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Abstract

In this paper we unveil novel monotonicity conditions applicable to Mean Field Games through the exploration of
finite dimensional canonical transformations. Our findings contribute to establishing new global well-posedness
results for the associated master equations, also in the case of potentially degenerate idiosyncratic noise. Additionally,
we show that recent advancements in global well-posedness results, specifically those related to displacement semi-
monotone and anti-monotone data, can be easily obtained as a consequence of our main results.
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1. Introduction

Mean field games (MFGs for short) have been introduced in the pioneering works of Lasry-Lions and
Huang—Malhamé—Caines (see [24, 21]). The main motivation of both groups was to model strategic
decision making in systems involving a large number of rational agents, arising from (stochastic)
differential games. Ever since, this theory witnessed a great success, both from the theoretical viewpoint
and the point of view of applications. We refer to [11, 12, 15] for a thorough, relatively up-to-date
description of the evolution of this field, from the probabilistic and analytic aspects.

Already early on, Lions in his lecture series at College de France ([23]) has introduced the so-
called master equation, associated to MFGs. This is a nonlocal and nonlinear PDE of hyperbolic type
set on R? x 9, (R?), where R¢ models the state space of a typical agent, while %, (R¢) (the set of
Borel probability measures with finite second moment, supported on R¢) encodes the distribution of
the agents. One of the main motivations for the solvability of the master equation is that it provides a
deep link between games with finite, but large number of agents and the corresponding MFG: classical
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solutions to the master equation serve as great tools to obtain quantitative rates of convergence of closed
loop Nash equilibria of games with finite number of agents, when the number of agents tends to infinity.

The master equation that we consider in this paper writes as follows. As data, we are given a
Hamiltonian H : RY x %, (R%) x RY — R and a final cost G : R? x 2,(RY) — R. We emphasise
that throughout the text we assume that H and G are smooth enough (we detail the specific assumptions
later), and in particular they are defined and finite at any probability measure with finite second
moment. Therefore, they will be assumed to be non-local and regularising in the measure variable.
Furthermore, we are given a time horizon 7 > 0 and the intensities of the Brownian idiosyncratic and
common noises 3, Bo € R, respectively. Then, the master equation, written for the unknown function
V:(0,T) xR x P (R?) — R reads as

—0;V(t,x, ) + H(x, 1, 0,V) + NV (1, x, 1)
2 2
_%Aindv - %Acomv(t’x’ ,u) =0,
in (0,7) x R? x 9 (RY), (1)
V(T,x, 1) =G(x,p),
in R? x 9, (R9),

where
NV(t,x, 1) = /R 0V (10, 1, 3) - O H(E, 1, 0V (1,5, ) da ()
BV = t0usVtoxp) + [ @5,V (15,108
and
BeamV = (O (5 0) + [ 65,V (5, . D) ()
+2 /R (0 V(0,3 1, D)D)
+ /R oy FuV (03,1, 5.2) (D (7).

Here 8,V stands for the so-called Wasserstein gradient whose definition is given later in the text.

The search for well-posedness theories for (1) has initiated a great program in the theory. In general,
this poses great challenges because of the non-local and infinite-dimensional character of the PDE. In
particular, this PDE does not possess a comparison principle which means that the consideration of
viscosity solutions, for instance, would not be feasible in this setting. Therefore, notions of suitable
weak solutions could lead to debates, especially if these lack uniqueness principles. However, there is
no ambiguity regarding classical solutions. Our focus in this paper will also be on classical solutions,
and so, unless otherwise specified, the term well-posedness should be understood in the sense of
classical solutions. Similarly to the theory of finite-dimensional conservations laws, when aiming for
global classical solutions, it is quite clear that these should be expected only under suitable monotonicity
conditions on the data H and G. Such monotonicity conditions are also strongly related to the uniqueness
of MFG Nash equilibria.

Literature review on the well-posedness of master equations. To date, there have been different
notions of monotonicity conditions proposed on the data H and G, which could serve as sufficient
conditions for the global well-posedness theory of (1). The diversity and richness of these conditions
are deeply related to the geometry under the lens of which we look at 9% (R?). For instance, 9, (R%)
can be seen as a flat convex space, but it is natural to look at it also as a non-negatively curved infinite-
dimensional manifold, when equipped with suitable metrics. Historically, the so-called Lasry—Lions (LL)
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monotonicity condition was the first one, introduced already in the seminal work [24]. Geometrically,
this is linked to the flat geometry, imposed on %, (R¢). When it comes to nonlocal Hamiltonians, this
notion has been defined and exploited so far only for so-called separable Hamiltonians, that is, the ones
which have the structure

H()C,/l,p) = HO(x’p) - F()C,/,l), \V,()C,/,l,p) € Rd X 9)2(Rd) X Rd’ ()

for some Hj and F. An alternative monotonicity condition is the so-called displacement monotonicity
condition, which does not require the separable structural assumption on H. This stems from the notion
of displacement convexity, used widely in the context of optimal transport theory. Thus, this is linked to
the curved geometry on % (R%). We now give a brief overview of the well-posedness theories for (1)
in these settings and we also mention some alternative, more recently proposed notions of monotonicity
conditions.

In [12, Theorem 5.46] the authors have shown that the master equation (1) is globally well-posed if
the data are LL monotone and possess additional regularity assumptions. Several other works provide
similar conclusions. We refer to [14, Theorem 2.4.5] for the case when the physical space is the flat
torus instead of R? and to [9, Theorems 56 and 58] to the case without common noise (i.e., Bo = 0).
We refer also to [22] for new results and clarifications regarding the results from [14]. However, [12,
Theorem 5.46] is the closest result for our purposes.

It is also important to mention that all these global well-posedness results in the context of Lasry—
Lions monotonicity impose both the separable structure on the Hamiltonian and the presence of a
non-degenerate idiosyncratic noise.

In the context of displacement monotonicity global in time well-posedness have been obtained
chronologically as follows. [16] provided this in the context of deterministic and potential (in particular
B = Bo = 0 and H separable) games (for similar results, see also [6]). [19] provided the first global in
time well-posedness result in the case of non-separable displacement monotone Hamiltonians and non-
degenerate idiosyncratic noise (i.e., 8 # 0). Finally, [8] provided the result in the case of degenerate
idiosyncratic noise (i.e., 8 = 0) and compared to [19], under lower level regularity assumptions on the
data, and the weaker version of the displacement monotonicity condition on H.

Recently, in [26] and [27] the authors have proposed a notion of anti-monotonicity condition on final
data of master equations, which together with other sufficient structural conditions on the Hamiltonian
resulted in the global in time well-posedness of the master equation. We would like to emphasise that for
this to hold, the anti-monotonicity condition on the final data has to be carefully chosen in line with the
structural conditions on the Hamiltonian. As we show below, this framework can entirely be embedded
into our main results under the umbrella of our newly proposed canonical transformation.

Several other recent developments have seen the light in the context of the well-posedness of MFG
master equations. For a non-exhaustive list we refer to [3, 5, 10, 13, 18, 17].

Our contributions. In this paper our main objective is to explore some geometric features of
Hamiltonian systems which could lead to the global well-posedness of the master equation (1). The
heart of our analysis consist of so-called canonical transformations which in particular reveal new
perspectives on existing and new monotonicity conditions on the Hamiltonians and final data associated
to (1), and in turn lead to new well-posedness theories. The values of the noise intensities, 3, 8o will not
be significant in our consideration, and our main results hold true also for degenerate problems, that is,
when 8 =0or By =0.

In classical Hamiltonian mechanics, canonical transformations are coordinate transformations on the
phase space, which preserve the structure of Hamilton’s equations. In symplectic geometry, canonical
transforms are known as symplectomorphisms (where the phase space is a cotangent bundle and the
symplectic form is the canonical 2-form). Since in our setting we are only concerned with Euclidean
space we do not use the symplectic terminology. However, it would be interesting to study how sym-
plectomorphisms could potentially generate new well-posedness theories for Hamilton—Jacobi equations
and the master equation in more general settings (i.e., when the underlying space is not Euclidean).
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We refer the reader to [4] for an introduction to applications of symplectic geometry in classical me-
chanics. We refer also to our companion short note [7], where we explain the regularisation effect of
such transformations in the case of deterministic finite-dimensional HJB equations.

As the master equation has in particular a natural character arising from infinite-dimensional Hamil-
tonian dynamics, we will show below that such transformations play a deep role in revealing hidden
features of it.

Let us describe the driving idea behind our results. For Hamiltonians H : RY x %, (R?)xR? — R and
final data G : R¢ x 9 (R?) — R we consider a family of prototypical linear canonical transformations
as follows. Let @ € R and define H, : RY x 2, (R4) x RY - Rand G, : R? x P (R?) — R as

a
Ha (%, pt, p) 1= Hx, g, p = x) and Go(x, p) 1= Gx, ) + 2 |x[. 3)

In particular, this means that the corresponding canonical transformation has the form of
RY x 2, (R?) xR > (e, 1, p) > (x, u, x —ap).

This is a ‘finite-dimensional’ transformation, as there is no change in the measure variable u. Having
defined these transformations, the heart of our analysis is based on the following observation: fix any
a € R, then the master equation with data (H, G) is well-posed if and only if it is well-posed with data
(Hg,G o) (see Theorem 3.2; in particular the solutions to the corresponding master equations differ
only by an explicit function of (¢, x), parametrised by ).

The message of this result is that if one produces a well-posedness theory for the master equation,
this will lead to a whole one parameter family of well-posedness theories, with the transformed data.
A deeper consequence of this theorem is the opposite implication. Suppose that one is given the data
(H,G). If one is able to find a suitable range of the parameter a such that (H,,G,) satisfies some
well-known monotonicity conditions, then the problem with the original data must be well-posed. This
second one will be the direction that we investigate in this paper.

Fix a € R. Itis easy to see that G is LL monotone, if and only if G, is LL monotone and the situation
is the same for separable H. However, as we will show below, this phenomenon is much different in the
displacement monotone regime. Therefore the previously described result has powerful applications in
the context of displacement monotonicity but not for LL. monotonicity.

In the main theorem of this paper, Theorem 3.6, we propose easily verifiable sufficient conditions on
H to ensure that H, is displacement monotone. As a consequence, we discover new regimes of global
well-posedness of the master equation. In an informal way, this result can be summarised as follows (we
refer to Theorem 3.6 for the precise statement).

Theorem 1.1. Suppose that H : R¢ x P (R?) x R? — R is twice continuously differentiable with uni-
formly bounded second-order derivatives. Suppose moreover that H is strongly convex in the p-variable.
Suppose that the symmetric part of Ox,H is bounded below by an explicit quantity depending on
the other second derivatives of H. Then, H is displacement monotone for a suitable range of a € R,
depending on the size of the second derivatives of H in a precise way.
Furthermore, if G : R? x P2 (R?) — R is twice continuously differentiable and displacement a-
monotone for such specific «, then the master equation is globally well-posed.

This theorem has an immediate implication, coming from a sort of ‘regularisation phenomenon’ of
OxpH. This can informally be formulated as follows.

Corollary 1.2. Suppose that G : RY x P, (RY) — R and H : R? x 9, (R?) x R? — R are twice
continuously differentiable with uniformly bounded second-order derivatives. Suppose moreover that H
is strongly convex in the p-variable.

We have that there exists C > 0 depending on second derivatives of H and G (but independent
of T) so that if @« > C, then the master equation is globally well-posed with data (H,G), where
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H:R? x 2 (RY) x R¢ — R is given by
H(x,p,p) == H(x,u,p) +ap - x.

Hence even if we did not know that the original master equation was solvable, the modified master
equation is solvable for @ large enough. One can compare the Hamiltonian H with the one in [27,
Example 7.2].

Remark 1.3. Corollary 1.2 has a deep message: if the Hamiltonian is such that d,,H is sufficiently
large compared to other second-order derivatives of H and the second-order derivatives of G, then we
have a global well-posedness theory for the master equation. Therefore dx, H, and in particular adding
suitable multiples of the function (x, p, ) — p - x to H can produce a ‘regularisation effect’ for the
master equation, independently of 7 > 0. By carefully examining Lemma 3.4, we see that what is going
on is that the p - x term is transformed into a multiple of % which provides displacement monotonicity
for the problem and hence regularises the master equation. It is easy to see that adding a suitable
multiple of the term % to H produces displacement monotonicity. Clearly, these regularisation effects
are independent of the noise intensities.

Remark 1.4. We emphasise that the regularisation provided by the function (x, p, u) — ap - x in the
statement of Corollary 1.2 produces indeed a genuinely new class of data, not covered in the literature
before, for which the master equation is globally well-posed. In particular, if we take an arbitrary pair of
data (H, G), not satisfying any monotonicity condition (either displacement or LL, if H is separable),
it is immediate to check that H will satisfy neither displacement monotonicity nor LL monotonicity.
Therefore, the monotonicity of the pair (H, G) is indeed hidden.

Further implications of our main results. Having our main results in hand, we have revisited some
previous well-posedness results from the literature.

When G is displacement semi-monotone, then the well-posedness of (1) can be guaranteed if H, is
displacement monotone for sufficiently large «. It turns out that our characterisation for this given in
Proposition 3.4 coincides with the respective assumptions on H discovered recently in [26].

In the recent paper [27], the authors proposed a notion of anti-monotonicity for final data G. They
have described some sufficient conditions on H and G which result in a global well-posedness theory
of (1), if 8 # 0, and G is suitably anti-monotone. There was an emphasis on the fact that G needed to
be ‘sufficiently’ anti-monotone.

It turns out that these well-posedness results from [27], under the additional assumptions that H is
strictly convex in the p-variable fall directly into the framework of the canonical transformations and
they are an easy consequence of our main results, in particular Corollary 1.2. More precisely, first in
Proposition 3.8 we show that if G is A-anti-monotone, this implies that it is displacement semi-monotone
with a constant which depends only on A (in particular, the displacement semi-monotonicity constant is
independent of the second derivative bounds of G). Having strong convexity of H in the p-variable, which
has also bounded second derivatives allows us to use our Corollary 1.2. The Hamiltonian considered in
[27] has the form of

H(x, pu, p) = Ho(x, u, p) + (Aop, x),

for some constant matrix Ay € R%*¢. This is slightly different than H from our Corollary 1.2, but the
term (App, x) has exactly the same role as ap - x in our consideration. Therefore, for completeness,
as our last contributions, in Proposition 3.12 and Remark 3.13 we show that the assumptions from
the main theorem in [27] essentially imply our assumptions. Furthermore, in the case of Hamiltonians
which are strongly convex in the p-variable, our results need less and weaker assumption, and they
hold true without the presence of a non-degenerate idiosyncratic noise. In particular, we demonstrate
that the emphasis on the sufficient anti-monotonicity of G in [27] is misleading, and this is not needed.
Specifically, in [27] it is remarked: . . . we will need to require our data to be sufficiently anti-monotone
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in appropriate sense’. However we will see that anti-monotonicty is not needed (as anti-monotonicity
implies semi-monotonicity) and that [27] has other, more essential assumptions on H which are what
really give the well-posedness result.

We would like to emphasise that in this paper we provide a general mechanism leading to a global
well-posedness theory of master equations, beyond [27], and the main results from this reference are a
consequence of this general theory.

Some concluding remarks.

o For simplicity and transparency of our main ideas, in this manuscript we have decided to focus only
on linear canonical transformations of the form R¢ x 9, (R%) x R4 3 (x,u, p) — (x,u,x — ap).
Without much philosophical effort but with significant technical effort, one could consider canonical
transformations of the form

R x P (RY) xR 5 (x, 1, p) > (x, pt,x = Vop(x)),

where ¢ : RY — R is any given smooth potential function, with bounded second derivatives. In the
case of noise, this transformation would lead to the modified Hamiltonians and final data as

2 + 2
Hy(x, 1, p) = H(x, pr,x = Vo(x)) + %Asa(x)

and

Gy(x,pt) =G (x, p) + p(x).

It is easy to see that Theorem 3.2 holds true if in its statement (H,, G o) is replaced with (H,, G ).
However, in order to obtain new global well-posedness theory (in the case of potentially degenerate
noise), we would need to have a ‘convexifying regularisation’ on G, which means that ¢ would
need to be taken to be convex with sufficiently large Hessian eigenvalues. From this point of view,
px) =% |x|> would be a natural choice, and this is why we have decided to reduce our study to this
particular family of potentials.

We remark that in general Hamiltonians are only defined up to an additive constant. In classical
mechanics, this is saying that we may pick any value to correspond to the ‘zero energy’. In the
presence of noise the attentive reader will notice that our H, is not the same as the H,, defined above,
when ¢(x) is taken to be § |x|>. However, this is not an issue as the difference between the two is a
constant. In particular, the two Hamiltonians are equivalent. Thus, we could have defined our H, as

2 2
Ho(x,u,p) :=H(x,u,p—ax)+ ma which would then be the exactly the same as H,, defined
above, however this would introduce unnecessary notational clutter.

o In this paper we have considered only ‘finite-dimensional’ canonical transformations (where the
measure component stayed fixed). These have proved to have a deep effect on new global well-
posedness theories for the master equation. It is a very interesting, but seemingly challenging task to
analyse truly infinite-dimensional canonical transformations in the context of MFG master equations.
In particular it seems that the infinite-dimensional canonical transformations do not preserve the
structure of MFG, they only preserve the structure of optimal control problems. In this we see a

significant difference between games and variational problems.

Remark 1.5. If the Hamiltonian A has an associated Lagrangian with bounded second derivatives we
must have that H is strongly convex in p. Similarly, the master equation only corresponds to a game,
when H is convex in p. To the best of the authors’ knowledge there is no motivation for the master
equation outside of this case.

We remark that if one is interested in the case of non-convex H in p then one can adapt our results by
using the Hamiltonian system directly. We refer to the Lagrangian purely for pedagogical reasons and
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it is not needed for any technical reason. In particular our canonical transformation and main theorem,
Theorem 3.2, holds regardless of the convexity of H in p.

2. Preliminaries

In order to keep this discussion self-contained, let us recall some definitions and notations.
Let p > 1. Based on [1], we recall that the p-Wasserstein between u,v € %, (R?) (probability
measures with finite p-order moment supported on R¢) is defined as

W5 (. v) = inf{/Rded lx —y|Pdy(x,y): v € H(u,V)},

where I1(y,v) := {y €P, (RY x RY) : Py =m, (pPly = v} stands for the set of admissible
transport plans in the transportation of u onto v, and p*, p¥ : R x R — R< denote the canonical
projection operators, that is, p* (a, b) = a and p” (a, b) = b. We refer to the metric space (%, (RY), Wp)
as the Wasserstein space.

We refer to [1, 20] and to [1 1, Chapter 5] for the notion of Wasserstein differentiability and fully C k
functions defined on the Wasserstein space, respectively. Based on [2, 11, 19, 25] we recall the notion
of displacement monotonicity.

Definition 2.1. Let G : R? x 9,(R%) — R be a fully C! function.

1. We say that G is displacement monotone if
[ 16k = 0,60 - (= 0y (2.) > 0
R4 xR

for any y € IT(yu, v) and for any p, v € P (R?). If G is more regular, say fully C2, this definition is
equivalent to

[ @G ) £
N / (DG (e, 1, D)), £ (D)) (X)da(F) > O,
R4 xR4

for all 4 € P (R?) and for all £ € C.(R4;RY).
2. Based on [19, Definition 2.7], we say that G is displacement semi-monotone or displacement
a-monotone, if there exists @ € R such that (x, u) — G(x, u) + %lxl2 is displacement monotone.

For the corresponding Hamiltonians, we can define the displacement monotonicity condition as
follows.

Definition 2.2. Let H : R? x 9 (R?) x R — R be such that H(-, u,-) € C'(R¢ x R?) for all
1 € Pr(R?). We say that H is displacement monotone, if

_ /R o JOH G P () = 0H Gy, PO - (= )y x.y) “
# [ T HG e 0) = 9 HO v )] (' () = PPNy )
R4 xR4
for all IR tqu(Rd)’ Y € H(,U, V) and for all pl,pz € Cb(Rd;Rd),
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Remark 2.3. 1. Suppose that H : R? x 2, (R%) xR? — R is fully C?, strictly convex in the p-variable
and satisfies

/Rd » [0xpH (x, 1, %, p(0))v(F) + xH (x, 1, p(x))v ()] - v (x)dpt (x)dp (%) &)

+%/ {|[6ppH(x,#,P(x))]_; ‘/Rd (9puH(x,/1,)?,p(x))v(i)d/,z(i)r}dﬂ(x)

R4
<0,

for all u € P>(RY), for all p € C(R4;R%) and for all v € Li (R?;RY). Then H satisfies the
displacement monotonicity condition from Definition 2.2. For the proof of this fact we refer to [25,
Lemma 2.7].

Definition 2.4 [27, Definition 3.8], [26, Definition 3.4]. Let 1 = (1, 41,12, 13) € R* be such that
Ao > 0,1 € R,A; > 0and A3 > 0. Let G : RY x P (RY) — R be fully C?. Tt is said that G is
A-anti-monotone, if

1o [ (0065 EC0), ) ()

w0 [ (0,600 m D, ED )

+ [ J0aGamewPauto +az [ | [ 0,,60m 0@t duto
< /R e Pduto)

for all 4 € 9> (R?) and for all £ € L2 (RY;RY).

3. New Well-Posedness theories for MFG and master equations

We impose a set of assumptions which are going to be imposed for our main results. These are relatively
standard assumptions, which appear naturally in the literature on the well-posedness theories for master
equations.

Assumption 1. Suppose that G : R x 9, (R¢) — R is fully C?, bounded below and is such that

o 0yxG is uniformly continuous and it is uniformly bounded by LY on R? x 9, (R%);
o 0x,G is uniformly continuous and it is uniformly bounded by LS on R x 2 (R?) x R4,

for some LY > 0.
Assumption 2. Suppose that H : R¢ x P (R?) x R? — R is fully C? and satisfies the following:

o dppH is uniformly continuous and 0, ,H (x, u, p) > call, for some ¢y > 0 and for all (x,u, p) €
RY x P (RY) x R?;

o OxpH, 0ppH, 0xxH are continuous and are uniformly bounded by L" on R4 x 2, (RY) x R?;

o 8pyuH, Oy, H are uniformly continuous and are uniformly bounded by L on R x P (RY) xRYxRY;

o OpH(x,u,p) - p = H(x,pu, p) = =L forall (x, u, p) € R x P2 (R?) x RY,

for some LT > 0.

Remark 3.1.

1. When continuity of functions is assumed in the measure variable, this is with respect to the W, metric.
2. Assumptions | and 2 from above are the standing assumptions imposed in [8].

Let us now restate our crucial observation from the introduction in form of a theorem.

https://doi.org/10.1017/fms.2025.10130 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.10130

Forum of Mathematics, Sigma 9

Theorem 3.2. Fix any @ € R. The master equation with data (H, G) is well-posed if and only if it is
well-posed with data (Hy, G o).

Proof. Via direct computation we can verify that V is a solution of the master equation with data (H, G)

~ 2 2
if and only if V(t,x, ) == V(t,x, ) + Z|x|* - w(t —T) is a solution of the master equation with
data (Hy, G o). O

Remark 3.3. Because of the connection between the solvability of the master equation with data
(H,G) and (Hg, G o) described in Theorem 3.2, the same connection holds true for the solutions to the
corresponding finite-dimensional mean field games systems as well.

Recall the definition (3). Now we give some sufficient conditions on Hamiltonians H which would
result in the displacement monotonicity of the transformed Hamiltonians H,,.

Lemma 3.4. Let H be fully C%. Then H, is displacement monotone if and only if
‘/]R:d [(axxH(x,/l, p(x)) — 20 pH(x, u, p(x)))v(x)] v(x)dp(x) ©)
* /R (B2 p()) = 208 H (e 5, p () ()] V() (3)

2L

+200ppH(x, 1, p(x))v(x)]

<0,

Onp st 1| [ By p )1

2
}d,u(X)

forall u € P>(R?), forall p € C(R?;R%) and for all v € LIZI(Rd;Rd).
Proof. We readily compute
OrexFl(x. 1, p) = uxH %, p = ax) = 2 Re(Drp H(x, 1, p - %))
+ azém,H(x, U, p — ax),
axﬂﬁ(x,,u, D) =0xuH(x, 1, -, p — ax) —alp,H(x, 1, -, p — ax),
OpuH (x, pt, p) = OpuH (x, pt, -, p — ax),
BppH(x, pt, p) = 8ppH(x, 1, p — ax).

The result now immediately follows by writing the inequality (5) for H in terms of H, after noting that

we may replace Re(dx, H) with 0, H since the quadratic form induced by a skew-symmetric operator
is null. o

Remark 3.5. The inequality in (6) can be equivalently rewritten as
./Rjd iy [0xuH (x, 1, %, p(x))V(X) = @Bp, H(x, 1, %, p(x))v(®)] - v(x)dp (x)du(X) (7)
X

+ /Rd [Oxx H (x, 1, p(x))v(x) = 228y p H (x, 1, p(x))v(x)
+ azappH(xsﬂ’P(x))V(x)] -v(x)du(x)

1 1 s
+Z/Rd{([appH(x,u,p(x))]‘z/Rd 6p,,H(X,,u,f,p(x))v(i)dp()?)‘ }dﬂ(x)

<0,
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for all u € P, (R4), forall p € C(R?;R%) and for all v € lel (R?;R9). This is the exact same condition
as [26, (5.10)].

We introduce the following notations.

k(0 ,H) = inf Amin(Re 0y, H(x, u, s
_( xXp ) (.1, p) CRAXTPy (Re) xR min ( xXp (x, 1, p))

where for A € R4, we adopt the notation Re(A) := (A+AT)/2 and for A € R¥*? symmetric Apyin(A)
stands for its smallest eigenvalue. Furthermore, to denote the suprema of the standard 2-matrix norms,
we use the notation

Iﬁqu| = sup |Bx,,H(x,;1,p,)Z)|;
(x,u,p,%) ERAX P, (RA)xRAXRA

|6PHH| = sup |6pﬂH(x,;1,p,i)|;
(x,u,p,%) ERIX P, (RA)xRIXRA

|0xxH| := sup |O0xxH (x, i, p)|,

(x,1,p) ERIXP, (R4)XRE

and so on for similar quantities. Now, we can formulate the second main result of our paper.

Theorem 3.6. Suppose that H : RY x P, (R4) x R? — R satisfies
OppH(x, 11, p) > ',

forsome co > Oandforall (x, 1, p) € RIxP,(R4)xR4. Suppose that k(0xp H), |6ppH|, |0xxH|, |6,,MH|
and |(9qu| are finite. Define

LH = |0y H]| + %c0|apﬂﬂ|2 1052 H].

Suppose that k(OxpH) > %|6P”H| + ‘/|8PI,H|L£IW. Then H, is displacement monotone for any

a € [af’,af],

where

2
E(apo) - %'aPﬂH| * \/(E(OXPH) - %|apuH|) - |8PPH|L£IW’

H ._
T (G H]

&(OxpH)=5]0puH]|

In particular we have the result for a :=
|0ppH]

Proof. For a € [afl,df]» ue PRY, peCRYGRY) and for v e Li(Rd;Rd) normalized, that is,
Jea V(0)|2dp = 1, we compute
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/Rd iy [0 H (x, i1, %, p(x))v(X) = @8y H (x, 1, X, p(x))v(£)] - v(x)dpe(x)dpe (%)

v /]R [0 H G p()V() = 2000 H (¥, 1, p(0)V (1)
+ @20, H(x, . p()v(@)| - v(@)du(x)

w5 [t [ otz peny@auo| faue

< / [|0xuH| + @|0puH| + 10xx H| = 2ak(dxpH) + a*|0,, H|1dp (x)dp ()
RAxR4

+ 2 [ [ Jomttlanco faut
4 Joa|l Jpa! PH
OpuH[?
= 0xxH| = 2ak(0xpH) + @*|0pp H| + |0, H| + |0 H| + L 1:1” |
1 0. H 2
1
=0,pH|a” - 2(5(6x,,H) - §|ap,,H|)a +LE,
<0,
where in the last inequality we used the sign of the quadratic expression. O

As an immediate consequence of Theorem 3.6, we have the well-posedness result in Corollary 1.2.

Proof of Corollary 1.2. We see that all second-order derivatives of H and H match, except the ones
involving dy,, for which we have

dxpH = 0 pH +al.

By the uniform bounds on the corresponding second-order derivatives of H, we see that for « sufficiently
large, H fulfils the assumptions of Theorem 3.6. Increasing « further if necessary, we can ensure that
G is displacement @-monotone. Having G displacement @-monotone and H, displacement monotone
would result via Theorem 3.2 in the desired global well-posedness result for the master equation. O

3.1. Our results and previous results on the master equation involving displacement semi-monotone
data

We notice that the inequality (6) is precisely the inequality (5.10) from [26]. This means in particular
that [26, Theorem 5.6] is a direct consequence of Theorem 3.2 and Remark 3.4 above.

‘We note that Theorem 3.2 shows that we have a global well-posedness theory for the master equation
as long as G is displacement semi-monotone and the corresponding H is displacement monotone. In
particular, it is enough for these to satisfy the ‘first-order’ monotonicity conditions, in the sense of
Definition 2.1(1) and (4). Therefore, Theorem 3.2 together with the well-posedness results from [§]
provide a more general result than the one in [26, Theorem 5.6].

3.2. Our results and previous results on the master equation involving anti-monotone data

Our first objective in this subsection is to show that any function G : R x % (R%) — R which is
A-anti-monotone in the sense of Definition 2.4 is actually displacement a-monotone in the sense of
Definition 2.1(2), where a can be computed explicitly in terms of 2 = (dg, 1, 42, 43). We start with
some preparatory results.
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Remark 3.7. G is A-anti-monotone in the sense of Definition 2.4 with A = (g, 41, A2, A3) if and only if

Lt

2
[, o6t D@I0u0) + S0 fauto

2
s(ﬂw(%) +/12( )) / €00 Pduc).

Proof. This is immediate by an algebraic manipulation after computing the squares. O

A,
6xxG(x’ ,u)f(x) + ?f(x)

+ Ay

Proposition 3.8. If G is A-anti monotone in the sense of Definition 2.4 with A = (o, 11, A2, 13), then

/R o (PG D). £ () )

[ A3 A? 4\ / 2
O LY EL G Uiy S d
_(2/12 Sy Cyn Rdlf(x)l u(x)

and

[ 00600 )00

2 2
. (@ . \/43 + (1—20) w(%) ) [ auter.

In particular G is displacement a -monotone, with

[41] Az A2 A 2 |do] Ao 2 A
>m — =t —+ || s+ B+ || +4
@1 = max 24, Ay 44 215 2 3 2 : 2/12

Proof. Let us recall that in the definition of 1-anti-monotonicity we have 1o > 0, 4, > 0, 43 > 0 and
there is no sign restriction on 4.

First, let us suppose that 4; # 0.

Note that for any v, w € R¢ and any C > 0 we have

wF+—4v+wP

<
(v, w)l < Ta

With the choice of v := %f(x) and w := fRd OxuG(x, u, X)€(X)du(%), we obtain

< / DG (x, 1, D)EF)du (), §(x)>du(x)

LA

A
o /R Gl DEDIE) + 36 ()

2
}dﬂ (x)
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||
—_——
S1Re!
+
_
-

2
)}dﬂ (x)

2

where the last inequality follows from Proposition 3.7. Hence,

L.
C |/11| 1 /10
< ((5+1)2_/12+C|/11|(/13+(2) +/lz( )))/ |€(x)[2du(x)
[l Clal 1 Ao 1 2
—(2—b+ 0 +C|11|(A3+(2) +/12(2—) ))/ 1€ du(x).
WenowtakeCzl/l#l\/(/l +( 0) + A ( ) )(4/12) to obtain

L

du(x)

< /R ) 5x,4G(x,/l,i)f(i)dﬂ(i),f(X)>

< /R d ax,,G<x,u,x>f<x>du<x>,f(x>>

dp(x)

B+ (%) 1 2
o () < ldh) [ JeerPauco
—+
20 40 @ dulx

[4] A3 A A\ / 2
=l — 47—+ —+|— d
L tas Tl Rd|§(x)| p(x)

IA

13

Now, as the left-hand side of this estimate is continuous at 1; = 0, we can send 1; — 0, and conclude

the claim for general 4; € R.

In the same manner with the choice of v := %f(x) and w = 0xxG (x, u)é(x), for C > 0 arbitrary

we get

[ J0nG e e duto

2
S [
[0l

R4
2 ’
sﬁ(?(f)%(m(%) ol ) Lo

(10l Clagl 1 A0\ 4\ s
= (T+ 2 + |/10|C(/13+(7) +/12(2/l ) )) ‘/]Rd du(x)]€(x)|

2 2
By taking C = %Ol\/(/lg + (%) + /12(;7‘2) ) we obtain the result.

C+2 /10

SE PG e + e

2
)d,u(x)
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Remark 3.9. In Proposition 3.8 we see that the estimates, and hence the conclusion regarding the
displacement a-monotonicity, hold true even for 1y < 0. Therefore, we might drop the requirement
Ao > 0, and our claims from below will remain true.

Corollary 3.10. Let G : R x P, (R?) — R be A-anti-monotone which satisfies Assumption 1. Suppose
that H : R% x P,(R%) x R? — R satisfies Assumption 2 and it is such that H,, is displacement
monotone, where the constant a, is given in Proposition 3.8. Then, the master equation (1) with data
(H, G) is globally well-posed.

Proof. This is a direct consequence of Proposition 3.8 and Theorem 3.2. O

We would like to conclude our paper by showing that, if H is strictly convex in the p-variable, then
the main theorem on the global well-posedness of the master equation from [27, Theorem 7.1] is a
particular case of our main results from Corollary 3.10. For completeness, we informally state this here.

Theorem 3.11 [27, Theorem 7.1]. Suppose that G : R? x P>(R?) is smooth enough with uniformly
bounded second-, third- and fourth-order derivatives. Suppose that the Hamiltonian H : R% x P (R?) x
R4 — R has the specific factorisation

H(x, p1, p) := (Aox, p) + Ho(x, i1, p),

for a constant matrix Ag € R and Hy : R x P (RY) x RY — R smooth enough. Suppose
furthermore that G is A-anti-monotone and that a special set of specific assumption take place jointly
Jor A = (g, A1, A2, A3), the matrix Ag and Hy. Then the master equation (1) is globally well-posed for
any T > 0, in the classical sense.

Proposition 3.12. Suppose that G : R x 9 (RY) — R is A-anti monotone and satisfies Assumption .
Suppose that H : R? x P, (R?) x RY — R is given by

H(x, pu, p) = (Aox, p) + Ho(x, i, p),

with Hy : R? x P (R?) x R? — R satisfying Assumption 2 and Ay € R is a given constant matrix.
Let Ky := co|é)ppH| = co|6p,,H0| be the condition number of 0,, H. Suppose that

K(Ag) 2 max:(% + \/Iz{_H)L;lO \/’appH“axde ( +f(/l)) HO} (8)

where A = (g, A1, A2, A2), we have set

f(/l)_sl/h' 1+£+ﬂ+5ﬂ+ﬁ+m
24, 44, 4 2 4

=1+ 5(5% + % +/I3) + 2%2(% + 5';” /13)
and Lg %> 0 is a constant associated to Hy, satisfying
|0xpHol < LI, 18, ,Hol < LY, |05, Hol < L and |8, Ho| < L1
Then the master equation is globally well-posed.

Proof. Let us note that by the definition of L % and by the definition of Lou,, we have that

L <t 20 . (LH“) + 10 Hol. 9)
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As k(8xpH) > k(Ag) — |d.pHo|, we see that the assumption x(Ag) > (% + YRaypHo o
\ﬂg;;Zﬂﬁi;;Zﬂand(9)nnpw
k(xpH) > k(Ao) — |9xpHo| = 3L + -wWH1|@ﬂmh
+QM@WH“@wHM
=%|8pﬂH|+\/%lappHo|(L 0)2 \/ A(L2) "+ 1o 16, Hol
Z%I%HH\/ 3 Hol(L20) 4 413, Hol LI + 13, H 1ol
S1oputtol+ oy ol

and so we can apply Theorem 3.6. We get that H is displacement @-monotone with

VKH 1 Ho

2

\

_ k(0xpH) = %’aP#Hi

|05 H]|
k(Ao) — 10xpHol — 3|0p,.Ho|
|6PPH0|
(3+ F(O)LE = 180, Hol - §|0puHo|

|‘9ppH0|
> f(A).

From Proposition 3.8 we see that G is semi-monotone with constant
2 2
1l /13 A0® (AL /10 /10 AL
= + + + + =+ A3+ +1
=90, 4, 24, 2\21
2
Il [As A° /11 /11
< — + 204 + —
- 2/12 /12 4/12 2/12 \/_3 2/12

|/11| / +/10+\/—

_Mn A A o, 1+; il , Wil
A 2 2/12 4/12 4 2 2 4a 4
1

:_5|/l]| +1+£+ﬂ+&+ﬁ+|ﬂ_
42, 20, 42, 4 2 4
=f()
and so the result follows. O

Remark 3.13. We compare Proposition 3.12 with [27, Theorem 7.1]. This theorem has many assump-
tions. We show that up to constants (depending only on Kp) only a few of these many assumptions
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imply our assumptions. First, we recall that the definition of the 3 X 3 matrices A1, A, from formula [27,
(4.3)]. These are not constructed from Ag above, and they involve constants coming in particular from
A = (g, A1, A2, A3). Furthermore, for A € R4¢, g(A) stands for the largest eigenvalue of Re(A).

To continue we need the assumption

k(Ag) > (1+R(A;' Ap)) LI, (10)
In [27, Theorem 7.1] (specifically the second item of (7.1)) it is assumed that
K(A0) = (1 +x(A7'A2)L3", (10)

although they probably meant to assume (10)'.
We can formulate the following statement.

Claim. The assumptions of [27, Theorem 7.1], up to a multiplicative constant depending on Ky,
imply (8).

Proof of claim. By definition, we have that k(A" A;) > vT A Ay for any unit vector v € R*. Taking
V= \/%(1, 1,1)T and using the explicit form of Ay, A, given in [27, (4.3)] together with the fact that all
the entries of these matrices are non-negative, by direct computation we obtain

R(AT'Ay)

V

1(1 1
Ao+ A4 Adg— =4
_3(4(0+ 0+ 1o 21

1 1
> —(Z(/lo+/lo— || + = |/11|+/13) +—(/10+|/11|+( |/11|+/12+/13)))

1
+/13) +ﬁ(/10+|/11|+( |/11|+/12+/13)))

22

1 1 1
(Z(/lo+ §|/11| +/13) + gz(ﬂo+ | +(§|/11| +/12+/13)))

so (10) implies that
l m
k(A0) 2 L3P (15+ £ (). (1
Furthermore we see from the second inequality in [27, (7.2)] that
Yk(Ag) = [0xxH|.

By the assumption (i) of [27, Theorem 7.1] we have that ¥ satisfies [27, (4.2)] in which the first
2
inequality implies that 1y > — - % . Hence we obtain (47/10 +813) > 2. Itis clear that 2f (1) > Ao

and 2f(A) > A3, therefore we get 16, f (1) (1+7y) = 2. Since y < ¥ by assumption (i) of [27, Theorem
7.11and 1 < ¥ by the same assumption we get 2y > 1 + Y and so we obtain 32f(1) > 7. Hence we get

Hy HO | |

L 0
K(A0)” = == f(Dk(Ao) = 7e(Ao) 2 T5737

= 15. 32 |0xx H|

and so we obtain k(Ag) > 4\F,/|6PPH||(’J?”H|

1The k on the right-hand side is likely a typo as in the fourth to last line on [27, page 15] the authors need to use k(AT] Aj).
Furthermore we see Kk appearing correctly also in a similar assumption, [26, (6.3)].
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Moreover, (10) implies that x(Ag) > L;I % and so we get

1 1
k(Ag) > EL;{‘) + %,/;ap,ﬂ“a“m. (12)

To summarise, the assumptions of [27, Theorem 7.1] imply (11) and (12) which in turn imply that

1 7 3
k(Ag) > e P max{(z + VI;_H)LQJO + |8 p |18 Hol; (5 +f(/1))LfO}.

This, aside from the constant of

in front, is the exact assumption (8) of our Proposition 3.12.
]

1
8‘/@+\/KH
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