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NEIGHBOR RELATION AND NEIGHBOR 
HOMOMORPHISM OF HJELMSLEV GROUPS 

F R I E D E R KNUPPEL AND MICHAEL KUNZE 

The geometry of Hjelmslev groups is a comprehensive plane metric geom
etry. It supplies, for example, an approach to euclidean, hyperbolic, elliptic, 
Minkowskian and Galilean geometry. 

The subject of this geometry are Hjelmslev groups and their group planes. 
(The definition of Hjelmslev groups and some basic concepts and propositions 
of this theory can be found in the second edition of Bachmann's book [1] 
(pages 318-328). A similar report in English is the lecture [3]. A comprehensive 
introduction is developed in the key work [2]. The first part of this work was 
translated by Garner [4]. An abstract is given in Math. Rev. 52, 9066 (1976).) 
The group plane arises from giving geometric names to some group theoretical 
facts. The group plane of a Hjelmslev group is an incidence structure with 
orthogonality, and the Hjelmslev group acts on this plane as a group of 
motions. 

Within the geometry of Hjelmslev groups ideas from J. Hjelmslev's "Allge-
meine Kongruenzlehre" (AKL) appear in a more general shape. In group 
planes of Hjelmslev groups, the first or the second or both the following classical 
axioms can be false. 

(V) Any two points are incident with at least one line; 
(E) Any two distinct points are incident with at most one line. 

A good deal of Hjelmslev's work, mainly the third and the fifth communication 
of AKL is devoted to the study of a neighbor relation for points and, sub
sequently, also for lines. These relations serve to make planes not satisfying (E) 
more accessible. Hjelmslev suggests to merge points which are neighbors and 
also lines which are neighbors, in order to obtain a geometric structure satis
fying (E). 

The goal of our article is the definition and study of a neighbor relation for 
Hjelmslev groups (more precisely: for the group plane of Hjelmslev groups). 
Diverging from Hjelmslev's definition we shall define: two points A, B are 
called neighbors if and only if there is a rotation fixing A and B but not every 
point. With this we shall continue: two lines a, b are called neighbors if and 
only if the product of the reflection in the line a and the reflection in the line b 
moves every point X into a neighbor of X. As a first result we shall, for example, 
show that orthogonal projections of the point set preserve the neighbor 
relation. 
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I t is natural to ask for a description of Hjelmslev groups with transit ive 

neighbor relation. In our Theorem 1 we shall show tha t a Hjelmslev group has 

transit ive neighbor relation if the following three properties are fulfilled. 

(Vf*) Any two points which are non-neighbors are incident with a t least one 
line; there exist non-neighbor points. 

(W) There are orthogonal lines a, b and orthogonal lines c, d such tha t any 
two of the lines a, b, c, d intersect in just one point. 

(Z) Let a, b, c be lines through a point C and suppose a is orthogonal to b; 
then C is the unique intersection point of a, c, or C is the unique intersection 
point of b, c. 

Each of these additional axioms was already introduced in earlier studies. 
(The first additional axiom was originally introduced in a somewhat stronger 
version denoted (Vf) ; this version claims not only existence of non-neighbor 
points bu t instead demands tha t to each line g there is a pair of non-neighbor 
points lying on g.) 

The geometry of Hjelmslev groups subsumes the plane absolute geometry 
which is discussed in the main par t of Bachmann 's book [1]. The groups of 
plane absolute geometry defined by the system of axioms applied there 
([1] § 3.2; see also§ 20.3) are called AGS groups in agreement with the title of 
the book. They are Hjelmslev groups which fulfill (V) and (E) . 

Given a Hjelmslev group (with more than one point) satisfying (Vf*), (W) 
and (Z) we shall canonically construct a Hjelmslev homomorphism onto an 
AGS group such tha t points and also lines have the same image if and only if 
they are neighbors (Theorem 4) . 

Supplementary to Theorem 1 we shall discuss two special situations in 
Section 2*. Theorem 2 applies if (V) is valid and Theorem 3 applies to Hjelms
lev groups having an ordered group plane. Finally we shall construct a Hjelms
lev group over a local ring and give an algebraical description for its neighbor 
relation and the homomorphism given by Theorem 4. 

Remark. In the above mentioned third communication of A K L Hjelmslev 
presupposed (V). Hjelmslev called two points neighbors if and only if they are 
incident with more than one line. He proved the transi t ivi ty of this neighbor 
relation in the same article. In this communication strong axioms were assumed 
(order, free mobility) in addition to (V). In his paper "Euklidische Ebenen mit 
Nachbare lementen" (Euclidean planes with neighboring elements) W. 
Klingenberg also assumed validity of (V) and used Hjelmslev's neighbor 
relation. From propositions of this article t ransi t ivi ty of Hjelmslev's neighbor 
relation can be deduced for Hjelmslev groups satisfying (V), (W) and (Z). 

Note. Hjelmslev's definition implies: 1. If any two points are incident with 
more than one line then any two points are neighbors. 2. Unjoinable points are 
non-neighbors. These consequences may indicate an inflexibility of Hjelmslev's 
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neighbor relation, and t ha t its efficiency seems to be linked to the assumption 

of (V). 

1. Definition and elementary properties of the neighbor relation-
Throughou t this article "Hjelmslev g roup" means "non-elliptic Hjelmslev 
g roup" . Let (G, S) be a Hjelmslev group and P i t s point set. Let 5 e v e n (50dd) be 
the set of products of an even (odd) number of lines. If a Ç 5 e v e n and if the set 

F (a) : = {A e P: A" = A] 

of points which are fixed by a is not empty , then a is called a rotation. More 
exactly we might say: the motion X\—>Xa, x ^ x « of the group plane of 
(G, S) is called the rotat ion induced by a. If A Ç F (a) then there exist lines a 
and b passing through A such t h a t a — ab. Let F)(A) denote the set of rotat ions 
fixing A, 

D(A) : = \a G 5 e v e n : A G F ( a ) } . 

There may exist elements a Ç 5 e v e n \{ l} such tha t F (a) = P. T h e center 
Z(5 c v e n ) of the subgroup Seyen of G consists of exactly those elements of 5 e v e n 

which fix every point. 
For a rotat ion a let 

©(a ) : = {c e S:ac G S}. 

Then (N G(F(a)), S (a)) (where NG(F(a)) is the normalizer of F (a) in G) is a 
Hjelmslev subgroup of (G, S) and F (a) is its set of points. We call this 
Hjelmslev subgroup the spot of the rotat ion a. A spot of a rotat ion is locally 
complete: if A (E F (a) and b G S with b\A then b Ç S ( a ) . Therefore a spot of 
a rotat ion has the 

' 'Thaïes p roper ty" : Let A, B be points of a spot of a rotation and a\A and 
b\B, a. Then ab is also a point of the spot. 

A and B are called neighbors if and only if there exists a rota t ion fixing A and B 
but not every point. This relation will be denoted by A O B. Thus , 

Definition. Let (G, S) be a Hjelmslev group and P its point set. For A,B £ P 
define A O B if and only if 

3 a Ç 5 e v e n : A,B e F (a) ^ P. 

Or, equivalently, if and only if 

D(A)C\ DCB)\Z(S e v e n ) ^ 0. 

If ^4, ^ are non-neighbors then we say A distant B according to the definition 
of Salow [10]. Hence A and B are neighbors if and only if they are points of a 
spot of a rotat ion which is not the ent i re group. If A, B are neighbors in the 
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Hjelmslev group (G, S) and if (G, S) is a Hjelmslev subgroup of the Hjelmslev 

group ( C , S'), then A, B are neighbors in (Gr, S'). Our definition oi A O B 

depends not only on the set of lines joining A to B but also on the entire Hjelmslev 

group (G,S). 

Examples. In a Hjelmslev group (with more than one point) satisfying (E) 
two points are neighbors if and only if they are equal. If in a Hjelmslev group 
(V) holds and Z (5even) = {1} then two points are neighbors if and only if they 
are incident with more than one line. 

Motions of the group plane preserve the neighbor relation: 
(1 ) If A C B then Aa C Ba for points A, B and a Ç G. 

The relation C is symmetric by definition: 
(2) If A C B thenB C A. 

Fur thermore the relation is also reflexive: 
(3) A C A for each point A, except for the trivial case that P consists of one 

point only. 
A main concern of this article is to find sufficient conditions for the transi

t ivi ty of C . 
If A, B are points in the same spot F of a rotation and if A, B possess a mid

point M (this means AM = B) then M is also a point of F. From this it follows 
t ha t 

U) A O M if and only if A O AM. 
If a point A can be moved into a point B, t ha t is if there is an a £ G satis

fying Aa = B, then A, B have exactly one mid-point, denoted MA>B. Therefore 
it follows from (4) tha t a point A is a neighbor of Aa if and only if A is a neigh
bor of the mid-point MA,Aa 

A consequence of the Thaïes property of spots is 
(Th) Suppose that a\A; b\B, a and A C B. Then A, B C ab. 

Orthogonal projections preserve the neighbor relation. In what follows (A, g) 
denotes the unique perpendicular through A to g; (A, g)g is the foot. 

(5) (a) If A C B then (A, g)g C (B, g)gfor any line g. 
(b) If (A, g)g C (B, g)g then there exists a point E\(B, g) satisfying A C E; 

one such point is E : = {A, (B, g))(B, g). 

Proof (see also Salow [12], (2.3)). Let A, B, g be given and b\B, g; d\A, g; 
C : = bg, D : = dg;a\A, b and E : = ab (see figure). Then for all lines e, h satisfy
ing e\A and h\D, e the following conditions are equivalent: 

E e F (de); 

E\ade (because E\a) ; 

E ade Ç S; 

CDe Ç 5 (because Ead = bd = CD) ; 

C\h; 

ce F(gh). 
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(a) Suppose that A O B. We have to show that C G D. From (Th) we 
know A G E. Hence there is an a = D ( ^ ) H D(E)\Z(5 e v e n) . Let e : = da 
and fe := (D,e). From £ Ç F(a) = F (de) and the above equivalences we 
obtain C, D Ç F (gfe). Assuming F (gh) = P we would have 4̂ = ^ = .4^* = 
- 4 ^ and consequently A, h\e, Dh. Therefore e = Dh, eh = D = dg and hence 
F (a) = F (de) = F(gh) = P which is a contradiction. Consequently F (gh) ^ P 
and C G D. 

(b) Now suppose that C O D. Then there is an a Ç D(C) P\ D ( D ) \ 
Z(Seven). Let A : = ga and g : = (4, A). Then C £ F(a) = F(gfc) and by the 
above equivalences A, E G F (de). Assuming F (de) = P we would have D\e 
and thus Z?|e|A. D = eh = dg, but F (de) = F(g&) = P is a contradiction. 

(6) LetA,B, X, F ôe points on a line g and A G B. Then AX Y G P X F . 

Proo/. By hypothesis we have a rotation agÇ î ) ( i ) H £)(P)\Z(Se v e n). It 
follows that a|^, B. Let / : = (BXY, a) and & : = « I K By [2, 3.6] we have 

b\A-B-BXY = AX Y and therefore bg £ D ( i I 7 ) C\ D(BXY). Assuming 
that bg Ç Z(5even) we would have b\B and a, 6|23, /, hence a = b. But ag Ç 
Z(,5even) is a contradiction. 

(7) Let a £ G and A G B. If a £ 5°dd c?r if A, B have a joining line then 
MAjA« G MB>jB«. 

Proof. Suppose that a G Sodd. According to the representation theorem 
([2], 3*.2) we can write a = gab where g\a, b. Thus for each point X we have 
Mx,x

a = (X, g)g ab. A G B and (5) imply (A, g)g G (5 , g)g, a n d from (6) 
we obtain (A, g)gab = C4, g)g-ag-gb G (5, g)g-ag-gb = (B, g)gab, i.e. 

Finally, if a G 5even and A is joined to B by a line e we have Aa = Aca and 
Ba = Bca. Therefore we may repeat the above proof writing ca instead of a. 

A special case of (7) is 
(8) Suppose A and B have a joining line. If A G B and AB = CD then 

Co D. 
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Proof. This follows from MAJABD = C, MB,BBD = D and (7). 
(9) Suppose A is joined to B. 
(a) If A C B then X C XAB for each point X. 
(b) If there is a point X such that X G XAB then A G B. 

Proof. Let g\A, B and A' : = (X, g)g and B' : = A'AB where X is any point. 
Then XAB = XA'B' = X°A'gB' = XgB'. Hence (X, gB')gB' is the mid-point of 
X and XAB. From (8), (5) and (4) we conclude that the following statements 
are equivalent: A G B;A' G W\X G (X,gB')gB';X G XAS . 

Proposition (P) suggests the following definition. 

Definition. The line a is called a neighbor of the line 6, denoted by a C b, if 
X C Xaô for every point X. If a is a non-neighbor of b we write a distant b. 

We now state some properties of the relation C on the set of lines. 
(10) If a C b then aa C ba for each a G G. 

a C a if there exists more than one point. 
If a C b then b C a. 
If ab = cd and a C b then c C d. 
Let ab = AB. Then a C b if and only if A C B. 
If a, b\g, then a C b if and only if ag C bg. 
If a, m\g, then a C m if and only if a C am. 

Proof. The first four assertions are obvious. To prove the fifth one, we notice 
that ab = AB implies that A is joined to B ([2], 3.1) and we can apply (9). The 
sixth assertion follows immediately, and to prove the last one we use (4) and 
(ag)m° = a

mg. 

The following lemma is proved in [2, § 5, (xi)] and also in [10, 3.2]. 

LEMMA. Let a be a rotation and a, b Ç S (a) such that F (ab) = {C}. Then 
C e F(a). 

A consequence from this lemma is 
(11) Assume a\A and b\B. If A C B andF(ab) = {C} then A, B O C. 

2. Transitivity of the neighbor relation. In the following we shall confine 
our attention mainly to Hjelmslev groups which satisfy two additional axioms 
called (W) and (Vf). 

(W) There exist lines a, b, c, d such that a\b and c\d holds and such that the 
pairs a, c, a, d;b, c and b, d each intersect in just one point. 
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A Hjelmslev group satisfying (W) has the following two additional proper
ties. (See [9], Anhang. In [2], (W) is called the "star axiom".) 

(W) Let a\b. There exist lines c, d for which ab\c\d and F (ac) = F(bd) = 
F (ad) = F (be) = \ab). 

(Kl) U A\b,c then F(6c) = I 
intersection. 
Our second additional axiom is 

A] if and only if b, c have a unique point of 

(Vf) If A distant B then there is a line joining A to B. To each line g there 
is a pair of distant points lying on g. 

If (Vf) is valid and Z (Seyen) = {1}, then A distant B is equivalent to "A and 
B have a unique joining line". If in a Hjelmslev group there exist two points 
with just one joining line then Z(Seven) = {1}. 

LEMMA. Given a Hjelmslev group, suppose (W) and (Vf) are valid. Then, for 
an arbitrary point C and line g, the following conditions are equivalent: 

(i) C distant (C, g)g. 
(ii) There exists a line a and a point B such that a\B, C and B\g and B distant 

C, and B is the unique intersection point of a and g. 
(Hi) For each point B on g one has B distant C, and if a\B, C then B is the 

unique intersection point of a and g. 
(iv) There exist points A, B and lines a, b such that a\A, C and b\B, C and 

A distant B and g has a unique intersection point with both a and b. 
(v) D distant C for each point D on g. 

We illustrate some of the statements as follows. 

.C C. 

(C, 
{X- B A 

Proof, (v) —» (i) and (i) —> (ii) are evident, (ii) —» (Hi) ([10], Lemma 6): 
According to (ii) there is a point B\g and a line a\B, C such that B distant C 
and F(ag) = {B}. Suppose A\g. By (11) A distant C, and (Vf) implies the exis
tence of at least one line b joining A and C. The assumption {̂ 4} ^ F(bg) — 
F(Ab Ag) will lead to a contradiction. From (Kl) we obtain a point D\Ab, Ag 
for which D ^ A. Because of A distant C it follows from (5) that C distant D. 
Hence there is a line d\C, D. Now dba Ç S (since d, b, a\C) and dbg G 5 (from 
d, Ab} Ag\D). Furthermore F(ag) = {B}, and applying the lemma in Section 1 
we find that B G F(db). B, C G F(db) and B distant C imply that F(db) = P , 
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especially Ddt> = D, and since d\D we have D\b. Hence D\b\Ab and therefore 
A = D, which is a contradiction, (Hi) —> (iv) is clear, since (Vf) yields two 
points on g which are distant, (iv) —» (*;). Consider the triangle A\a, g; B\b, g\ 
C\a, b, where A, B and a, b are chosen according to (iv). Let D be a point 
on g and « a rotation fixing C and Z). Then a,b, g Ç S (a) and F(ag) = {̂ 4} 
and F(6g) = {5}. Now the lemma in Section 1 yields A, B Ç F (a) and there
for F (a) = P. 

(1#) Gwew a Hjelmslev group which satisfies (W) and (Vf), awd / t o A\b, c. 
Then b C c if and only if F (be) 9^ {A). 

Thus, two intersecting lines are neighbors if and only if they meet in more 
than one point. 

Proof. Suppose F (be) = {A}. According to (Vf) there are points C, D on b 
such that C distant D. Hence A distant E : = DCA by (6), and from (ii) —* (i) 
we have E distant M : = (E, c)c. Therefore E distant EM = Ebc. Thus, by 

définition, b distant c. Conversely, let F (be) J* {A} and let X be any point. We 
shall prove X C Xbc. If a line d\A,X exists then X C M : = (X, dbe)dbc; 
otherwise (i) —» (Hi) would imply F (ddbc) = F (be) = {A}. Hence X C XM 

= xdbc = Xbc follows from (4). Now suppose there is no line joining A to X. 
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By (Vf) there is a rotation a satisfying A,X £ F (a) ^ P. Thus we have 
6, c £ S(a) and Z&c Ç F (a), since (NG(F(a)) , S (a)) is a locally complete 
Hjelmslev subgroup of (G, S) with the point set F (a). Therefore X C X&c. 

For the class of Hjelmslev groups which satisfy (W) and (Vf) the following 
axiom will prove decisive for the transitivity of the neighbor relation. 

(Z) / / a\b and g\ab then a and g, or b and g intersect uniquely. 

In [2] this is called the "Gitteraxiom". It prevents a line through a point ab 

from intersecting both a and b in some other points. In other words it prohibits 

twisting through a right angle. 
Under (W) and (Z) the axiom (Vf) may be weakened as follows. 

(13) Given a Hjelmslev group satisfying (W), (Z) and 
(Vf*). If A distant B then there is a line joining A to B. There exist two points 
which are distant. 
Then (Vf) is fulfilled. 

Proof. By assumption there is a line b and points B, C\b where B distant C. 
Let a : = Cb. First of all we shall construct a point A \a such that A distant C. 
By (Wr) there exists a line w\C such that w, b and also Cw, b have only 

one common point. Consider D : = (B, w)w and A : = (D, a)a. Since w\Cw, 
(B, w) and since Cw, b have only one common point we can apply [2, 3.7] 
("Transversalensatz") from which we conclude that (B, w) and b have only 
one common point. A similar argument yields that w and (D, a) have only one 
common point. The assumption A C C leads to a contradiction, since (11) 
would imply D O C, and a second application of (11) would yield B C C . 

C b B 
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In order to prove (Vf) let g be a given line. We have to construct two points 

on g which are distant . Let A' : = (A, g)g} B' : = (B, g)g and C : = (C, g)g. 

According to (Z), (C, g) and a, or (C, g) and 6 intersect uniquely. Hence, from 

73 

4 ' C Bf 

(Kl) we have F ( a ( C , g)) = {C} or F(&(C, g)) = {C}. The assumption 
A' C C and .£>' C C leads to a contradiction: if F ( a (C , g)) = {C) then (5) 
yields a point E\(C, g) which is a neighbor of A But then A C C by ( i i ) . 
Similarly F (6 (C, g)) = {C\ would imply B C C. 

If the relation C on the set of points is transit ive then the relation G on the 
set of lines is also transit ive. Because, if Xab C X and Xbc C X for every point 
X then Xab C X c ô , and, by (1), Xac C X . Therefore talking about t ransi t ivi ty 
of the neighbor relation cannot cause ambiguity. 

(14) Given a Hjelmslev group which satisfies (Vf), (W) and (Z). Then C is 
transitive. 

Proof. Let A, B, C be points such tha t A C B and B O C. We have to show 
4 C C. 

First suppose there is a line g passing through ^4, B, C. From ( W ) we obtain 
a line a|^4 such tha t F(ag) = {A} = F(^4ag). Let c\C, a. Then a|^4a, c and 
from [2, 3.7] ("Transversalensatz") we conclude F (eg) = {C}. We shall see 
t ha t the assumption A distant C leads to a contradiction, (w) —> (v) in the 
lemma of this section yields A, B, C distant ac. (Vf) provides a line b\B, ac. 

A B Z C 

Axiom (Z) guarantees F(ab) = {ac} or F(6c) = {ac}. In the first case, («) —> 
(u) in the lemma implies A distant B, and in the second case C distant B. Now 
consider the general case and suppose A distant C. Then we have a line g 
joining A to C. By (5) (a) we have 4̂ C (B, g)g and C C (B, g)g. A C C now 
follows since the first par t of the proof may be applied to the collinear points 
A, (B,g)g,C. 

T H E O R E M 1. Given a Hjelmslev group which satisfies (W) and (Vf*). Then the 
neighbor relation O is transitive if and only if (Z) is valid. 
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That is, if (Z) holds we deduce (Vf) from (13) ; now transitivity of C follows 
from (14). For the converse we use the following two propositions. 

First we shall show that (Vf) may also be replaced by (Vf*) if axiom (W) 
holds and if the neighbor relation is transitive: 

(IS') Given a Hjelmslev group which satisfies (W) and (Vf*). Suppose that 
the neighbor relation is transitive. Then (Vf) is valid. 

Proof. Assume (Vf) is not valid. Then there is a line g such that any two 
points on g are neighbors. From (W) and the first part in the proof of (13) it 
follows that the same assertion is true for each line h\g. Let h\g. We shall show 
that A C gh for any point A. From (A, g)g O gh and (5)(b) it follows that 
A O (A, h)h. Furthermore we have (A, h)h C gh. The transitivity now yields 
A C gh. 

(15) Given a Hjelmslev group with transitive neighbor relation. Suppose (Vf) 
and (W) are fulfilled. If a, b, c are lines through a point D and a, b as well as b, c 
intersect in more than one point then a, c also intersect in more than one point. 

Proof. From the assumption and (12) we obtain a C b and b G c. Therefore 
a G c and from (12) it follows that a and c have more than one point of 
intersection. 

Applying (15) to the case a\c we obtain 

(14') Consider a Hjelmslev group satisfying (W) and (Vf) and suppose G is 
transitive. Then (Z) is valid. 

Now we shall finish the proof of Theorem 1. Given a Hjelmslev group satis
fying (W) and (Vf*). Suppose its neighbor relation is transitive. From (13') 
we deduce that (Vf) holds, and applying (14') we see that (Z) holds. 

We close this section by restating propositions (7), (8) and (9) more plainly 
under the additional assumption that G is transitive. 

(7f) Suppose G is transitive and let a £ G and A G B. Then MAiA
a G MB>B

a. 

Proof. Choose a\A and b\B, a. Then by (5) (a) A G C and C G B, where 
C := ab. Now MA,A

a G M C i C
a and Mc,c

a G MB,Ba by (7), and the assertion 
follows from the transitivity of G. 

(8') Suppose G is transitive. If A G B and AB = CD then C O D. 

Proof. As is shown in the proof of (8) this is a consequence of (7'). 

(9r) Suppose C is transitive. 
(a) Let A, B be any points. Then A O B if and only if X O XAB for any point 

X. 
(b) Let (Vf*) be valid and let A, B, X be points such that X C XAB. Then 

A C B. 
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Proof, (a) Suppose A C B. In the same way as in the proof of (7') we 

construct a point C C A, B which is joined to A as well as to B. From (9) it 

follows tha t X O XAC smdX O XBC for any point X and thus XAC C XBC. 

Therefore XAB = XAC CB G X by (1). Conversely if X C XAB for every 

point X then especially A C ^ A 5 = AB and by (4) A O B. 
(b) If ,4 distant B then by (Vf*) there exists a line c |4 , 5 and (9) (b) leads to 

a contradiction. 

2*. T w o m o r e t h e o r e m s d e d u c i n g trans i t iv i ty of C . The results of this 
supplementary section will not be required in the further sections. Theorem 2 
is due to Salow [12] ; the idea of its proof can be traced back to J. Hjelmslev (see 
especially third communication, 15.). This theorem applies to Hjelmslev 
groups with the property tha t any two points are incident with a t least one 
line, whereas our Theorem 1 also applies to certain Hjelmslev groups admit t ing 
pairs of unjoinable points (for an example see Section 4) . The second theorem 
of this section will deduce t ransi t ivi ty of the neighbor relation from an order 
of the group plane. 

Again, let (G, S) be a Hjelmslev group and let P be its point set. If A £ P 
let £FA be the set of spots of rotations fixing A : 

&A = { ( N G ( F ( a ) ) , S ( a ) ) : a É D ( ^ ) } 

= {(NG(F(a)),S(a)): a G S e v e n a n d , 4 £ F (a)}. 

&A is part ial ly ordered by Q, and the s tructure <^~A, ̂  is independent of 
the choice of A : if A and B are points then the partially ordered sets ^Al Ç 
and J S J , Ç are isomorphic ([2], 6.7). Especially, if J ^ , Ç is a chain (i.e. 
totally ordered) for some point A then ^ B , Q is a chain for any point B. 

(16) If ^ A , Q is a chain then the relation C is transitive. 

Proof. Suppose B C C and C C D. From the definition of C we have spots 
Fi, F2 such tha t B, C are points of Fi and C, D are points of F2 with Fi 9e 

(G, S) 9^ Fi. As ^~c> £ is a chain we may assume tha t F\ is a Hjelmslev 
subgroup of F2. Therefore B and D are both points of F2, which means tha t 
B C D. 

T H E O R E M 2 ([12]; [2] 8.6, 9.4). Given a Hjelmslev group. Suppose that (W) 
holds and that any two points are incident with at least one line. Let A be a point. 
Then &'A, Ci is a chain if and only if (Z) holds. 

COROLLARY. If, in addition, there is a pair of distant points then transitivity 
of the neighbor relation is equivalent to axiom (Z), and also to the statement that 
<^A, Ç: is a chain. 

The next theorem will deduce the property " <^AJ Q is a chain" from an 
order of the group plane. Such an order is studied in [9]. 

Definition. Let (G, S) be a Hjelmslev group satisfying axiom (W). Suppose 
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that to each line g we have an order relation ( . . )0 defined on the set P(g) of 
points lying on g, whose defining properties are as follows. 
{A.B.C)0=* (C.B.A)g 

(A.B.C)g V (A.CB)g V (C.A.B)g for A, B, C\g 
(A.B.C), A (A.C.B)q=*B = C 
(A.B.C)g A X\g =» (A.B.X)g V (X.B.C)g. 
Suppose that (A.B.C)g implies ((^4, h)h.(B, h)h.(C, h)h)h, for any two lines g, 
h. Then the set {( . . )g: g G S] is called an order of the group plane. 

THEOREM 3. Given a Hjelmslev group. Suppose that (W) holds and that an 
order is given on the group plane. Then ^A, C is a chain for every point A. 

Proof. Let a and ft be rotations such that A G F (a), F(/3) and suppose 
F(0) £ F(«). 

From (W) we can deduce that for any line c through A the statements 
"F(a) H P(c) C F(/3) H P(c)M and "F(a) Ç F(0)" are equivalent (see 
[2], 9.1). Furthermore we need F (a) H P(c) and F(/3) P\ P(c) are convex sets 
(with respect to the relation ( . . )c; for the easy proof see [9], 4.4). Since 
F(/3) $£ F(a) there exists a point B G F(/3) H P(c) \F(a) . Now suppose 
C G F (a) H P(c). We have to show that C G F (/S). From 4 G F (a) H F(/3) 
and 5 G F(/3)\F(a) follows 5 A G F(/3)\F(a). In the case of (A.B.C)C or 
(A.BA.C)C we would conclude B G F (a) or Z>A G F (a) (by the convexity of 
F (a)) which is a contradiction. Therefore (B.C.BA)C is true (by [9], (2.3)) 
and therefore the convexity of F(/3) implies that C G F(/3). 

3. The neighbor homomorphism. If, in a Hjelmslev group with more 
than one point, the neighbor relation C is transitive, then it is an equivalence re
lation, and there is a partition on the set of points given by the equivalence classes 
of O. Regarding the equivalence classes as new points the situation suggests the 
construction of a new plane which is expected to satisfy (E). This idea is due 
to Hjelmslev. The new plane is called the Gross-Geometrie. In order to formalize 
Hjelmslev's idea within the theory of Hjelmslev groups we shall use the con
cept of Hjelmslev homomorphism as it is defined in [2] and outlined in [1] and 
[3]. In addition to (W) and the transitivity of the neighbor relation we suppose 
that (Vf*) holds in order to obtain (V) for our Gross-Geometrie. Thus we 
derive a connection between the geometry of Hjelmslev groups and classical 
geometry. 

Definition. Let (G, S) and (Gcp, Sep) be Hjelmslev groups, where <p is a group 
homomorphism from G to G (p. <p is called a Hjelmslev homomorphism if a\b 
implies a(p\b<p for all a, b G S. 

If P is the set of points of (G, S) then it is easy to see that P<p is the se t of 
points of (G<p, Sep). 

For this section let (G, S) be a Hjelmslev group with more than one point 
which satisfies (W), (Vf*) and (Z). Then O is transitive. Let P be the set of 
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equivalence classes on P in respect to the relation C with C denoting the class 
of C G P. With each C G P associate the set S ( C) of lines incident with at least 
one point B G C. 

(17) Each C G P has the properties (a) If a,b G S(C) and a\b then ah G C. 
(P) If A,B £ C and AM = B for some point M then M G C. (7) Ca = C~a for 
each a e G. (Ô) Let U, V, W G C and Z : = UVW G P. Then Z G C. 

Proof, (a) is an immediate consequence of (5) (a), and (fi) follows from (4). 
For (7) let C G P and a G G. Then for each point X the statements X G C; 
X C C; Xa C O ; Xa G (> are equivalent. Now let the hypothesis of (<5) be 
satisfied. Then V C W and by (£')(«) ^ O £7™ = t / ^ = Uz. From (4) we 
obtain U C Z, and this means Z G C. 

From (17) and [2, § 6, 1-2] we derive the following important conclusion. 

(18) Let NG(C) be the normalizer of C G P. Then (NG(C), S(C)) is a 
Hjelmslev group and C is its set of points. Furthermore, 

TV : = {a G Seven: Ca = C for each C G P] 

is a normal subgroup of G. 

Actually we need only the last assertion which may easily be derived from 
(7): It is obvious that TV is a subgroup of G. To prove invariance suppose 
a G TV and /3 G G. From a G TV we have 

XV'1 C XV~l« 

and consequently X C X^'1^ for each point X, by (1). By (7) this means 
0rlafï G TV. 

Let cp: G —> G/'N be the canonical homomorphism. We contend that 
(G(p, Sep) is a (non-elliptic) AGS group, i.e. a Hjelmslev group with the proper
ties: Any two distinct points are incident with just one line; and there exist 
three non-collinear points. 

(19) Let A, B G P and a, b G 5. Then A<p — B<p if and only if A C B 
and a<p = bip if and only if a C b. 

Proof. For each pair of points A, B the following statements are equivalent: 
A C B; X c XAB for every point X (by (9'))\ X= X^ = XAB for every 
point X; AB G TV. By definition, a C b is equivalent to X C Xah for each 
point X, and this means afr G TV. 

(#0) Assume A\b, c and b C frc. Then b C c or b C ^4c. 

Proof. We need Lemma 1 of [2, § 9], which is valid in any Hjelmslev group: 

( + ) Let i b e a point and a G D(A). If F (a) = {.4} = F(Aa) then 
F(a2) = M}. 

Now suppose, b, c\A and a = be. Then our assertion follows from (12) and 
(+) • 
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N has the following properties: 

(NI) i V Ç 5 e v e n . 
(N2) N C\ P = 0. 
(N8) If A,B, C are points and A-ABC G N then BC G N. 
(N4) If A is a point and a £ D (A) such that a2 £ N then a Ç TV or Aa (j N. 

Proof. (Nl) is clear from the definition of N. (N2). Given any point A. 

Using (Vf*) and the t ransi t ivi ty of C a point B which is d is tan t to A can be 
constructed. B is d is tant to BA by (4) and thus A d N. (N3) follows from 
(9')(b) by (19), and (Nj.) follows from (19) and (20). 

According to [1], page 327, or [3], page 476, TV is the kernel of a Hjelmslev 
homomorphism. 

T H E O R E M 4. Let (G, S) be a Hjelmslev group with more than one point. Suppose 

that (W), (Vf*) and (Z) hold. Then 

N : = {a Ç 5 e v e n : Aa C A for each point A] 

is the kernel of a Hjelmslev homomorphism <p of (G, S) such that (G<p, S<p) is an 
AGS group. For points A, B and lines a, b one has A <p = Bç> if and only if 
A C B, and a<p = b<p if and only if a C b; Aç\bç holds if and only if A C 
(Ay b)b; a<p\b(p holds if and only if there is a perpendicular c to b which meets a in 
more than one point. 

Proof. We have already seen t ha t the canonical homomorphism with kernel 
TV is a Hjelmslev homomorphism of (G,S). Consider two dist inct points 
Acp, Bip of (G<p, Sip) (where A, B are points of (G, S)). F rom (19) and (Vf*) 
we have a line c\A, B and hence dp\A ip, Bip. Now assume there is a line d (z S 
such tha t dip\Aip, Bip. We shall see t ha t dip = op. Since dip = ((^4, d)^4) <̂> 
we may assume d\A ; and from dip\Bip it follows t ha t Bip = ((B, d)d)<p. By (19) 
B is a neighbor of (B, d)d and A distant B. We now apply (13) and the lemma 

B 

^- ci d 
A (75, d)d 

(ii) —» (i) and obtain c C d and therefore c<p = dip. In order to show tha t 
(G<p, Sip) has three noncollinear points, we choose lines b, c £ S such t ha t b\c. 
Let A : = be. By (Vf) there are d i s tan t points C, D on b, and (8) implies t h a t 
E : = 4̂ CD is a point d i s tan t to A which lies on b. Analogously there is a point 
F which lies on c and is d is tan t to A. (19) and the uniqueness of the joining line 
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through two different points of (G(p,Sç) yield that Eç,Aç,Fç are not 
collinear. 

The other assertions follow easily from simple properties of Hjelmslev 
homomorphisms. 

Suppose (p is a Hjelmslev homomorphism of an arbi t rary Hjelmslev group 
(G, S) and the following two properties are valid. 

1. A C B <=̂  A ç> C Bcp, for any two points A, B, and 

2. (G<p, Sep) is an AGS group. 

These two properties determine <£>up to composition with an isomorphism. We 
shall therefore speak somewhat loosely of the neighbor homomorphism of 
(G, S), provided such a homomorphism exists. 

4. E x a m p l e . The following construction will provide a Hjelmslev group 
which satisfies the axioms (W), (Vf) and (Z); hence from Theorem 1 we can 
deduce t ransi t ivi ty of C . But &~A, Q will not be a chain. We shall find pairs 
of unjoinable points. The Hjelmslev group will be singular: if a, b, c, d are lines 
such tha t a\b and b\c and c\d holds then also a\d. This means tha t P2 is a group. 

Let R be a local (commutat ive) ring with 1 £ R. Let / be its maximal ideal. 
Suppose tha t all non-units of R are zero-divisors and tha t the following 
condition holds. 

(*) If X, fx e R and X2 + M2 Ç / then X, /x Ç J. 

Fur thermore let Vbe the free 3-dimensional metric i?-module whose symmetric 
bilinear form is given by 1, 1, 0 with respect to an orthogonal basis. This basis 
will be fixed. 

Let EV be the "euclidean plane" over R: its points are the following 
1-dimensional subspaces of V*, the dual of V. 

R(a, 13, y) where a, (3 G R and y G R\J. 

The lines are the 1-dimensional subspaces of V of the form 

R[a', /3', y'] where a', 0 r, y' G R and {<*', 0'} g / . 

As usual, incidence is defined by 

aa! + 0 + TT' = 0. 

A symmetric orthogonali ty relation on the set of lines is given by the metric 
form of V. EV is the s t ructure consisting of these points and lines, together 
with this incidence and orthogonality. 

Let 7] be the homomorphism of EV onto the euclidean plane EV over the 
field R/J of residue classes, which maps the points Riot, 0, y) onto R/J(a + J , 
/3 + / , y + J), and the lines R[a', 0', y] onto R/J[a' + J, P' + 7, y' + J]. 
We omit R and R/J in the following. The discriminant of each line a of EV 
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contains an i?-unit (because of (*)) and therefore the reflection in a, aa: V —» V 
is well-defined. Let 

S := {aa: a is a line of EV}. 

Writing compositions of reflections aa as products one obtains a group G 
which is generated by 5. If A is a point of EV and a, b are orthogonal lines 
through A let aA : = aaab. aA is well-defined, and the discussion in [5] leads to 
the following results. 

(a) (G, S) is a singular Hjelmslev group, and P : = {aA: A is a point of £ 7 } 
is the point set of (G, S). A H (Tfl) A h^ aa, is an isomorphism of EV onto the 
group plane assigned to (G, 5). 

(b) Two points ^4,5 of EV satisfy At] ^ Br) if and only if A,B have 
exactly one common line. Two intersecting lines a, b of EV satisfy ay] ^ by] if 
and only if they have not more than one common point. 

(c) (G, S) satisfies the axioms (W) and (Z). Z(5even) = {1}. 

In addition we now request that 

(**) Ann(J) ^ {0} ; i.e. there is some X 6 R\[0\ such that XM = 0 for all 
/ i f / . 

With this assumption (**) we shall prove 

(d) Let A, B be points of E F . Then 4̂?; = î r? is equivalent to aA C aB 

in (G,5). 

Proof of (d). If yl, _5 have more than one common line then by (a) and (c) 
aA C aB in (G, 5). If A, B have exactly one common line then aA distant aB in 
(G, 5). If A, B have no joining line then we have to show that there is a rota
tion ^ 1 of (G, S) which fixes aA and aB. Applying (b) we may assume that 
A = (0, 0, 1) and B = (X1? X2, 1) where Xb X2 G / . Let X G Ann(J)\{0} 
and consider the lines a : = [1, X, 0], b : = [ — X, 1, — X2], a' : = [1, 0, 0] and 
&' : = [0, 1, — X2]. Then the lines a, a' pass through A and 6, 6' pass through B. 
a is orthogonal to b, and a' is orthogonal to b'. Also a, b, a', b' meet in the point 
C = (0, X2, 1). Therefore we have aaab = ac = Va'Vb' and ovcra = ab>(Tb is a 
rotation fixing aA and crB; it is not the identity because a ^ a'. 

It is obvious from (d) and (6) that 

(e) The relation C is transitive in (G, 5). (G, S) satisfies (Vf). 
Now assume 

(***) There are M, V, e, œ £ i? such that /xe = 0 = vu, but JUCO 7e 0 and 
ve ?* 0. 

Under this additional assumption we prove 
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(/) The spots of rotations with center cr(0,o,i) do not form a chain. 

Proof. Let X : = (0, 0, 1), A : = (0, /*, 1), B:= (0, v, 1), a : = [1, e, 0], 

b : = [1, co, 0], x : = [1, 0, 0]. Then, by (a), <rxaa fixes crx and <rA but not aB} 

and ( j ^ fixes ax and <rB but not aA. Hence the spot of axaa is not contained in 
the spot of axab and conversely. 

Now we give an example of a local ring R such tha t (*), (**) and (***) are 
valid and all non-units are zero-divisors. 

For this purpose let K be a commutat ive field such tha t a2 + b2 ^ 0 for 
each pair a,b Ç i£ \{0) . Let T be the ideal generated by {x2, y2} in the ring 
K[x, y] and consider R : = K[x, y]/T. We represent R by the set of represen
tat ives 

{a -\- bx -\- cy + dxy: a, b, c, d £ i£}. 

I t is easy to see tha t the i^-ideal J = {bx + cy + Jx};: b, c, d £ K) consists of 
the non-units of R. T h u s R is a local ring and J is its maximal ideal. Since 
xy G A n n ( / ) \ { 0 } , (**) is satisfied. To verify (***) let /x : = e : = x and 
*> : = w : = y. (*) follows easily from the requested property of K. 

Remark 1. We have seen tha t the canonical homomorphism R—+R/J 
provides a homomorphism EV —> £ F r . Similarly there is a homomorphism 

Vfr: G L ( F ) -> GL(V'), («,-,) ^ (« f , + J) 

(in terms of matrices) which is studied in [5] and [9]. Then the following 
diagram is commuta t ive : 

EV -KG.S) 

EV-2-^ (G',S') 

and the restriction \p\ G is exactly the neighbor homomorphism of (G, S): 

(G', S') ^ (Gv, S<p) 

where <p is the Hjelmslev homomorphism of Theorem 4. 

Remark 2. Let (G, S) be the Hjelmslev group over the above special local 
ring. Then the neighbor relation of (G, S) is transitive, bu t the neighbor 
relation of the spot F which belongs to the rotation o"[0,i,o]0-[^,i,o] is not transi
tive. F satisfies the axioms (W) and (Z), bu t it fails to satisfy (Vf*): There 
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exist two points, namely for example <7(o,o,D a n d (T(x,y,i), which are d is tan t in F 
and which have no common line. F is the Hjelmslev subgroup (N(?(o-(o,o,i)), 
S(o"(o,o,i))) which is considered in (18). 

Proof of Remark 2. (W) is valid in F because F is locally complete in (G, S), 
and (Z) is fulfilled in F because there is no " twis t ing l ine" in (G, S). 

(a) 0"(o,o,i) distant o-(X,y,D m F. Let Ô be a rotat ion of F which fixes both points. 
Then 5 may be wri t ten as 

5 = O " f 0 , l , 0 ] O ' [ X , l > 0 ] > 

where X Ç Ann(x) , and 

(5 = ( 7 [ l , 0 , - ^ ] 0 - [ 1 > M I _ 2 ; ] 

where /x £ Ann (3/), and the two lines [X, 1,0], [1, M> ~~ x] must be orthogonal 
([2], 4.3). Therefore X = —/x Ç Ann({x, y}) = Rxy, and 5 is a rotation of F 
which fixes each point of F on the line ô o.i.o]. From (W) we now conclude that 
5 fixes each point of F. 

\P) O"(0,0,l) ^ O"(ar,0,l) ^ n d O"(x>o,l) C ( 7 ( ^ 1 ) i n F . O"[o,l,0] O"[a;,l,0] fixes (7(0,0,1) 

and O-^.O.D but not the point O-^O.D which also belongs to F. Similarly o-fii0,_^ 

<j\i,y,-x] fixes o-(x,o,i) and a(x,y,D bu t not the point o ^ ^ i ) . 

Remark 2 shows t ha t (Vf*) in Theorem 1 is essential. 
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