SEMIMODULARITY AND BISIMPLE ω-SEMIGROUPS

by H. E. SCHEIBLICH (Received 7th March 1969)

1. Introduction

Let S be a completely 0-simple semigroup and let $\Lambda(S)$ be the lattice of congruences on S. G. Lallement (2) has described necessary and sufficient conditions on S for $\Lambda(S)$ to be modular, and has shown that $\Lambda(S)$ is always semimodular $(\lambda, \tau > \lambda \cap \tau \text{ implies } \lambda \vee \tau > \lambda, \tau)$. This result may be stated: If S is 0-bisimple and contains a primitive idempotent, then $\Lambda(S)$ is semimodular.

Let S be a bisimple ω -semigroup. Munn (4) has found necessary and sufficient conditions on S for $\Lambda(S)$ to be modular. This note will describe the conditions under which $\Lambda(S)$ is semimodular. An example will show that these conditions need not be met, so that the existence of a primitive idempotent is indeed essential in Lallement's result.

2. Semimodularity

The notation will be that of (1), (3), (4), (5). Some knowledge of these papers is assumed.

Briefly, a semigroup S is an ω -semigroup if the idempotents of S form a countably infinite descending chain: $e_0 > e_1 > e_2 \dots$ Bisimple ω -semigroups $S = S(G, \alpha)$ have been characterized by Reilly (5) in terms of groups G and endomorphisms α of G.

If $S = S(G, \alpha)$ is a bisimple ω -semigroup, then $\Lambda(S) = [i, \mathcal{H}] \cup [\sigma, S \times S]$ where σ is the minimum group congruence on S. Let $\mathcal{A} = \{A : A \text{ is a normal} \alpha$ -admissible subgroup of $G\}$. For each $A \in \mathcal{A}$, let rad $A = \{g \in G : g\alpha^n \in A \text{ for some } n\}$, and let $\mathcal{A}^* = \{A \in \mathcal{A} : \text{rad } A = A\}$. For each $\lambda \in \Lambda(S)$, let $A_{\lambda} = \{g \in G : (0; g; 0) \in e_0 \lambda\}$. Then $\lambda \to A_{\lambda}$ and $\tau \to A_{\tau}$ are, respectively, inclusion preserving bijections of $[i, \mathcal{H}]$ onto \mathcal{A} and of $[\sigma, \sigma \vee \mathcal{H}]$ onto \mathcal{A}^* [(3), (4)].

Lemma 2.1. Let $\lambda \in [i, \mathcal{H}]$ and $\tau \in [\sigma, \sigma \lor \mathcal{H}]$ and $A_{\lambda} \subseteq A_{\tau}$. Then $\lambda \subseteq \tau$.

Proof. Let $(x, y) \in \lambda$. Then x = (m; g; n), y = (m; h; n), and $gh^{-1} \in A_{\lambda} \subseteq A_{\tau}$ by Lemma 2.3 of (3). Hence $(x, y) \in \tau$ by the remarks after Lemma 5 of (4).

Lemma 2.2. Let $\lambda \in [i, \mathcal{H}]$ and $\tau \in [\sigma, S \times S]$.

(i) Then $\tau > \lambda$ in $\Lambda(S)$ implies $\tau = \sigma \lor \lambda$.

(ii) Thus $\tau \succ \lambda$ in $\Lambda(S)$ if and only if $A_{\tau} = A_{\lambda}$.

H. E. SCHEIBLICH

Proof. (i) Since λ , $\sigma \subseteq \tau$, then $\lambda \subseteq \lambda \lor \sigma \subseteq \tau$. Thus $\tau = \lambda \lor \sigma$ since $\tau \succ \lambda$.

(ii) Assume first that $\tau > \lambda$ in $\Lambda(S)$. Then $A_{\tau} = A_{\lambda \vee \sigma}$ by (i) and so

 $A_{\tau} = \operatorname{rad}(A_{\lambda})$

by Lemma 7 of (4). Thus $A_{\lambda} = \operatorname{rad} A_{\lambda}$ since otherwise there would be an idempotent separating congruence strictly between λ and τ by Lemma 2.1. Then $A_{\lambda} = A_{\tau}$ since otherwise there would be a group congruence strictly between λ and τ , again by Lemma 2.1.

Conversely, assume that $A_{\lambda} = A_{\tau}$ and $\kappa \in \Lambda(S)$ such that $\lambda \subseteq \kappa \subseteq \tau$. Then $A_{\tau} = A_{\lambda} \subseteq A_{\kappa} \subseteq A_{\tau}$ and so $\kappa = \lambda$ or $\kappa = \tau$ depending on whether $\kappa \in [i, \mathcal{H}]$ or $\kappa \in [\sigma, \sigma \lor \mathcal{H}]$.

Theorem 2.3. $\Lambda[S(G, \alpha)]$ is semimodular if and only if $A \in \mathscr{A}^*$ and $B \succ A$ in \mathscr{A} implies $B \in \mathscr{A}^*$.

Proof. Assume that $\Lambda[S(G, \alpha)]$ is semimodular. Let $A \in \mathscr{A}^*$ and $B \succ A$ in \mathscr{A} . Choose $\lambda \in [i, \mathscr{H}]$ and $\tau \in [\sigma, \sigma \lor \mathscr{H}]$ such that $A_{\tau} = A$ and $A_{\lambda} = B$. Then $A_{\tau \cap \lambda} = A_{\tau} \cap A_{\lambda} = A \cap B = A = A_{\tau}$, using Lemma 6 of (4) at the first step. Thus $\tau \succ \lambda \cap \tau$ by Lemma 2.2 and $\lambda \succ \lambda \cap \tau$ since $B \succ A$ in \mathscr{A} . Thus $\lambda \lor \tau \succ \lambda, \tau$ since $\Lambda(S)$ is semimodular. But, again by Lemma 6 of (4) $A_{\lambda \lor \tau} = \operatorname{rad}(A_{\lambda}A_{\tau})$ = rad B. But $\lambda \lor \tau \succ \lambda$ and so $B = \operatorname{rad} B$ by Lemma 2.2.

Conversely, assume that $A \in \mathscr{A}^*$ and $B \succ A$ in \mathscr{A} implies $B \in \mathscr{A}^*$. Let $\lambda \in [i, \mathscr{H}]$ and $\tau \in [\sigma, \sigma \lor \mathscr{H}]$ such that $\lambda, \tau \succ \lambda \cap \tau$. Then $A_{\tau} = A_{\tau \cap \lambda} = A_{\tau} \cap A_{\lambda}$ and so $A_{\tau} \subseteq A_{\lambda}$. Since $\lambda \succ \tau \cap \lambda$, then $A_{\lambda} \succ A_{\tau}$ and hence rad $A_{\lambda} = A_{\lambda}$. But $A_{\lambda \lor \tau} = \operatorname{rad} (A_{\lambda}A_{\tau}) = A_{\lambda}$ and so $\lambda \lor \tau \succ \lambda$ by Lemma 2.2. Also $\lambda \lor \tau \succ \tau$ because $A_{\lambda} \succ A_{\tau}$.

Corollary 2.4. Let $\alpha \in \text{End}(G)$ such that $G\alpha = G$. Then $\Lambda[S(G, \alpha)]$ is semimodular.

Proof. Let $A \in \mathscr{A}^*$ and let B > A in \mathscr{A} . To show that $B \in \mathscr{A}^*$, it is enough (by induction) to show that $g\alpha \in B$ implies $g \in B$.

Since B > A in the lattice of α -admissible normal subgroups of G, then B/A > 1 in the lattice of (α/A) -admissible normal subgroups of G/A. From $B/A \lhd G/A$ it follows that $(B/A)(\alpha/A) \lhd (G/A)(\alpha/A) = G/A$ and since $(B/A)(\alpha/A)$ is (α/A) -admissible, then $(B/A)(\alpha/A) = B/A$ or $(B/A)(\alpha/A) = 1$. But α/A is injective since $A \in \mathscr{A}^*$ and so $(B/A)(\alpha/A) = B/A$.

Suppose then that $g \in G$ and $g\alpha \in B$. Then $(Ag)(\alpha/A) \in B/A$ and so

$$A(g\alpha) = A(b\alpha)$$

for some $b \in B$. Hence $(gb^{-1})\alpha \in A$ and so $gb^{-1} \in A$ since $A \in \mathscr{A}^*$. Thus $gb^{-1} \in B$ and so $g \in B$.

Corollary 2.5. Assume G is abelian and $\alpha \in \text{End}(G)$. Then $\Lambda[S(G, \alpha)]$ is semimodular.

80

Proof. The argument is essentially the same as in Corollary 2.4. The important thing there is that $(B/A)(\alpha/A) \lhd G/A$ and this is so here too because G is abelian.

Example 2.6.[†] Let $N = \{0, 1, 2, ...\}$. Let $G = \{\sigma : \sigma \text{ is a permutation of } N$, and $n\sigma = n$ for all but a finite number of $n \in N\}$. Let $A = \{\sigma \in G : \sigma \text{ is an even permutation}\}$. Define $\alpha : G \rightarrow G$ by $(2n)(\sigma\alpha) = 2(n\sigma)$ and

$$(2n+1)(\sigma\alpha) = 2(n\sigma)+1.$$

Then $\alpha \in \text{End}(G)$, α is injective, and $G\alpha \notin A$. Hence $\mathscr{A} = \{1, A, G\}$ and $\mathscr{A}^* = \{1, G\}$. Consequently, $\Lambda[S(G, \alpha)]$ is not semimodular. In fact, $[i, \sigma \lor \mathscr{H}]$ is the non-modular five lattice and so $\Lambda[S(G, \alpha)]$ does not satisfy the Jordan-Dedekind chain condition.

REFERENCES

(1) A. H. CLIFFORD and G. B. PRESTON, *The Algebraic Theory of Semigroups*, Vol. 1, Math. Surveys (American Mathematical Society No. 7, Providence, R. I., 1961).

(2) G. LALLEMENT, Demi-groups réguliers, Doctoral Thesis, University of Paris, 1966.

(3) W. D. MUNN and N. R. REILLY, Congruences on a bisimple ω -semigroup, *Proc. Glasgow. Math. Assoc.* 7 (1966), 184-192.

(4) W. D. MUNN, The lattice of congruences on a bisimple ω -semigroup, *Proc.* Roy. Soc. Edinburgh Sect. A 67 (1965-67), 175-184.

(5) N. R. REILLY, Bisimple ω -semigroups, Proc. Glasgow Math. Assoc. 7 (1966), 160-169.

THE UNIVERSITY OF SOUTH CAROLINA

† The author is indebted to Professor E. E. Enochs for this example.