝑝 ∈ 𝐶 (R𝑑;R𝑑) and for all 𝑣 ∈ 𝐿2
𝜇 (R𝑑;R𝑑). This is the exact same condition

as [26, (5.10)].

We introduce the following notations.

𝜅(𝜕𝑥𝑝𝐻) := inf
(𝑥,𝜇, 𝑝) ∈R𝑑×𝒫2 (R𝑑)×R𝑑

𝜆min(Re 𝜕𝑥𝑝𝐻 (𝑥, 𝜇, 𝑝)),

where for 𝐴 ∈ R𝑑×𝑑 , we adopt the notation Re(𝐴) := (𝐴 + 𝐴�)/2 and for 𝐴 ∈ R𝑑×𝑑 symmetric 𝜆min(𝐴)
stands for its smallest eigenvalue. Furthermore, to denote the suprema of the standard 2-matrix norms,
we use the notation 

𝜕𝑥𝜇𝐻

 := sup

(𝑥,𝜇, 𝑝, 𝑥̃) ∈R𝑑×𝒫2 (R𝑑)×R𝑑×R𝑑



𝜕𝑥𝜇𝐻 (𝑥, 𝜇, 𝑝, 𝑥)


;

𝜕𝑝𝜇𝐻

 := sup

(𝑥,𝜇, 𝑝, 𝑥̃) ∈R𝑑×𝒫2 (R𝑑)×R𝑑×R𝑑



𝜕𝑝𝜇𝐻 (𝑥, 𝜇, 𝑝, 𝑥)


;

|𝜕𝑥𝑥𝐻 | := sup
(𝑥,𝜇, 𝑝) ∈R𝑑×𝒫2 (R𝑑)×R𝑑

|𝜕𝑥𝑥𝐻 (𝑥, 𝜇, 𝑝) |,

and so on for similar quantities. Now, we can formulate the second main result of our paper.

Theorem 3.6. Suppose that 𝐻 : R𝑑 ×𝒫2 (R𝑑) × R𝑑 → R satisfies

𝜕𝑝𝑝𝐻 (𝑥, 𝜇, 𝑝) ≥ 𝑐−1
0 𝐼,

for some 𝑐0 > 0 and for all (𝑥, 𝜇, 𝑝) ∈ R𝑑×𝒫2 (R𝑑)×R𝑑 . Suppose that 𝜅(𝜕𝑥𝑝𝐻),


𝜕𝑝𝑝𝐻

, |𝜕𝑥𝑥𝐻 |,



𝜕𝑝𝜇𝐻


and



𝜕𝑥𝜇𝐻

 are finite. Define

𝐿𝐻𝑜𝑢𝑟 :=


𝜕𝑥𝜇𝐻

 + 1

4
𝑐0


𝜕𝑝𝜇𝐻

2 + |𝜕𝑥𝑥𝐻 |.

Suppose that 𝜅(𝜕𝑥𝑝𝐻) ≥ 1
2


𝜕𝑝𝜇𝐻

 +√

𝜕𝑝𝑝𝐻

𝐿𝐻𝑜𝑢𝑟 . Then 𝐻𝛼 is displacement monotone for any

𝛼 ∈
[
𝛼𝐻− , 𝛼

𝐻
+
]
,

where

𝛼𝐻± :=
𝜅(𝜕𝑥𝑝𝐻) − 1

2


𝜕𝑝𝜇𝐻

 ±√(

𝜅(𝜕𝑥𝑝𝐻) − 1
2


𝜕𝑝𝜇𝐻

)2

−


𝜕𝑝𝑝𝐻

𝐿𝐻𝑜𝑢𝑟

𝜕𝑝𝑝𝐻

 .

In particular we have the result for 𝛼 := 𝜅 (𝜕𝑥𝑝𝐻 )− 1
2 |𝜕𝑝𝜇𝐻 |

|𝜕𝑝𝑝𝐻 | .

Proof. For 𝛼 ∈
[
𝛼𝐻− , 𝛼

𝐻
+
]
, 𝜇 ∈ 𝒫2 (R𝑑), 𝑝 ∈ 𝐶 (R𝑑;R𝑑) and for 𝑣 ∈ 𝐿2

𝜇 (R𝑑;R𝑑) normalized, that is,∫
R𝑑

|𝑣(𝑥) |2𝑑𝜇 = 1, we compute
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R𝑑×R𝑑

[
𝜕𝑥𝜇𝐻 (𝑥, 𝜇, 𝑥, 𝑝(𝑥))𝑣(𝑥) − 𝛼𝜕𝑝𝜇𝐻 (𝑥, 𝜇, 𝑥, 𝑝(𝑥))𝑣(𝑥)

]
· 𝑣(𝑥)d𝜇(𝑥)d𝜇(𝑥)

+
∫
R𝑑

[
𝜕𝑥𝑥𝐻 (𝑥, 𝜇, 𝑝(𝑥))𝑣(𝑥) − 2𝛼𝜕𝑥𝑝𝐻 (𝑥, 𝜇, 𝑝(𝑥))𝑣(𝑥)

+ 𝛼2𝜕𝑝𝑝𝐻 (𝑥, 𝜇, 𝑝(𝑥))𝑣(𝑥)
]
· 𝑣(𝑥)d𝜇(𝑥)

+ 1
4

∫
R𝑑

{


[𝜕𝑝𝑝𝐻 (𝑥, 𝜇, 𝑝(𝑥))]−
1
2

∫
R𝑑
𝜕𝑝𝜇𝐻 (𝑥, 𝜇, 𝑥, 𝑝(𝑥))𝑣(𝑥)d𝜇(𝑥)




2}d𝜇(𝑥)

≤
∫
R𝑑×R𝑑

[


𝜕𝑥𝜇𝐻

 + 𝛼

𝜕𝑝𝜇𝐻

 + |𝜕𝑥𝑥𝐻 | − 2𝛼𝜅(𝜕𝑥𝑝𝐻) + 𝛼2

𝜕𝑝𝑝𝐻

]d𝜇(𝑥)d𝜇(𝑥)

+ 𝑐0
4

∫
R𝑑

{


 ∫
R𝑑



𝜕𝑝𝜇𝐻

d𝜇(𝑥)


2}d𝜇(𝑥)

= |𝜕𝑥𝑥𝐻 | − 2𝛼𝜅(𝜕𝑥𝑝𝐻) + 𝛼2

𝜕𝑝𝑝𝐻

 + 

𝜕𝑥𝜇𝐻

 + 𝛼

𝜕𝑝𝜇𝐻

 + 𝑐0


𝜕𝑝𝜇𝐻

2

4

=


𝜕𝑝𝑝𝐻

𝛼2 − 2

(
𝜅(𝜕𝑥𝑝𝐻) −

1
2


𝜕𝑝𝜇𝐻

)𝛼 + |𝜕𝑥𝑥𝐻 | +



𝜕𝑥𝜇𝐻

 + 𝑐0


𝜕𝑝𝜇𝐻

2

4

=


𝜕𝑝𝑝𝐻

𝛼2 − 2

(
𝜅(𝜕𝑥𝑝𝐻) −

1
2


𝜕𝑝𝜇𝐻

)𝛼 + 𝐿𝐻𝑜𝑢𝑟

≤ 0,

where in the last inequality we used the sign of the quadratic expression. �

As an immediate consequence of Theorem 3.6, we have the well-posedness result in Corollary 1.2.

Proof of Corollary 1.2. We see that all second-order derivatives of 𝐻̃ and H match, except the ones
involving 𝜕𝑥𝑝 , for which we have

𝜕𝑥𝑝𝐻̃ = 𝜕𝑥𝑝𝐻 + 𝛼𝐼.

By the uniform bounds on the corresponding second-order derivatives of H, we see that for 𝛼 sufficiently
large, 𝐻̃ fulfils the assumptions of Theorem 3.6. Increasing 𝛼 further if necessary, we can ensure that
G is displacement 𝛼-monotone. Having G displacement 𝛼-monotone and 𝐻𝛼 displacement monotone
would result via Theorem 3.2 in the desired global well-posedness result for the master equation. �

3.1. Our results and previous results on the master equation involving displacement semi-monotone
data

We notice that the inequality (6) is precisely the inequality (5.10) from [26]. This means in particular
that [26, Theorem 5.6] is a direct consequence of Theorem 3.2 and Remark 3.4 above.

We note that Theorem 3.2 shows that we have a global well-posedness theory for the master equation
as long as G is displacement semi-monotone and the corresponding 𝐻̃ is displacement monotone. In
particular, it is enough for these to satisfy the ‘first-order’ monotonicity conditions, in the sense of
Definition 2.1(1) and (4). Therefore, Theorem 3.2 together with the well-posedness results from [8]
provide a more general result than the one in [26, Theorem 5.6].

3.2. Our results and previous results on the master equation involving anti-monotone data

Our first objective in this subsection is to show that any function 𝐺 : R𝑑 × 𝒫2 (R𝑑) → R which is
𝜆-anti-monotone in the sense of Definition 2.4 is actually displacement 𝛼-monotone in the sense of
Definition 2.1(2), where 𝛼 can be computed explicitly in terms of 𝜆 = (𝜆0, 𝜆1, 𝜆2, 𝜆3). We start with
some preparatory results.
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Remark 3.7. G is 𝜆-anti-monotone in the sense of Definition 2.4 with 𝜆 = (𝜆0, 𝜆1, 𝜆2, 𝜆3) if and only if∫
R𝑑

{



𝜕𝑥𝑥𝐺 (𝑥, 𝜇)𝜉 (𝑥) + 𝜆0
2
𝜉 (𝑥)





2
+ 𝜆2





∫
R𝑑
𝜕𝑥𝜇𝐺 (𝑥, 𝜇, 𝑥)𝜉 (𝑥)d𝜇(𝑥) + 𝜆1

2𝜆2
𝜉 (𝑥)





2}d𝜇(𝑥)

≤
(
𝜆3 +

(
𝜆0
2

)2
+ 𝜆2

(
𝜆1
2𝜆2

)2
) ∫
R𝑑

|𝜉 (𝑥) |2d𝜇(𝑥).

Proof. This is immediate by an algebraic manipulation after computing the squares. �

Proposition 3.8. If G is 𝜆-anti monotone in the sense of Definition 2.4 with 𝜆 = (𝜆0, 𝜆1, 𝜆2, 𝜆3), then



∫
R𝑑×R𝑑

〈𝜕𝑥𝜇𝐺 (𝑥, 𝜇, 𝑥)𝜉 (𝑥), 𝜉 (𝑥)〉d𝜇(𝑥)d𝜇(𝑥)






≤ ��� |𝜆1 |
2𝜆2

+

√
𝜆3
𝜆2

+ 𝜆0
2

4𝜆2
+
(
𝜆1
2𝜆2

)2� !
∫
R𝑑

|𝜉 (𝑥) |2d𝜇(𝑥)

and 



∫
R𝑑

〈𝜕𝑥𝑥𝐺 (𝑥, 𝜇)𝜉 (𝑥), 〉𝜉 (𝑥)d𝜇(𝑥)






≤ ��� |𝜆0 |
2

+

√
𝜆3 +

(
𝜆0
2

)2
+ 𝜆2

(
𝜆1
2𝜆2

)2� !
∫
R𝑑

d𝜇(𝑥) |𝜉 (𝑥) |2.

In particular G is displacement 𝛼𝜆-monotone, with

𝛼𝜆 ≥ max
⎧⎪⎪⎨⎪⎪⎩
|𝜆1 |
2𝜆2

+

√
𝜆3
𝜆2

+ 𝜆0
2

4𝜆2
+
(
𝜆1
2𝜆2

)2
;
|𝜆0 |
2

+

√
𝜆3 +

(
𝜆0
2

)2
+ 𝜆2

(
𝜆1
2𝜆2

)2⎫⎪⎪⎬⎪⎪⎭.
Proof. Let us recall that in the definition of 𝜆-anti-monotonicity we have 𝜆0 > 0, 𝜆2 > 0, 𝜆3 ≥ 0 and
there is no sign restriction on 𝜆1.

First, let us suppose that 𝜆1 ≠ 0.
Note that for any 𝑣, 𝑤 ∈ R𝑑 and any 𝐶 > 0 we have

|〈𝑣, 𝑤〉| ≤ 𝐶 + 2
2

|𝑣 |2 + 1
2𝐶

|𝑣 + 𝑤 |2.

With the choice of 𝑣 := 𝜆1
2𝜆2
𝜉 (𝑥) and 𝑤 :=

∫
R𝑑
𝜕𝑥𝜇𝐺 (𝑥, 𝜇, 𝑥)𝜉 (𝑥)d𝜇(𝑥), we obtain∫

R𝑑





〈∫
R𝑑
𝜕𝑥𝜇𝐺 (𝑥, 𝜇, 𝑥)𝜉 (𝑥)d𝜇(𝑥), 𝜆1

2𝜆2
𝜉 (𝑥)

〉



d𝜇(𝑥)
≤

∫
R𝑑

{(
𝐶

2
+ 1

)



 𝜆1
2𝜆2

𝜉 (𝑥)




2

+ 1
2𝐶





∫
R𝑑
𝜕𝑥𝜇𝐺 (𝑥, 𝜇, 𝑥)𝜉 (𝑥)d𝜇(𝑥) + 𝜆1

2𝜆2
𝜉 (𝑥)





2}d𝜇(𝑥)
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=
∫
R𝑑

{(
𝐶

2
+ 1

)



 𝜆1
2𝜆2

𝜉 (𝑥)




2

+ 1
2𝐶𝜆2

(
𝜆2





∫
R𝑑
𝜕𝑥𝜇𝐺 (𝑥, 𝜇, 𝑥)𝜉 (𝑥)d𝜇(𝑥) + 𝜆1

2𝜆2
𝜉 (𝑥)





2)}d𝜇(𝑥)

≤
∫
R𝑑

{(
𝐶

2
+ 1

)



 𝜆1
2𝜆2

𝜉 (𝑥)




2

+ 1
2𝐶𝜆2

(
𝜆3 +

(
𝜆0
2

)2
+ 𝜆2

(
𝜆1
2𝜆2

)2
)
|𝜉 (𝑥) |2

}
d𝜇(𝑥)

where the last inequality follows from Proposition 3.7. Hence,∫
R𝑑





〈∫
R𝑑
𝜕𝑥𝜇𝐺 (𝑥, 𝜇, 𝑥)𝜉 (𝑥)d𝜇(𝑥), 𝜉 (𝑥)

〉



d𝜇(𝑥)
≤

((
𝐶

2
+ 1

)
|𝜆1 |
2𝜆2

+ 1
𝐶 |𝜆1 |

(
𝜆3 +

(
𝜆0
2

)2
+ 𝜆2

(
𝜆1
2𝜆2

)2
)) ∫

R𝑑
|𝜉 (𝑥) |2d𝜇(𝑥)

=

(
|𝜆1 |
2𝜆2

+ 𝐶 |𝜆1 |
4𝜆2

+ 1
𝐶 |𝜆1 |

(
𝜆3 +

(
𝜆0
2

)2
+ 𝜆2

(
𝜆1
2𝜆2

)2
)) ∫

R𝑑
|𝜉 (𝑥) |2d𝜇(𝑥).

We now take 𝐶 = 1
|𝜆1 |

√(
𝜆3 +

(
𝜆0
2

)2
+ 𝜆2

(
𝜆1
2𝜆2

)2
)
(4𝜆2) to obtain∫

R𝑑





〈∫
R𝑑
𝜕𝑥𝜇𝐺 (𝑥, 𝜇, 𝑥)𝜉 (𝑥)d𝜇(𝑥), 𝜉 (𝑥)

〉



d𝜇(𝑥)
≤

������
|𝜆1 |
2𝜆2

+ 2

√√√√
𝜆3 +

(
𝜆0
2

)2
+ 𝜆2

(
𝜆1
2𝜆2

)2

4𝜆2

�    !
∫
R𝑑

|𝜉 (𝑥) |2d𝜇(𝑥)

=
��� |𝜆1 |

2𝜆2
+

√
𝜆3
𝜆2

+ 𝜆0
2

4𝜆2
+
(
𝜆1
2𝜆2

)2� !
∫
R𝑑

|𝜉 (𝑥) |2d𝜇(𝑥)

Now, as the left-hand side of this estimate is continuous at 𝜆1 = 0, we can send 𝜆1 → 0, and conclude
the claim for general 𝜆1 ∈ R.

In the same manner with the choice of 𝑣 := 𝜆0
2 𝜉 (𝑥) and 𝑤 := 𝜕𝑥𝑥𝐺 (𝑥, 𝜇)𝜉 (𝑥), for 𝐶 > 0 arbitrary

we get ∫
R𝑑

|〈𝜕𝑥𝑥𝐺 (𝑥, 𝜇)𝜉 (𝑥), 〉𝜉 (𝑥) |d𝜇(𝑥)

≤ 2
|𝜆0 |

∫
R𝑑

(
𝐶 + 2

2





𝜆0
2
𝜉 (𝑥)





2 + 1
2𝐶





𝜕𝑥𝑥𝐺 (𝑥, 𝜇)𝜉 (𝑥) + 𝜆0
2
𝜉 (𝑥)





2)d𝜇(𝑥)

≤ 2
|𝜆0 |

(
𝐶 + 2

2

(
𝜆2

0
4

)
+ 1

2𝐶

(
𝜆3 +

(
𝜆0
2

)2
+ 𝜆2

(
𝜆1
2𝜆2

)2
)) ∫

R𝑑
d𝜇(𝑥) |𝜉 (𝑥) |2

=

(
|𝜆0 |
2

+ 𝐶 |𝜆0 |
4

+ 1
|𝜆0 |𝐶

(
𝜆3 +

(
𝜆0
2

)2
+ 𝜆2

(
𝜆1
2𝜆2

)2
)) ∫

R𝑑
d𝜇(𝑥) |𝜉 (𝑥) |2

By taking 𝐶 = 2
|𝜆0 |

√(
𝜆3 +

(
𝜆0
2

)2
+ 𝜆2

(
𝜆1
2𝜆2

)2
)

we obtain the result. �
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Remark 3.9. In Proposition 3.8 we see that the estimates, and hence the conclusion regarding the
displacement 𝛼-monotonicity, hold true even for 𝜆0 ≤ 0. Therefore, we might drop the requirement
𝜆0 > 0, and our claims from below will remain true.

Corollary 3.10. Let 𝐺 : R𝑑 ×𝒫2 (R𝑑) → R be 𝜆-anti-monotone which satisfies Assumption 1. Suppose
that 𝐻 : R𝑑 × 𝒫2 (R𝑑) × R𝑑 → R satisfies Assumption 2 and it is such that 𝐻𝛼𝜆 is displacement
monotone, where the constant 𝛼𝜆 is given in Proposition 3.8. Then, the master equation (1) with data
(𝐻,𝐺) is globally well-posed.

Proof. This is a direct consequence of Proposition 3.8 and Theorem 3.2. �

We would like to conclude our paper by showing that, if H is strictly convex in the p-variable, then
the main theorem on the global well-posedness of the master equation from [27, Theorem 7.1] is a
particular case of our main results from Corollary 3.10. For completeness, we informally state this here.

Theorem 3.11 [27, Theorem 7.1]. Suppose that 𝐺 : R𝑑 × 𝒫2(R𝑑) is smooth enough with uniformly
bounded second-, third- and fourth-order derivatives. Suppose that the Hamiltonian 𝐻 : R𝑑 ×𝒫2 (R𝑑) ×
R
𝑑 → R has the specific factorisation

𝐻 (𝑥, 𝜇, 𝑝) := 〈𝐴0𝑥, 𝑝〉 + 𝐻0(𝑥, 𝜇, 𝑝),

for a constant matrix 𝐴0 ∈ R𝑑×𝑑 and 𝐻0 : R𝑑 × 𝒫2(R𝑑) × R𝑑 → R smooth enough. Suppose
furthermore that G is 𝜆-anti-monotone and that a special set of specific assumption take place jointly
for 𝜆 = (𝜆0, 𝜆1, 𝜆2, 𝜆3), the matrix 𝐴0 and 𝐻0. Then the master equation (1) is globally well-posed for
any 𝑇 > 0, in the classical sense.

Proposition 3.12. Suppose that 𝐺 : R𝑑 ×𝒫2(R𝑑) → R is 𝜆-anti monotone and satisfies Assumption 1.
Suppose that 𝐻 : R𝑑 ×𝒫2(R𝑑) × R𝑑 → R is given by

𝐻 (𝑥, 𝜇, 𝑝) = 〈𝐴0𝑥, 𝑝〉 + 𝐻0(𝑥, 𝜇, 𝑝),

with 𝐻0 : R𝑑 ×𝒫2 (R𝑑) × R𝑑 → R satisfying Assumption 2 and 𝐴0 ∈ R𝑑×𝑑 is a given constant matrix.
Let 𝐾𝐻 := 𝑐0



𝜕𝑝𝑝𝐻

 = 𝑐0


𝜕𝑝𝑝𝐻0



 be the condition number of 𝜕𝑝𝑝𝐻. Suppose that

𝜅(𝐴0) ≥ max
{(

7
2
+
√
𝐾𝐻
2

)
𝐿𝐻0

2 +
√

𝜕𝑝𝑝𝐻

|𝜕𝑥𝑥𝐻0 |;

(
3
2
+ 𝑓 (𝜆)

)
𝐿𝐻0

2

}
, (8)

where 𝜆 = (𝜆0, 𝜆1, 𝜆2, 𝜆2), we have set

𝑓 (𝜆) :=
5|𝜆1 |
4𝜆2

+ 1 + 𝜆3
2𝜆2

+ 𝜆0
4𝜆2

+ 5𝜆0
4

+ 𝜆3
2

+ |𝜆1 |
4

= 1 + 1
2

(
5𝜆0
2

+ |𝜆1 |
2

+ 𝜆3

)
+ 1

2𝜆2

(
𝜆0
2

+ 5|𝜆1 |
2

+ 𝜆3

)
,

and 𝐿𝐻0
2 > 0 is a constant associated to 𝐻0, satisfying

|𝜕𝑥𝑝𝐻0 | ≤ 𝐿𝐻0
2 , |𝜕𝑝𝑝𝐻0 | ≤ 𝐿𝐻0

2 , |𝜕𝑥𝜇𝐻0 | ≤ 𝐿𝐻0
2 and |𝜕𝑝𝜇𝐻0 | ≤ 𝐿𝐻0

2 .

Then the master equation is globally well-posed.

Proof. Let us note that by the definition of 𝐿𝐻0
2 and by the definition of 𝐿𝐻0

𝑜𝑢𝑟 , we have that

𝐿𝐻0
𝑜𝑢𝑟 ≤ 𝐿𝐻0

2 + 𝑐0
4

(
𝐿𝐻0

)2
+ |𝜕𝑥𝑥𝐻0 |. (9)

https://doi.org/10.1017/fms.2025.10130 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10130


Forum of Mathematics, Sigma 15

As 𝜅(𝜕𝑥𝑝𝐻) ≥ 𝜅(𝐴0) −


𝜕𝑥𝑝𝐻0



, we see that the assumption 𝜅(𝐴0) ≥ ( 7
2 +

√
𝐾𝐻

2 )𝐿𝐻0
2 +√

𝜕𝑝𝑝𝐻

|𝜕𝑥𝑥𝐻0 | and (9) imply

𝜅(𝜕𝑥𝑝𝐻) ≥ 𝜅(𝐴0) −


𝜕𝑥𝑝𝐻0



 ≥ 3𝐿𝐻0
2 + 1

2


𝜕𝑝𝜇𝐻

 − 

𝜕𝑥𝑝𝐻0



 + √
𝐾𝐻
2

𝐿𝐻0
2

+
√

𝜕𝑝𝑝𝐻

|𝜕𝑥𝑥𝐻0 |

≥ 2𝐿𝐻0
2 + 1

2


𝜕𝑝𝜇𝐻

 + √

𝐾𝐻
2

𝐿𝐻0
2 +

√

𝜕𝑝𝑝𝐻

|𝜕𝑥𝑥𝐻0 |

=
1
2


𝜕𝑝𝜇𝐻

 +√

𝑐0
4
|𝜕𝑝𝑝𝐻0 |

(
𝐿𝐻0

2

)2
+
√

4
(
𝐿𝐻0

2

)2
+
√

𝜕𝑝𝑝𝐻

|𝜕𝑥𝑥𝐻0 |

≥ 1
2


𝜕𝑝𝜇𝐻

 +√

𝑐0
4
|𝜕𝑝𝑝𝐻0 |

(
𝐿𝐻0

2

)2
+
√

4|𝜕𝑝𝑝𝐻0 |𝐿𝐻0
2 +

√

𝜕𝑝𝑝𝐻

|𝜕𝑥𝑥𝐻0 |

≥ 1
2


𝜕𝑝𝜇𝐻0



 +√

𝜕𝑝𝑝𝐻0


𝐿𝐻0
𝑜𝑢𝑟

=
1
2


𝜕𝑝𝜇𝐻

 +√

𝜕𝑝𝑝𝐻

𝐿𝐻𝑜𝑢𝑟

and so we can apply Theorem 3.6. We get that H is displacement 𝛼-monotone with

𝛼 =
𝜅(𝜕𝑥𝑝𝐻) − 1

2


𝜕𝑝𝜇𝐻



𝜕𝑝𝑝𝐻



≥
𝜅(𝐴0) − |𝜕𝑥𝑝𝐻0 | − 1

2


𝜕𝑝𝜇𝐻0





𝜕𝑝𝑝𝐻0




≥

(
3
2 + 𝑓 (𝜆)

)
𝐿𝐻0

2 − |𝜕𝑥𝑝𝐻0 | − 1
2


𝜕𝑝𝜇𝐻0





𝜕𝑝𝑝𝐻0




≥ 𝑓 (𝜆).

From Proposition 3.8 we see that G is semi-monotone with constant

𝜂 :=
|𝜆1 |
2𝜆2

+

√
𝜆3
𝜆2

+ 𝜆0
2

4𝜆2
+
(
𝜆1
2𝜆2

)2
+ 𝜆0

2
+

√
𝜆3 +

(
𝜆0
2

)2
+ 𝜆2

(
𝜆1
2𝜆2

)2

≤ |𝜆1 |
2𝜆2

+
√
𝜆3
𝜆2

+

√
𝜆0

2

4𝜆2
+

√(
𝜆1
2𝜆2

)2
+ 𝜆0

2
+
√
𝜆3 +

√(
𝜆0
2

)2
+

√
𝜆2

(
𝜆1
2𝜆2

)2

≤ |𝜆1 |
𝜆2

+
√
𝜆3
𝜆2

+

√
𝜆0

2

4𝜆2
+ 𝜆0 +

√
𝜆3 +

√
𝜆2

1
4𝜆2

≤ |𝜆1 |
𝜆2

+ 1
2
+ 𝜆3

2𝜆2
+ 𝜆0

4𝜆2
+ 𝜆0

4
+ 𝜆0 +

1
2
+ 𝜆3

2
+ |𝜆1 |

4𝜆2
+ |𝜆1 |

4

=
5|𝜆1 |
4𝜆2

+ 1 + 𝜆3
2𝜆2

+ 𝜆0
4𝜆2

+ 5𝜆0
4

+ 𝜆3
2

+ |𝜆1 |
4

= 𝑓 (𝜆)

and so the result follows. �

Remark 3.13. We compare Proposition 3.12 with [27, Theorem 7.1]. This theorem has many assump-
tions. We show that up to constants (depending only on 𝐾𝐻 ) only a few of these many assumptions
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imply our assumptions. First, we recall that the definition of the 3×3 matrices 𝐴1, 𝐴2 from formula [27,
(4.3)]. These are not constructed from 𝐴0 above, and they involve constants coming in particular from
𝜆 = (𝜆0, 𝜆1, 𝜆2, 𝜆3). Furthermore, for 𝐴 ∈ R𝑑×𝑑 , 𝜅(𝐴) stands for the largest eigenvalue of Re(𝐴).

To continue we need the assumption

𝜅(𝐴0) ≥ (1 + 𝜅(𝐴−1
1 𝐴2))𝐿𝐻0

2 . (10)

In [27, Theorem 7.1] (specifically the second item of (7.1)) it is assumed that

𝜅(𝐴0) ≥ (1 + 𝜅(𝐴−1
1 𝐴2))𝐿𝐻0

2 , (10′)

although they probably meant to assume (10)1.
We can formulate the following statement.

Claim. The assumptions of [27, Theorem 7.1], up to a multiplicative constant depending on 𝐾𝐻 ,
imply (8).

Proof of claim. By definition, we have that 𝜅(𝐴−1
1 𝐴2) ≥ 𝑣�𝐴−1

1 𝐴2𝑣 for any unit vector 𝑣 ∈ R3. Taking
𝑣 = 1√

3
(1, 1, 1)� and using the explicit form of 𝐴1, 𝐴2 given in [27, (4.3)] together with the fact that all

the entries of these matrices are non-negative, by direct computation we obtain

𝜅(𝐴−1
1 𝐴2) ≥

1
3

(
1
4

(
𝜆0 + 𝜆0 +





𝜆0 −
1
2
𝜆1





 + 𝜆3

)
+ 1

2𝜆2

(
𝜆0 + |𝜆1 | + ( 1

2
|𝜆1 | + 𝜆2 + 𝜆3)

))
≥ 1

3

(
1
4

(
𝜆0 + 𝜆0 − |𝜆0 | +

1
2
|𝜆1 | + 𝜆3

)
+ 1

2𝜆2

(
𝜆0 + |𝜆1 | + ( 1

2
|𝜆1 | + 𝜆2 + 𝜆3)

))
=

1
3

(
1
4

(
𝜆0 +

1
2
|𝜆1 | + 𝜆3

)
+ 1

2𝜆2

(
𝜆0 + |𝜆1 | + ( 1

2
|𝜆1 | + 𝜆2 + 𝜆3)

))
≥ 1

15
𝑓 (𝜆),

so (10) implies that

𝜅(𝐴0) ≥
1
15
𝐿𝐻0

2 (15 + 𝑓 (𝜆)). (11)

Furthermore we see from the second inequality in [27, (7.2)] that

𝛾̄𝜅(𝐴0) ≥ |𝜕𝑥𝑥𝐻 |.

By the assumption (i) of [27, Theorem 7.1] we have that 𝛾̄ satisfies [27, (4.2)] in which the first
inequality implies that 𝜆0 >

𝛾̄2

4𝛾 − 8𝜆3
4𝛾 . Hence we obtain (4𝛾𝜆0 + 8𝜆3) ≥ 𝛾̄2. It is clear that 2 𝑓 (𝜆) ≥ 𝜆0

and 2 𝑓 (𝜆) ≥ 𝜆3, therefore we get 16 𝑓 (𝜆) (1 + 𝛾) ≥ 𝛾̄2. Since 𝛾 < 𝛾̄ by assumption (i) of [27, Theorem
7.1] and 1 < 𝛾̄ by the same assumption we get 2𝛾̄ ≥ 1 + 𝛾 and so we obtain 32 𝑓 (𝜆) ≥ 𝛾̄. Hence we get

𝜅(𝐴0)2 ≥
𝐿𝐻0

2
15

𝑓 (𝜆)𝜅(𝐴0) ≥
𝐿𝐻0

2
15 · 32

𝛾̄𝜅(𝐴0) ≥


𝜕𝑝𝑝𝐻


15 · 32

|𝜕𝑥𝑥𝐻 |

and so we obtain 𝜅(𝐴0) ≥ 1
4
√

30

√

𝜕𝑝𝑝𝐻

|𝜕𝑥𝑥𝐻 |.

1The 𝜅 on the right-hand side is likely a typo as in the fourth to last line on [27, page 15] the authors need to use 𝜅 (𝐴−1
1 𝐴2) .

Furthermore we see 𝜅 appearing correctly also in a similar assumption, [26, (6.3)].
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Moreover, (10) implies that 𝜅(𝐴0) ≥ 𝐿𝐻0
2 and so we get

𝜅(𝐴0) ≥
1
2
𝐿𝐻0

2 + 1
8
√

30

√

𝜕𝑝𝑝𝐻

|𝜕𝑥𝑥𝐻 |. (12)

To summarise, the assumptions of [27, Theorem 7.1] imply (11) and (12) which in turn imply that

𝜅(𝐴0) ≥
1

8
√

30 +
√
𝐾𝐻

max
{(

7
2
+
√
𝐾𝐻
2

)
𝐿𝐻0

2 +
√

𝜕𝑝𝑝𝐻

|𝜕𝑥𝑥𝐻0 |;

(
3
2
+ 𝑓 (𝜆)

)
𝐿𝐻0

2

}
.

This, aside from the constant of 1
8
√

30+
√
𝐾𝐻

in front, is the exact assumption (8) of our Proposition 3.12.
�
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