OPERATOR SEMISTABLE PROBABILITY MEASURES ON A HILBERT SPACE

R.G. Laha and V.K. Rohatgi

A characterization of the class of operator semistable probability measures on a real separable Hilbert space is given.

1. Notation and preliminaries

Let H be a real separable Hilbert space with inner product (•, •) and norm $\|\cdot\|$ and let B denote the σ-field generated by the class of open subsets of H. Let $L=L(H)$ denote the algebra of all bounded linear operators on H with the usual norm topology. For any subset F of L, let $\operatorname{Sem}(F)$ denote the closed multiplicative semigroup of operators generated by F. Denote by I the identity operator and by 0 , the zero operator. Let G be the multiplicative group of all invertible operators in L. Let $P=P(H)$ be the class of all probability measures on B.

The convolution of two measures μ and ν is denoted by $\mu * \nu$ and the power μ^{n} is taken in the sense of convolution. Let δ_{x} denote the probability measure degenerate at $x \in H$. For any $P \in P$ let \hat{P} denote the Fourier transform of P. Thus

$$
\hat{P}(y)=\int_{H} \exp (i(x, y\rangle) d P(x), \quad y \in H
$$

Let $\left\{P_{n}\right\}$ be a sequence of probability measures in P and let

Received 5 June 1980. Research supported by NSF Grant MCS78-01338.
$P \in P$. We write $P_{n} \Rightarrow P$ to say that $\left\{P_{n}\right\}$ converges weakly to P. If $P_{n} \Rightarrow P$ we write $P=\lim _{n \rightarrow \infty} P_{n}$.

Let $P \in P$. A closed subset $S(P)$ of H is said to be the support of P if the complement of $S(P)$ has P-measure zero and for any $x \in S(P)$ and any neighborhood V_{x} of $x, P V_{x}>0$. We call $P \in P$ full if its support is not contained in any proper hyperplane of H.

Let $A \in G$, and $P \in P$. Define $A P$ on B by setting

$$
A P(E)=P\left(A^{-1} E\right), \quad E \in B .
$$

Then $A P \in P$ and

$$
\widehat{A P}(y)=\widehat{P}\left(A^{*} y\right), y \in H
$$

where A^{*} is the adjoint of $A \in L$. Moreover, for $P_{1}, P_{2} \in P$ and $A \in G$ we have

$$
A\left(P_{1} * P_{2}\right)=A P_{1} * A P_{2}
$$

Let $A_{n} \in L, A \in L, P_{n}$ and $P \in P$ such that $A_{n} \rightarrow A$ and $P_{n} \Rightarrow P$. Then $A_{n} P_{n} \Rightarrow A P$.

Given $P \in P$, we define $P^{-} \in P$ by setting $P^{-}(E)=P(-E)$. A measure $P \in P$ is said to be symmetric if $P=P^{-}$. For any $P \in P$, the measure $\mathcal{P}=P * P^{-}$is symmetric, and is called the symmetrization of P.

In [4] Sharpe introduced and investigated the class of operator stable measures in \mathbb{R}_{n}. In particular, he characterized the class of all full operator stable measures. In [2] Kruglov considered the class of semistable measures on \mathbb{R}_{1} and gave a characterization of this class. In [1] Jajte described the class of all full measures on \mathbb{R}_{n} which are operator semistable. In this paper we consider the class of operator-semistable measures on (H, B).

DEFINITION 1. A probability measure $P \in P$ is said to be operator stable, if there exist $A_{n} \in G, x_{n} \in H$, and $Q \in P$ such that the relation

$$
\begin{equation*}
P=\lim _{n \rightarrow \infty} A_{n} Q^{n} * \delta_{n} \tag{1}
\end{equation*}
$$

holds.
DEFINITION 2. Let $P \in P$. We say that P is operator semistable if there exist $A_{n} \in G, x_{n} \in H, Q \in P$, and a sequence of positive integers $k_{n}, k_{n} \rightarrow \infty$ as $n \rightarrow \infty$, with $k_{n+1} / k_{n} \rightarrow \gamma$ for some $\gamma \geq 1$ such that

$$
\begin{equation*}
P=\lim _{n \rightarrow \infty} A_{n} Q^{k} n_{* \delta} x_{n} . \tag{2}
\end{equation*}
$$

In the following we will assume that the sequence $\left\{A_{n}\right\}, A_{n} \in G$, satisfies the condition:
(3) $\operatorname{Sem}\left(\left\{A_{m} A_{n}^{-1}, n=1,2, \ldots, m ; m=1,2, \ldots\right\}\right\}$ is compact in the norm topology of L.

We note that for full probability measures on finite-dimensional spaces the compactness condition (3) can be omitted (see, for example, [1]).

We will prove the following theorem which characterizes the class of operator semistable measures on H.

THEOREM 1. Let P be a full probability measure on (H, B). Then P is operator semistable if and only if P is infinitely divisible and there exist $a c, 0<c<1$, an element $b \in H$, and an operator $A \in G$, such that the relation

$$
\begin{equation*}
P^{c}=A P * \delta_{b} \tag{4}
\end{equation*}
$$

holds. (Here P^{c} is the probability measure corresponding to $[\hat{P}]^{c}$.)
The proof of Theorem 1 is carried out with the help of several lemmas.

2. Norming sequences

We will prove two lemmas concerning the norming sequences $\left\{A_{n}\right\}$ of operators from G satisfying condition (3).

LEMMA 1. Let $P \in P$ be a full operator semistable measure. Then
$A_{n} \rightarrow 0$ as $n \rightarrow \infty$ where 0 is the zero operator in H.
Proof. Let $P \in P$ be a full operator semistable probability measure. Suppose that $A_{n} Q^{k} * \delta_{x_{n}} \Rightarrow P$. By symmetrization we see that

$$
\stackrel{\circ}{P}=\lim _{n \rightarrow \infty} A_{n} \stackrel{\circ}{Q}^{k} n
$$

so that

$$
\stackrel{\hat{O}}{P}(y)=\lim _{n \rightarrow \infty}\left[\hat{\theta}\left(A_{n}^{*} y\right)\right]^{k} n, \quad y \in H
$$

It follows that $\hat{Q}\left(A_{n}^{*} y\right) \rightarrow 1$ as $n \rightarrow \infty$ uniformly in $y \in H$. We show that $A_{n} \hat{Q} \Rightarrow \delta_{0}$. Let A be an arbitrary limit point of $\left\{A_{n}\right\}$. In view of (3), $\operatorname{Sem}\left(\left\{A_{n}, n \geq 1\right\}\right)$ is compact so that there exists a subsequence $\left\{A_{n_{j}}\right\} \subset\left\{A_{n}\right\}$ such that $A_{n_{j}} \rightarrow A$ as $n_{j} \rightarrow \infty$. It follows that $A_{n_{j}}{ }_{Q}^{Q} \Rightarrow A Q$ so that $\left\{A_{n} Q\right\}$ is relatively compact and hence tight (Theorem 3.9.2,
p. 208 of [3]). From Proposition 7.4.2 on page 463 of Laha and Rohatgi [3], we conclude that A_{n} Q $\Rightarrow \delta_{0}$.

Let $n \leq n_{j}$. We write

$$
\begin{equation*}
A_{n_{j}} \AA^{\ell^{k} n_{j}}=A_{n_{j}} Q^{Q_{n}} * A_{n_{j}} 8^{Q_{n} n_{j}^{-k} n} . \tag{5}
\end{equation*}
$$

Letting $j \rightarrow \infty$ and noting that $A_{n} \mathscr{Q} \Rightarrow \delta_{0}$ we conclude from (5) that

$$
\begin{equation*}
\mathcal{P}=A Q^{k} n * \mathscr{P} \tag{6}
\end{equation*}
$$

holds for every n.
Next note that $\operatorname{Sem}\left(\left\{A A_{n_{j}}^{-1}, j \geq 1\right\}\right)$ is compact. Let B be a limit point of $\left\{A A_{n_{j}}^{-1}\right\}$. Then without loss of generality, passing to a
subsequence if necessary we may assume that $A A_{n_{j}}^{-1} \rightarrow B$ as $j \rightarrow \infty$. Consequently,

$$
A=A A_{n_{j} n_{j}}^{-1} \rightarrow B A \quad \text { as } \quad j \rightarrow \infty
$$

so that

$$
\begin{equation*}
A=B A \tag{7}
\end{equation*}
$$

From (6) we have the equation

$$
\stackrel{\circ}{P}=A A_{n_{j}^{-1} A_{j}}^{\stackrel{\circ}{Q}^{k_{j}}{ }_{j} \stackrel{\circ}{P}}
$$

Letting $j \rightarrow \infty$ we obtain

$$
B=B Q * P
$$

and hence, for $y \in H$,

$$
\hat{g}(y)=\hat{Q}\left(B^{*} y\right) \hat{B}(y)
$$

Thus

$$
|\hat{P}(y)|^{2}=\left|\hat{P}\left(B^{*} y\right)\right|^{2}|\hat{P}(y)|^{2}, \quad y \in H
$$

We note that $\hat{P}(y) \neq 0$ in some neighborhood of $0 \in H$. It follows that in some neighborhood of $0 \in H$,

$$
\left|\hat{P}\left(B^{*} y\right)\right|=|\widehat{B P}(y)|=1
$$

and it follows ([3], page 463) that $B P=\delta_{x}$ for some $x \in H$. Since, however, P is a full measure on B this is possible if and only if $B=0$ and $x=0$. From (7) we conclude that $A=0$. Since A is an arbitrary limit point of $\left\{A_{n}\right\}$ we conclude that $A_{n} \rightarrow 0$ as $n \rightarrow \infty$.

LEMMA 2. Let c be a limit point of $\left\{A_{n+1} A_{n}^{-1}, n=1,2, \ldots\right\}$. Then the relation

$$
\hat{P}(y)=[\widehat{C P}(y)]^{Y} \exp (i(b, y\rangle)
$$

holds for all $y \in H$, where $b \in H$ and $\gamma=\lim _{n \rightarrow \infty}\left(k_{n+1} / k_{n}\right) \geq 1$.

Proof. Let $\left\{A_{n_{j}}\right\} \subset\left\{A_{n}\right\}$ be a subsequence such that $A_{n_{j+1}} A_{n_{j}}^{-1} \rightarrow C$ as $j \rightarrow \infty$. Then
$\hat{P}(y)=\lim _{j+\infty}\left\{\left[A_{n_{j+1} A_{j}^{-I} A_{j}} Q(y)\right]^{k_{n_{j}}\left(k_{n_{j+1}} / k_{n_{j}}\right)}\right.$
$\cdot \exp \left[i\left(k_{n_{j+1}} / k_{n_{j}}\right)\left\langle A_{n_{j+1}} A_{n_{j} n_{j}}^{-1}, y\right\rangle\right]$
$\left.\cdot \exp \left[i\left\langle x_{n_{j+1}}-\left(k_{n_{j+1}} / k_{n_{j}}\right) A_{n_{j+1}} A_{n_{j}}^{-1} x_{j}, y\right\rangle\right]\right\}$
$=\lim _{j \rightarrow \infty}\left\{\left[\left(A_{n_{j+1} A_{j}^{-1} A_{j} Q(y)}\right)^{k_{n_{j}}} \cdot \exp \left(i\left\langle A_{n_{j+1}} A_{n_{j} n_{j}}^{-1}, y\right\rangle\right]^{k_{n_{j+1}} / k_{n_{j}}}\right.\right.$
$\left.\cdot \exp \left(i\left\langle b_{n_{j}}, y\right)\right)\right\}$
where $\quad b_{n_{j}}=x_{n_{j+1}}-\left(k_{n_{j+1}} / k_{n_{j}}\right) A_{n_{j+1}} A_{n_{j}}^{-1} x_{j} \in H$. It follows that (8) holds for some $b \in H$ where $\left\langle b_{n_{j}}, y\right\rangle \rightarrow\langle b, y\rangle, y \in H$ as $j \rightarrow \infty$.

3. Proof of Theorem 1

Suppose that P is infinitely divisible and (4) holds. Set $\gamma=c^{-1}$. Then $\gamma>1$ and we can write (4) as

$$
P=(A P)^{\gamma_{\star \delta}}{ }_{\gamma b} .
$$

By iteration n times we obtain

$$
P=\left(A^{n} P\right)^{\gamma^{n}} * \delta_{b_{n}}
$$

for some $b_{n} \in H$. Set $k_{n}=\left[\gamma^{n}\right]$. Then $k_{n+1} / k_{n} \rightarrow \gamma$ as $n \rightarrow \infty$.
Moreover

$$
P=\lim _{n \rightarrow \infty}\left(A^{n} P\right)^{k}{ }^{k} * \delta_{b_{n}}=\lim _{n \rightarrow \infty} A^{n_{P}}{ }^{k} n^{n} \delta_{b_{n}}
$$

and it follows that P is operator semistable.
Conversely, suppose that P is a full operator semistable probability measure on B. Then P is infinitely divisible in view of Lemma 1. If $\gamma>1$, (4) follows easily from Lemma 2. It remains to prove (4) for the $Y=1$ case. This is done in Lemma 4 below.

LEMMA 3. Let $P \in P$ be a full measure on B. Then P is operator stable if and only if for every $n \geq 1$,

$$
\begin{equation*}
P=c_{n} P^{n} * \delta_{n} \tag{9}
\end{equation*}
$$

where $c_{n} \in G$ and $c_{n} \in H$.
Proof. Clearly if. P satisfies (9) for every $n \geq 1$ then

$$
P=\lim _{n \rightarrow \infty} C_{n} P^{n} * \delta_{c}
$$

so that P is operator stable.
Conversely, suppose that P is a full operator stable measure on B. Then there exist $A_{n} \in G, x_{n} \in H$ and $Q \in P$ such that

$$
\begin{equation*}
P=\lim _{n \rightarrow \infty} A_{n} Q^{n} * \delta_{n} \tag{10}
\end{equation*}
$$

Then, for every $m \geq 1$,

$$
\begin{aligned}
P^{m} & =\lim _{n \rightarrow \infty}\left[A_{n^{Q}} Q^{n} * \delta_{x_{n}}\right]^{m} \\
& =\lim _{n \rightarrow \infty} A_{n} Q^{m n} * \delta_{m x_{n}}
\end{aligned}
$$

In view of (10),

$$
P=\lim _{n \rightarrow \infty} A_{m n^{2}} Q^{m n} * \delta_{m n}
$$

Therefore

$$
\begin{aligned}
P^{m} & =\lim _{n \rightarrow \infty} A_{n} Q^{m n} * \delta_{m x_{n}} \\
& =\lim _{n \rightarrow \infty} A_{n} A_{m n}^{-1} A_{m n} Q^{m n} * \hat{o}_{x_{m n}} * \delta_{m x_{n}}-x_{m n}
\end{aligned}
$$

In view of condition (3), $\left\{A_{n} A_{m}^{-1}\right\}$ is compact. Let $C_{m} \in G$ be a limit point of this sequence. Passing to a subsequence if necessary we obtain

$$
P^{m}=c_{m} p * \delta_{a_{m}},
$$

for some $a_{m} \in H$, and every $m \geq 1$. This completes the proof of Lemma 3.
LEMMA 4. Let $P \in P$ be full such that

$$
P=\lim _{n \rightarrow \infty} A_{n} Q^{k} n_{* \delta} x_{n}
$$

where $A_{n} \in G, x_{n} \in H$ and $k_{n+1} / k_{n} \rightarrow \infty$ as $n \rightarrow \infty$. Then P is operator stable and moreover, the relation (4) holds.

Proof. In view of Lemma $1, P$ is infinitely divisible so that its powers with any positive exponent exist and are infinitely divisible. Let $0<\alpha<l$ be arbitrary. Select, and fix, a sequence $\mathcal{Z}(n)$ of integers such that $k_{Z(n)} / k_{n} \rightarrow \alpha$ as $n \rightarrow \infty$. Then, for $y \in H$,

$$
\begin{aligned}
& {[\hat{P}(y)]^{\alpha}=\lim _{n \rightarrow \infty}\left[\widehat{A_{n} Q}(y)\right]^{\alpha k_{n}} \cdot \exp \left(i\left\langle\alpha x_{n}, y\right\rangle\right)} \\
& =\lim _{n \rightarrow \infty}\left[A_{n^{A} Z(n)^{-1} Z(n)^{Q}(y)}\right]^{k_{n}\left(k_{z(n)} / k_{n}\right)} \cdot \exp \left(i\left\langle\alpha x_{n}, y\right\rangle\right) \\
& =\lim _{n \rightarrow \infty}\left\{\left[\widehat{A}_{n^{A_{Z(n)}^{-1}} A_{Z(n)}^{Q(y)}}\right]^{k} Z(n)\right. \\
& \left.\cdot \exp \left(i\left\langle A_{n} A_{Z(n)}^{-1} x_{Z(n)}, y\right\rangle\right) \cdot \exp \left(i\left\langle\alpha x_{n}-A_{n} A_{Z(n)}^{-1} x_{Z(n)}, y\right\rangle\right)\right\} \\
& =\lim _{n \rightarrow \infty}[\overbrace{n} \overbrace{Z(n)^{Q}(y)}]^{k} z(n) \cdot \exp \left(i\left(c_{n} x_{z(n)}, y\right)\right) \cdot \exp \left(i\left\langle a_{n}, y\right\rangle\right)
\end{aligned}
$$

for some $a_{n} \in H$, where $C_{n}=A_{n} A_{Z(n)}^{-1} \in G$. Write $P_{n}=A_{Z(n)} Q^{k_{Z(n)} * \delta} x_{Z(n)}$ and note that $P_{n} \Rightarrow P$ where P is a full probability measure. Also, for $y \in H$,

$$
\begin{equation*}
[\hat{P}(y)]^{\alpha}=\lim _{n \rightarrow \infty}\left\{{\widehat{C_{n}^{P}}}_{n}(y) \cdot \exp \left(i\left\langle a_{n}, y\right\rangle\right)\right\} \tag{11}
\end{equation*}
$$

Note that in view of (3) the sequence $\left\{C_{n}\right\}$ is compact. Let $C_{1 / \alpha} \in G$ be a limit point of $\left\{C_{n}\right\}$ and suppose that $C_{n_{j}} \rightarrow C_{1 / \alpha}$. Then $C_{n_{j}} P_{n_{j}} \Rightarrow C P$ and, moreover,

$$
[\hat{P}(y)]^{\alpha}=\lim _{j \rightarrow \infty}\left\{\widehat{C_{n_{j}}^{P_{n_{j}}}}(y) \cdot \exp \left(i\left\langle a_{n_{j}}, y\right\rangle\right)\right\}
$$

It follows that there exists an element $a_{\alpha} \in H$ such that as $n \rightarrow \infty$,

$$
\left\langle a_{n_{j}}, y\right\rangle \rightarrow\left\langle a_{\alpha}, y\right\rangle, y \in H
$$

Hence

$$
\widehat{C_{n_{j}}^{P} n_{j}}(y) \cdot \exp \left(i\left\langle a_{n_{j}}, y\right\rangle\right) \rightarrow \widehat{C_{1 / \alpha}^{P}}(y) \cdot \exp \left(i\left\langle a_{\alpha}, y\right\rangle\right), \quad y \in H,
$$

so that

$$
[\hat{P}(y)]^{\alpha}=\widehat{C_{1 / \alpha}^{P}}(y) \cdot \exp \left(i a_{\alpha}, y^{\prime}\right)
$$

By uniqueness it follows that the limiting measure is given by

$$
\begin{equation*}
P^{\alpha}=C_{1 / \alpha} P * \delta_{a_{\alpha}} \tag{12}
\end{equation*}
$$

which is also full. Setting $\alpha=1 / n$ we obtain

$$
P=c_{n} P^{n} * \delta_{n}
$$

for some $c_{n} \in H$ and every $n \geq 1$. It follows at once from Lemma 3 that P is operator stable. Since $0<\alpha<1$ we see from (12) that (4) also holds. This completes the proof of Lemma 4 as well as that of Theorem 1.

We remark that in view of Lemma 4 the class of operator stable measures on H is a subclass of the class of operator semistable measures on H.

Added in proof, 30 October 1980. See the corrigenda, Bull. Austral. Math. Soc. 22 (1980), 479-480.

References

[1] R. Jajte, "Semi-stable probability measures on R^{N} ", Studia Math. 61 (1977), 29-39.
[2] V.M. Kruglov, "On an extension of the class of stable distributions", Theory Probab. App2. 17 (1972), 685-694.
[3] R.G. Laha and V.K. Rohatgi, Probability theory (John Wiley \& Sons, New York, Brisbane, Toronto, 1979).
[4] Michael Sharpe, "Operator-stable probability distributions on vector groups", Trans. Amer. Math. Soc. 136 (1969), 51-65.

Department of Mathematics and Statistics,
Bowling Green State University,
Bowling Green,
Ohio 43403,
USA.
Present address of first author:
Department of Statistics,
Institute of Advanced Studies,
Australian National University,
PO Box 4,
Canberra,
ACT 2600,
Australia.

