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RUIN PROBABILITIES

HARRI NYRHINEN,∗ University of Helsinki

Abstract

Let X1, X2, . . . be real-valued random variables. For u > 0, define the time of ruin
T = T (u) by T = inf{n : X1 + · · · + Xn > u} or T = ∞ if X1 + · · · + Xn ≤ u for
every n = 1, 2, . . . . We are interested in the ruin probabilities of general processes {Xn}
for large u. In the presence of heavy tails, one often finds power estimates. Our objective
is to specify the associated powers and provide the crude estimate P(T ≤ xu) ≈ u−R(x)

for large u, for a given x ∈ R. The rate R(x) will be described by means of tails of partial
sums and maxima of {Xn}. We also extend our results to the case of the infinite time
horizon.
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1. Introduction

Let X1, X2, . . . be a sequence of random variables and u a positive real number. We interpret
Xn as the discounted net payoff of the year n and u as the initial capital of an insurance company.
Write Sn = X1 + · · · + Xn for n = 1, 2, . . . . The time of ruin T = T (u) is, by definition,

T =
{

inf{n : Sn > u},
∞ if Sn ≤ u for every n = 1, 2, . . . .

We are interested in the ruin probabilities for large u. The main interest is in finite time horizons
but the probability P(T < ∞) will also be studied.

General processes {Xn} are of interest in insurance mathematics. In basic models, Xn

describes the difference between the claims and the premiums in the year n. It is natural to
allow dependence between the consecutive years because the claim history often affects the
future premiums. Also, the claim process itself can have dependent increments, for example
because of economic cycles. By discounting the net payoffs, we can consider models in which
investments in risky assets are allowed. This feature further complicates the structure of the
process. We refer the reader to Daykin et al. (1994) for more information about practical models
in this context.

In general models, it can be difficult to find sharp estimates for the ruin probabilities even
in the asymptotic sense. However, to obtain an idea about the magnitudes, we can consider
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Power estimates for ruin probabilities 727

rate results. For example, for a given x > 0, it is often possible to justify the crude estimate
P(T ≤ xu) ≈ e−r(x)u and specify the decay rate r(x). The precise meaning of this is that

lim
u→∞ u−1 log P(T ≤ xu) = −r(x). (1.1)

See Collamore (1998) and Nyrhinen (1998) for results of this type.
In models in which increments are heavy tailed, limit (1.1) is not very useful. It is more

instructive to consider alternative scalings. Suppose that there exists the limit

lim
u→∞(log u)−1 log P(T ≤ xu) = −R(x), (1.2)

with R(x) ∈ (0, ∞). This limit justifies the power estimate P(T ≤ xu) ≈ u−R(x) for large u.
Additionally, the form of the rate may reveal which parts of the model are critical to the risk
of ruin. We will study examples in which heavy-tailed claims, cyclic behaviour, and risky
investments feature. By considering rates such as (1.2), we obtain various extensions of earlier
results.

For heavy-tailed processes, connections between the time of ruin, partial sums, and maxima
have been stated in many studies. We refer the reader to Embrechts et al. (1997) for general
background. Results similar to (1.2) can be found in Duffy et al. (2003). They considered
infinite-time ruin probabilities with general scalings. The results of their paper apply to a class
of heavy-tailed processes but do not cover power tails.

Power estimates for finite-time ruin probabilities are included in many papers, in particular
in the case of processes with regularly varying tails. Asmussen and Klüppelberg (1996) derived
sharp approximations for random walks. Extensions were given in Asmussen (1998), where
varying premiums and riskless investments were allowed. Nyrhinen (2001) derived rate results
for processes including a submodel for risky investments. Refinements were obtained in Tang
and Tsitsiashvili (2003), where, among other results, processes were classified in terms of
insurance and financial risks. Finally, Hu (2004) obtained power estimates for quick ruin in a
generalized classical model.

Precise power estimates for infinite-time ruin probabilities were found in Embrechts and
Veraverbeke (1982), who considered standard classical models. Similar results in a Markovian
environment were given in Asmussen et al. (1994). Further extensions were obtained in
Asmussen et al. (1999), where general dependence structures were allowed. Mikosch and
Samorodnitsky (2000) derived sharp approximations in a model where the increments are
moving averages of independent, identically distributed random variables. Precise estimates
are also known for appropriately perturbed classical models; we refer the reader to Cai and Tang
(2004) and the references therein. A submodel for the returns on the investments is included
in several papers: Asmussen (1998) and Klüppelberg and Stadtmüller (1998) obtained sharp
estimates in the case where the rate of return is deterministic, and Paulsen (2002) extended
these results by allowing for riskiness of the returns. More general rate results, in a similar
environment, were derived in Nyrhinen (1999).

The paper is organized as follows. Main results are stated in Section 2. Examples are
considered in Section 3. In Section 4, we give the proofs of the main results and, in Section 5,
we give the technical background for the examples.

2. Main results

Let X1, X2, . . . be real-valued random variables on a fixed probability space and write
Sn = X1 + · · · + Xn and Mn = max(X1, . . . , Xn) for n = 1, 2, . . . . Let u be the initial capital
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and T the time of ruin, as described in Section 1. Our objective is to derive estimates for ruin
probabilities in terms of tail probabilities of the processes {Sn} and {Mn}. Part of this task can
be carried out without an explicit specification of the dependence structure – this is the content
of Section 2.1. Refinements are given in Section 2.2, where mixtures of random vectors with
independent components are studied.

2.1. General bounds for ruin probabilities

In this section, we consider finite-time ruin probabilities for general processes. Our basic
assumption is that the left-hand tails of {Xn} are not too heavy. Two-sided bounds will be
derived in terms of partial sums; we obtain lower bounds in terms of maxima.

In order to describe ruin probabilities, we introduce decay rates associated with the processes
{Sn} and {Mn}. For y > 0, define the parameters RS(y) and RS(y) according to

lim
δ→0+ lim sup

n→∞
(log n)−1 log P(Sn > n(y − δ)) = −RS(y),

lim
δ→0+ lim inf

n→∞ (log n)−1 log P(Sn > n(y + δ)) = −RS(y).

If both parameters are finite then, for every given ε > 0,

n−RS(y)−ε ≤ P(Sn > ny) ≤ n−RS(y)+ε

for large n. Clearly, RS and RS are increasing in y and RS(y) ≤ RS(y) for every y > 0. It is
also easy to see that RS is continuous from the left and that RS is continuous from the right.
For the maxima, we define the global parameters RM and RM according to

lim
δ→0+ lim sup

n→∞
(log n)−1 log P(Mn > n1−δ) = −RM, (2.1)

lim
δ→0+ lim inf

n→∞ (log n)−1 log P(Mn > n1+δ) = −RM. (2.2)

We begin with a simple lemma concerning the lower bounds.

Lemma 2.1. Assume that

lim
δ→0+ lim sup

n→∞
(log n)−1 log P

( n∑
i=1

|Xi | 1(Xi ≤ 0) > n1+δ

)
< −RM. (2.3)

Then, for every x > 0, we have

lim inf
u→∞ (log u)−1 log P(T ≤ xu) ≥ −RS(1/x) ≥ −RM. (2.4)

The first inequality of (2.4) actually holds without any conditions.

We next give sufficient conditions for (2.4) that are stronger than (2.3) but more elementary.
A further advance is that, in essence, the first inequality can be reversed.

Theorem 2.1. Assume that
sup
n∈N

E(|Xn|t 1(Xn ≤ 0)) < ∞ (2.5)

for every t > 0, and let x > 0. Then (2.4) holds and

lim sup
u→∞

(log u)−1 log P(T ≤ xu) ≤ −RS(1/x). (2.6)
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2.2. Refinements of the upper bounds

The main objective of this section is to derive upper bounds for ruin probabilities in terms
of maxima. We also extend our results to the case of the infinite time horizon.

We will study models in which the joint distributions of the increments are mixtures of
distributions of random vectors with independent components. Specifically, let (η1, η2, . . .) be
a real-valued stochastic process and let Hn be its joint distribution function. We associate a
random variable ξv and its distribution function Gv with each v ∈ R, and assume that, for every
fixed x ∈ R, the map v �→ Gv(x) is measurable. We consider the model in which, for every
x1, . . . , xn ∈ R and y1, . . . , yn ∈ R, we have

P(X1 ≤ x1, . . . , Xn ≤ xn, η1 ≤ y1, . . . , ηn ≤ yn)

=
∫

v1≤y1,...,vn≤yn

Gv1(x1) · · · Gvn(xn) dHn(v1, . . . , vn).

Thus, conditionally on η1 = v1, . . . , ηn = vn, the variables X1, . . . , Xn are independent and
the distribution function of Xi is Gvi

, for every i ≤ n.
We assume that the mean

µ(v) = E(ξv) =
∫

x∈R

x dGv(x)

exists for every v ∈ R and that E(Xn) exists for every n ∈ N. Let fi : R → R be a measurable
map for i = 1, 2, . . . . If

E(f1(X1) · · · fn(Xn))

exists then

E(f1(X1) · · · fn(Xn) | η1, . . . , ηn) =
n∏

i=1

∫
xi∈R

fi(xi) dGηi
(xi) (2.7)

almost surely. In particular, µ(ηi) is a version of E(Xi | η1, . . . , ηn), for i ≤ n. For a ∈ R,
we define the parameter p(a) according to

lim sup
n→∞

(log n)−1 log P(µ(η1) + · · · + µ(ηn) > na) = −p(a).

Theorem 2.2. Assume that
sup
v∈R

E(|ξv|t 1(ξv ≤ 0)) < ∞ (2.8)

for every t > 0, and let a > 0. Then RS(y) ≥ min(p(a), RM) for every y > a and

lim sup
u→∞

(log u)−1 log P(T ≤ xu) ≤ −min(p(a), RM) (2.9)

for every x < 1/a.

Now consider infinite-time ruin probabilities. Obviously, (2.8) implies (2.5). Thus, under
(2.8), we have (2.4) and, hence, the following lower bound:

lim inf
u→∞ (log u)−1 log P(T < ∞) ≥ −RM. (2.10)
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Theorem 2.3. Assume that (2.8) is satisfied for every t > 0 and that

lim
a→0− p(a) ≥ RM + 1. (2.11)

Then
lim sup
u→∞

(log u)−1 log P(T < ∞) ≤ −RM. (2.12)

We end the section by giving the starting point of a method of finding the parameters RM

and RM . Observe that, for every n ∈ N and y > 0, we always have the simple bound

P(Mn > ny) ≤
n∑

i=1

P(Xi > ny). (2.13)

Theorem 2.4. Assume that
sup
v∈R

E(ξ t
v 1(ξv ≥ 0)) < ∞ (2.14)

for some t > 1. Then, for y sufficiently close to 1,

P(Mn > ny) ∼
n∑

i=1

P(Xi > ny) (2.15)

when n tends to infinity.

Remark 2.1. The mixing sequence {ηn} could take values in R
d , for arbitrary d ∈ N, with

obvious changes in conditions (2.8) and (2.14). A simple useful two-dimensional extension
is obtained by taking ηn = (η′

n, n), where {η′
n} is real valued. Then the ξ -variables can be

inhomogeneous in time. We have chosen to work with R for simplicity and because it seems
to be a reasonable choice for many interesting processes.

3. Examples

Here, we apply the results of Section 2 to four classes of process. We only describe the
models and the estimates for the ruin probabilities. The technical background is given in
Section 5.

In the first two examples, we study basic models such as random walks and simple Markovian
structures. Under suitable conditions, estimates for ruin probabilities can be given in terms of
the maxima. This hints that ruin typically occurs because of a single large increment. In
comparison with many related papers, we need fewer regularity conditions on the right-hand
tails of the distributions. The most common assumption in earlier studies is that of regular
variation.

In the third example, we consider a model in which the increments are heavy tailed and good
and bad business periods occur randomly. The lengths of the periods are also assumed to be
heavy tailed. This assumption has a theoretical nature. On a short time horizon, a single large
increment can be seen as the source of ruin, whereas, on a longer time horizon, ruin typically
occurs because of a long bad period.

The fourth example deals with a model in which investments in risky assets are allowed.
The net payoffs are assumed to be heavy tailed. In this example, both the risky investments
and the heavy tails of the net payoffs have an essential influence on ruin probabilities on a short
time horizon. On a longer time horizon, the risk associated with the investments dominates.
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For any distribution function F , write F = 1 − F . Furthermore, define the parameters αF

and αF according to
lim sup
x→∞

(log x)−1 log F(x) = −αF

and
lim inf
x→∞ (log x)−1 log F(x) = −αF .

Example 3.1. Assume that X1, X2, . . . are independent random variables. Suppose that the
mean mn = E(Xn) exists for every n and that (2.5) is satisfied for every t > 0. Let

m = lim sup
n→∞

n−1(m1 + · · · + mn).

In insurance models, it is usually assumed that m is negative. The interpretation is that the
accumulated premiums include a positive safety loading. Then, for every x > 0, we have (2.4)
and

lim sup
u→∞

(log u)−1 log P(T ≤ xu) ≤ −RM. (3.1)

Inequalities (2.10) and (2.12) also hold. If m is positive then (2.4) and (3.1) hold for every
x < 1/m.

Assume, in particular, that X1, X2, . . . are identically distributed, with common distribution
function F . Suppose that E(X1) is negative and that αF > 1. Then RM = αF − 1 and
RM = αF − 1. Instead of (2.5), assume that

E(|X1|t 1(X1 ≤ 0)) < ∞ (3.2)

for some t > αF . Let x > 0 be arbitrary. Then (2.4), (3.1), (2.10), and (2.12) hold.
Furthermore, assume that F is regularly varying with index α > 1. Then RM = RM = α−1.

Hence, (1.2) holds with R(x) = α − 1. This case is well understood from earlier studies; see,
for example, Asmussen and Klüppelberg (1996). The rate R(x) does not depend on x. To see
differences between the time horizons, we can consider the probability P(T ≤ ux) for a given
x ∈ (0, 1). We then have

lim
u→∞(log u)−1 log P(T ≤ ux) = x − α. (3.3)

Limits of this type were derived in Hu (2004). We give an alternative proof in Section 5.

Example 3.2. Consider the model described in Section 2.2. Assume that {ηn} is an aperiodic,
irreducible Markov chain on a finite state space E = {1, . . . , d}. Then {(ηn, Sn)} is a Markov
additive process. Sharp estimates for infinite-time ruin probabilities in a similar set-up can be
found in Asmussen et al. (1994).

We assume that (2.8) is satisfied for every t > 0 and, furthermore, that αGj
= αGj

and
αGj

> 1 for every j ∈ E. Let {π(j), j ∈ E} be the invariant measure of {ηn} and let

m =
∑
j∈E

π(j)µ(j).

We assume that m is negative. Then (1.2) holds for every x > 0, with

R(x) = RM = RM = min{αGj
, j ∈ E} − 1.

Inequalities (2.10) and (2.12) also hold. As in Example 3.1, we can prove (3.3) with α replaced
by RM + 1. This extends the result of Hu (2004).
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Example 3.3. Again consider the model of Section 2.2. We assume that the η-variables can
take only the values 1 and 2. The value 1 describes a good year and the value 2 a bad year.
Suppose that αG1 = αG1

= αG2 = αG2
=: α. We assume that α ∈ (1, ∞) and that (2.8)

is satisfied for every t > 0. Suppose that µ(1) < 0 and µ(2) > 0. Thus, in the mean, the
net payoff is negative in the good years and positive in the bad years. We also assume that
µ(1) + µ(2) < 0.

To complete the model description, we must specify the structure of the sequence {ηn}.
Let ν1, ν2, . . . be independent and identically distributed random variables and let F be the
distribution function of ν1. Suppose that αF = αF =: β. We assume that β ∈ (1, α) and that∑∞

n=1 P(ν1 = n) = 1. Consider the model in which

η1, . . . , ην1 = 2,

ην1+1, . . . , ην1+ν2 = 1,

ην1+ν2+1, . . . , ην1+ν2+ν3 = 2,

ην1+ν2+ν3+1, . . . , ην1+ν2+ν3+ν4 = 1,

...
...

...

This structure produces simple stochastic cyclic behaviour: there are bad years for a random
time ν1, good years for a random time ν2, and so on. The long-run mean of the accumulated
net payoff is negative, since we assumed that µ(1) + µ(2) < 0.

In the model described above, (1.2) holds with R(x) = α − 1 for every x < 1/µ(2).
This corresponds to the rate associated with maxima. Ruin can be seen to occur because of a
single large increment. For x > 1/µ(2), (1.2) holds with R(x) = β − 1. The proof hints that,
in this case, ruin typically occurs because of the number of bad years considerably exceeds its
typical value. The lengths of the bad periods are heavy tailed, which indicates an occurrence
of a single long bad period.

Example 3.4. Assume that the increments take the form

Xn = A1 · · · An−1Bn

for n ∈ N, where both {An} and {Bn} are sequences of independent, identically distributed
random variables. Suppose that these sequences are independent and that P(A1 > 0) = 1.
The A-variables describe discount factors associated with the returns on the investments, while
the B-variables describe net payoffs. See Nyrhinen (1999) for more details concerning their
interpretations.

Let F be the distribution function of B1. Assume that αF = αF =: α and that α ∈ (1, ∞).
Suppose that

E(|B1|t 1(B1 ≤ 0)) < ∞ (3.4)

for some t > α. Let c(t) = log E(At
1) for t ∈ R and let

c∗(v) = sup{tv − c(t), t ∈ R}
for v ∈ R. Hence, c is the cumulant-generating function of log A1 and c∗ is the Fenchel–
Legendre transform of c. We assume that c(t) < ∞ for some t > α and that there exists a
w ∈ (0, α) such that c(w) = 0. For simplicity, we assume that, for every z > 0, there exists
a t > 0 such that c′(t) = z.
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Let x > 0 and write

ρ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

α − xc(α) if x ≤ 1

c′(α)
,

xc∗
(

1

x

)
if x ∈

(
1

c′(α)
,

1

c′(w)

)
,

w if x ≥ 1

c′(w)
.

Then
lim

u→∞(log u)−1 log P(T ≤ x log u) = −ρ(x). (3.5)

Observe that the time horizon in (3.5) is x log u instead of xu. For x > 1/c′(α), this result
is known from Nyrhinen (2001) and the rate ρ(x) depends only on the discount factors. For
x < 1/c′(α), it also depends on the tails of the net payoffs. By letting x tend to 0, we see
that these tails dominate on a very short time horizon. This complements results of Tang and
Tsitsiashvili (2003, Section 5), where fixed time periods were considered. Tang and Tsitsiashvili
(2004) obtained results similar to (3.5) in the case that w > α, in which the limit (3.5) typically
depends only on the net payoffs (see Tang and Tsitsiashvili (2004, Corollary 3.1)).

4. Proofs of the main results

We will use the following limit result repeatedly. Let f1, . . . , fm be real-valued, nonnegative
functions on (0, ∞), and let

aj = lim sup
x→∞

(log x)−1 log fj (x)

for j = 1, . . . , m. Then

lim sup
x→∞

(log x)−1 log(f1(x) + · · · + fm(x)) = max(a1, . . . , am). (4.1)

For the proof, we refer the reader to Dembo and Zeitouni (1998, Lemma 1.2.15).

Proof of Lemma 2.1. Consider the first inequality of (2.4). Let u be large and let y ∈ (0, x).
Then

P(T ≤ xu) ≥ P(S�yu� > u)

(we denote by �c� the integer part of c ≥ 0). Hence, for a given ε ∈ (0, y), we have

(log u)−1 log P(T ≤ xu) ≥ log�yu�
log u

(log�yu�)−1 log P

(
S�yu� >

�yu�
y − ε

)
.

Thus,

lim inf
u→∞ (log u)−1 log P(T ≤ xu) ≥ lim inf

n→∞ (log n)−1 P

(
Sn >

n

y − ε

)
.

We obtain the first inequality of (2.4) from the fact that y ∈ (0, x) and ε ∈ (0, y) are arbitrary.
Consider the second inequality of (2.4). We must show that RS(y) ≤ RM for every y > 0.

We can assume that RM is finite. For a given δ > 0, we have

P(Sn > ny) ≥ P(Mn > n1+δ, Sn − Mn > −n1+δ/2)

≥ P(Mn > n1+δ) − P(Sn − Mn ≤ −n1+δ/2) (4.2)
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for large n. Since

{Sn − Mn ≤ −n1+δ/2} ⊆
{∑

i≤n

|Xi | 1(Xi ≤ 0) ≥ n1+δ/2
}
,

the second inequality of (2.4) follows from (2.3) and (4.2).

Proof of Theorem 2.1. By Lemma 2.1, the first inequality of (2.4) holds without conditions.
Consider the second inequality. We can assume that RM is finite and then show that (2.3) holds.
Let t > 0 and δ > 0. By Chebyshev’s inequality, we have

P(|Xi | 1(Xi ≤ 0) > nδ) ≤ C(t)n−δt (4.3)

for every i ∈ N, where C(t) is the supremum in (2.5). Hence,

P

(∑
i≤n

|Xi | 1(Xi ≤ 0) > n1+δ

)
≤ C(t)n1−δt . (4.4)

By letting t tend to infinity, we see that

lim sup
n→∞

(log n)−1 log P

(∑
i≤n

|Xi | 1(Xi ≤ 0) > n1+δ

)
= −∞.

Thus, (2.3) holds. The second inequality of (2.4) follows from Lemma 2.1.

Consider (2.6). We can assume that RS(1/x) > 0. In the following proof, we also assume
that RS(1/x) < ∞. A similar approach leads to (2.6) in the case in which RS(1/x) = ∞.
Let ε > 0 be small and let ε′ ∈ (0, ε). Furthermore, let j ∈ [0, uε − 1] be an integer and write

P(T ∈ [jxu1−ε, (j + 1)xu1−ε])
= P(T ∈ [jxu1−ε, (j + 1)xu1−ε], S�(j+1)xu1−ε� − ST > −u1−ε′

)

+ P(T ∈ [jxu1−ε, (j + 1)xu1−ε], S�(j+1)xu1−ε� − ST ≤ −u1−ε′
). (4.5)

Denote by P1(u, j) the first probability and by P2(u, j) the second probability on the right-hand
side of (4.5). For P1(u, j), we have

P1(u, j) ≤ P(S�(j+1)xu1−ε� > u − u1−ε′
)

≤ P(S�(j+1)xu1−ε� > �(j + 1)xu1−ε�(1 − ε)/x)

≤ u−(1−2ε)RS((1−ε)/x) (4.6)

for large u. The upper bound is uniform for j ∈ [0, uε − 1]. To estimate P2(u, j), observe that

{T ∈ [jxu1−ε, (j + 1)xu1−ε], S�(j+1)xu1−ε� − ST ≤ −u1−ε′ }

⊆
{ �(j+1)xu1−ε�∑

i=�jxu1−ε�+1

|Xi | 1(Xi ≤ 0) ≥ u1−ε′
}
.
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For t > 0, we conclude as in (4.3) and (4.4) that, for large u,

P2(u, j) ≤ u1−t (ε−ε′) (4.7)

for every j . If we choose t to be large and combine (4.7) with (4.5) and (4.6), we see that

P(T ∈ [jxu1−ε, (j + 1)xu1−ε]) ≤ u−(1−3ε)RS((1−ε)/x)

for every j ∈ [0, uε − 1]. By summing over j , we conclude that (2.6) holds. This completes
the proof of Theorem 2.1.

Before proving Theorem 2.2, we state two technical lemmas. Let the family {ξv, v ∈ R},
the process {Sn}, and the parameter p(a) be as described in Section 2.2.

Lemma 4.1. Assume that (2.8) is satisfied for some t > 1. For v ∈ R, n ∈ N, and δ > 0, let

ξ
v

= ξ
v
(δ, n) = ξv 1(ξv ≤ n1−δ)

and
h = h(δ, n) = n−1+δ/2.

Then, for a small δ and a given ε > 0, there exists an ε′ ∈ (0, ε) such that, for large n,

E(ehξ
v ) ≤ eh((1+ε′)µ(v)+ε) (4.8)

for every v ∈ R.

Lemma 4.2. Assume that (2.8) is satisfied for some t > 1. Then, for every a′ > a and δ > 0,

lim sup
n→∞

(log n)−1 log P(Sn > na′, Mn ≤ n1−δ) ≤ −p(a). (4.9)

Proof of Lemma 4.1. We begin by showing that, for a given ε′′ > 0, we can choose b > 1
such that

E(max(ξv, −b)) < µ(v) + ε′′ (4.10)

for every v ∈ R. For b > 1, we have

E(max(ξv, −b)) = µ(v) +
∫ ∞

b

P(ξv < −x) dx. (4.11)

Let t > 1 be such that (2.8) holds. For every x > 0, we then have

E(|ξv|t 1(ξv ≤ 0)) ≥ xt P(ξv < −x).

Thus, the integral in (4.11) tends to 0 when b tends to infinity. This proves (4.10).
Let b > 1 be such that (4.10) holds for every v ∈ R. Write

ξ ′
v

= max(ξ
v
, −b) + b. (4.12)

Observe that ξ ′
v

is nonnegative and that ξ ′
v

≤ n1−δ + b. Let µ′(v) = E(ξ ′
v
). Following Fuc

and Nagaev (1971), write

E(ehξ ′
v ) = E

(
ehξ ′

v − 1

ξ ′
v

ξ ′
v

1(ξ ′
v

> 0)

)
+ 1.
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From its Taylor expansion, it is seen that (ehx − 1)/x is increasing in x for x ∈ (0, ∞). Thus,

E(ehξ ′
v ) ≤ E

(
eh(n1−δ+b) − 1

n1−δ + b
ξ ′

v

)
+ 1 = eh(n1−δ+b) − 1

n1−δ + b
µ′(v) + 1.

Now, h(n1−δ + b) tends to 0 as n tends to infinity. Hence,

E(ehξ ′
v ) ≤

(
1 + ε′′

b

)
hµ′(v) + 1 ≤ exp

((
1 + ε′′

b

)
hµ′(v)

)

for large n. By (4.10) and (4.12), we have

E(ehξ
v ) ≤ E(ehξ ′

v )e−hb ≤ exp

(
h

((
1 + ε′′

b

)
(µ(v) + ε′′ + b) − b

))
,

and an appropriate choice of ε′′ shows that (4.8) is satisfied.

Proof of Lemma 4.2. Let ξ
v

and h be as in Lemma 4.1, and let δ, ε, and ε′ be positive real
numbers such that (4.8) holds for large n for every v. Write

Xn = Xn 1(Xn ≤ n1−δ)

and Sn = X1 + · · · + Xn. Furthermore, for a ∈ R, write

An(a) = {(v1, . . . , vn) ∈ R
n : µ(v1) + · · · + µ(vn) ≤ na}

and let a′ > a be fixed. By Chebyshev’s inequality, we have

P(Sn > na′, µ(η1) + · · · + µ(ηn) ≤ na) ≤ e−hna′
E(ehSn 1(µ(η1) + · · · + µ(ηn) ≤ na))

(4.13)
and, by (2.7), we have

E(ehSn 1(µ(η1) + · · · + µ(ηn) ≤ na))

=
∫

(v1,...,vn)∈An(a)

E(e
hξ

v1 ) · · · E(e
hξ

vn ) dHn(v1, . . . , vn). (4.14)

By the choice of δ, ε, and ε′, the integrand in (4.14) is bounded from above by

exp

(
hnε + h(1 + ε′)

∑
i≤n

µ(vi)

)
≤ exp(hn(ε + (1 + ε′)a))

on An(a). By (4.13),

P(Sn > na′, µ(η1) + · · · + µ(ηn) ≤ na) ≤ exp(hn(ε + (1 + ε′)a − a′)). (4.15)

For small ε and ε′, the exponent in (4.15) is negative, so, because hn = nδ/2, we conclude
that

lim sup
n→∞

(log n)−1 log P(Sn > na′, µ(η1) + · · · + µ(ηn) ≤ na) = −∞.

It follows that
lim sup
n→∞

(log n)−1 log P(Sn > na′) ≤ −p(a),

which proves (4.9) because

P(Sn > na′, Mn ≤ n1−δ) ≤ P(Sn > na′).
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Proof of Theorem 2.2. For a > 0 and a′ > a, we have

P(Sn > na′) ≤ P(Sn > na′, Mn ≤ n1−δ) + P(Mn > n1−δ).

It follows, from (4.1) and Lemma 4.2, that

lim sup
n→∞

(log n)−1 log P(Sn > na′) ≤ −min(p(a), RM).

Thus, RS(y) ≥ min(p(a), RM) for every y > a′ and, hence, for every y > a. Condition (2.5)
is satisfied by (2.8), meaning that, by Theorem 2.1, (2.9) holds for every x < 1/a.

Proof of Theorem 2.3. As in the proof of (2.6), the only case we consider in detail is the one
in which RM ∈ (0, ∞). By choosing a ∈ (0, 1) and applying Theorem 2.2, we see that (2.9)
holds with x = 1 and RM ≤ p(a). Thus, by (4.1), we must show that

lim sup
u→∞

(log u)−1 log P(T ∈ (u, ∞)) ≤ −RM. (4.16)

Fix a small ε > 0 and a small δ > 0. By choosing a′ = 0 in Lemma 4.2 and using (2.11),
we see that

lim sup
n→∞

(log n)−1 log P(Sn > 0, Mn ≤ n1−δ) ≤ −RM − 1. (4.17)

Let y ≥ 1. We start with the inequality

P(T ∈ [uy, uy+δ]) ≤ P(Sn > 0 for some n ∈ [uy, uy+δ], M�uy+δ� ≤ uy(1−δ))

+ P(Sn > 0 for some n ∈ [uy, uy+δ], M�uy+δ� > uy(1−δ)). (4.18)

Denote by Q1(u, y) the first probability and by Q2(u, y) the second probability on the right-
hand side of (4.18). Let u be large. Then, by (4.17), we have

Q1(u, y) ≤
∑

n∈[uy,uy+δ]
P(Sn > 0, Mn ≤ n1−δ) ≤ uy+δu−y(RM+1−ε) = uδ−y(RM−ε). (4.19)

The estimate is uniform for y ≥ 1. For Q2(u, y), we have

Q2(u, y) ≤ P(M�uy+δ� > uy(1−δ)) ≤ P
(
M�uy+δ� > �uy+δ� y(1−δ)

y+δ
) ≤ u−y(RM−ε) (4.20)

for small δ > 0. This estimate also holds uniformly for y ≥ 1. By (4.18), (4.19), and (4.20),

P(T ∈ (u, ∞)) ≤
∞∑

j=0

P(T ∈ [u1+jδ, u1+(j+1)δ])

≤ u−RM+δ+ε
∞∑

j=0

u−jδ(RM−ε) + u−RM+ε
∞∑

j=0

u−jδ(RM−ε).

For small ε, both of the above series are convergent, meaning that (4.16) follows from (4.1).

Proof of Theorem 2.4. Let t > 1 be such that (2.14) holds. For x ≥ 0, we have 1−x ≤ e−x .
Thus, for every y > 0 and n ∈ N,

P(Mn > ny) ≥
∫

v1,...,vn∈R

(
1 − exp

(
−

∑
i≤n

P(ξvi
> ny)

))
dHn(v1, . . . , vn).
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By Chebyshev’s inequality,

∑
i≤n

P(ξvi
> ny) ≤ D(t)n1−ty ,

where D(t) is the supremum in (2.14). Thus, for y close to 1, we have

P(Mn > ny) ≥ (1 + o(1))

∫
v1,...,vn∈R

∑
i≤n

P(ξvi
> ny) dHn(v1, . . . , vn)

= (1 + o(1))
∑
i≤n

P(Xi > ny)

where o(1) tends to 0 as n tends to infinity. This and (2.13) imply (2.15).

5. Technical background for the examples

5.1. Background for Example 3.1

Let Fn be the distribution function of Xn, for n ∈ N. In the framework of Section 2.2, take
P(ηn = n) = 1 and Gn = Fn. Then µ(ηn) = mn for every n. Clearly, p(a) = ∞ for a > m.
The required upper bounds follow from Theorems 2.2 and 2.3, and the lower bounds follow
from Theorem 2.1. Now, assume that X1, X2, . . . are identically distributed, with distribution
function F . We have

αF = sup{t ≥ 0 : E(Xt
1 1(X1 ≥ 0)) < ∞}; (5.1)

see, for example, Rolski et al. (1999, p. 39). We apply Theorem 2.4 to conclude that RM =
αF − 1 and RM = αF − 1; see also Hu and Nyrhinen (2004, Lemma 3.1). The limit on the
left-hand side of (2.3) equals 1 − α−, where

α− = sup{t ≥ 0 : E(|X1|t 1(X1 ≤ 0)) < ∞};
see Hu and Nyrhinen (2004, Theorems 2.1 and 2.2). By (3.2), for t > αF , condition (2.3) is
satisfied. This proves (2.4) and (2.10). Upper bounds (3.1) and (2.12) are obtained by truncating
the X-variables from below and by applying Theorems 2.2 and 2.3, as above.

Now assume that F is regularly varying with index α. Then αF = αF = α; see, for example,
Feller (1971, Section VIII.8). To prove (3.3), define the process {S′

n} according to

S′
n =

∑
i≤nx

Xi.

Let T ′ = T ′(u) be the time of ruin of the process {S′
n}. Then

{T ≤ ux} = {T ′ ≤ u}.

Let S′
0 = 0 and X′

n = S′
n − S′

n−1 for n ∈ N. Take ηn = 0 if X′
n ≡ 0 and ηn = n otherwise.

Let Gn = F for n ≥ 1 and G0(x) = 1(x ≥ 0) for x ∈ R. Limit (3.3) then follows as above,
from the application of Theorems 2.1 and 2.2 to the process {S′

n}. Associated with {S′
n}, the

parameter m is at most 0 and the parameter p(a) is infinite for every a > 0.
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5.2. Background for Example 3.2

Observe that {(ηn, µ(η1) + · · · + µ(ηn))} is also a Markov additive process. Therefore, for
every a > m, P(µ(η1) + · · · + µ(ηn) > na) tends to 0 exponentially fast; see Dembo and
Zeitouni (1998, Section 3.1.1). It follows that p(a) = ∞ for every a > m.

Consider the parameters RM and RM . By making use of (5.1), we see that Theorem 2.4
can also be applied here. Let y > 0. For every j ∈ E, P(ηn = j) tends to π(j) as n tends to
infinity. Hence,

∑
i≤n

P(Xi > ny) =
∑
i≤n

∑
j∈E

P(ηi = j) P(Xi > ny | ηi = j)

=
∑
j∈E

Gj (n
y)

∑
i≤n

P(ηi = j)

∼ n
∑
j∈E

π(j)Gj (n
y)

as n tends to infinity. By irreducibility, we have π(j) > 0 for each j . Thus, RM and RM are
as stated in Section 3. The required results follow from Theorems 2.1, 2.2, and 2.3.

5.3. Background for Example 3.3

Let a > µ(2). Then P(µ(η1) + · · · + µ(ηn) > na) = 0 and, so, p(a) = ∞. By (5.1)
and Theorem 2.4, we have RM = RM = α − 1. By Theorems 2.1 and 2.2, (1.2) holds with
R(x) = α − 1 for every x < 1/µ(2).

Let x > 1/µ(2). Take y < µ(2) and fix a small ε > 0 and δ1, δ2 such that 0 < δ1 < δ2 < ε.
Let γ = E(ν1) and let {S′

n} be a random walk with the increment distribution G2. Clearly,

P(Sn > ny) ≥
∑

i∈[δ1n,δ2n]
P(ν1 + · · · + ν2i ≤ nε, ν2i+1 > n, Sn > ny)

≥
∑

i∈[δ1n,δ2n]
P(ν1 + · · · + ν2i ≤ nε, Sν1+···+ν2i

> nγ δ2(µ(1) + µ(2) − ε))

× P(ν2i+1 > n) min
j≤nε

P(S′
n − S′

j > n(y − γ δ2(µ(1) + µ(2) − ε))).

By the law of large numbers, the magnitude of the last sum is (δ2 − δ1)n P(ν1 > n) for large n

and small ε and δ2. It follows that

lim inf
n→∞ (log n)−1 log P(Sn > ny) ≥ 1 − β

for every y < µ(2). By (2.4), we have

lim inf
u→∞ (log u)−1 log P(T ≤ xu) ≥ 1 − β (5.2)

for every x > 1/µ(2).
Consider the reverse of inequality (5.2). We apply Theorem 2.2. As observed above,

RM = α − 1. Consider p(a) for a ≥ 0, and let

N = N(n) = inf{i : ν1 + · · · + νi ≥ n}
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for n ∈ N. By our assumptions, we can fix an ε > 0 such that µ(η1) + · · · + µ(ηn) ≤ 0
whenever the number of good years up to time n is at least n( 1

2 − ε). This is the case in the
event { ∑

i≤N/2+1

ν2i−1 ≤ n

(
1

2
+ ε

)}
.

Hence, for a given ε′ > 0, we have

P(µ(η1)+· · ·+µ(ηn) > 0) ≤ P

( ∑
i≤N/2+1

ν2i−1 > n

(
1

2
+ ε

))

≤ P

( ∑
i≤n(γ −1+ε′)/2+1

ν2i−1 > n

(
1

2
+ ε

))
+ P(N ≥ n(γ −1 + ε′)).

(5.3)

For a small ε′, we apply Example 3.1 with m > 0 to the first probability on the right-hand side of
(5.3). The second such probability tends to 0 exponentially fast. This is seen by truncating the
ν-variables from above and applying Nyrhinen (1995, Theorem 4). It follows that p(0) ≥ β−1.
Hence, p(a) ≥ β − 1 for every a ≥ 0. Recall that β < α. By Theorem 2.2, we have

lim sup
u→∞

(log u)−1 log P(T ≤ xu) ≤ 1 − β.

This and (5.2) imply (1.2) with R(x) = β − 1 for every x > 1/µ(2).

5.4. Background for Example 3.4

By (3.4) and Nyrhinen (2001, Theorem 2), (3.5) holds for every x > 1/c′(α). It is easy to
see that ρ is continuous, meaning that it suffices to prove (3.5) for every x < 1/c′(α).

Let x < 1/c′(α) be fixed. Choose a large n0 ∈ N and define the process {S′
n} by

S′
n =

⎧⎪⎨
⎪⎩

X1 + · · · + Xn for n ≤ n0,

Sn0 +
∑

i∈[n0+1,x log n]
Xi for n > n0.

Choosing a large n0 guarantees that every increment of {S′
n} is either identically 0 or equals Xi

for some i. Let T ′ = T ′(u) be the time of ruin of the process {S′
n}. For large u, we have

{T ≤ x log u} = {T ′ ≤ u}.
Let S′

0 = 0 and X′
n = S′

n − S′
n−1 for n ∈ N, and write

M ′
n = max(X′

1, . . . , X
′
n).

Let RM ′(x) and RM ′(x) be the parameters (2.1) and (2.2) associated with {M ′
n}. We will show

that
RM ′(x) = RM ′(x) = ρ(x). (5.4)

Let δ > 0. For z ∈ (0, 1) and large n, we have

P(M ′
n > n1+δ) ≥ P(A1 · · · A�x log n�−1 > nz, B�x log n� > n1−z+δ)

= P(log A1 + · · · + log A�x log n�−1 > z log n) P(B1 > n1−z+δ).
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By Cramér’s theorem,

lim inf
n→∞ (log n)−1 log P(M ′

n > n1+δ) ≥ −xc∗(z/x) − α(1 − z + δ);

see Dembo and Zeitouni (1998, Theorem 2.2.3). By choosing z = xc′(α) and letting δ tend
to 0, we see that RM ′(x) ≤ ρ(x). To obtain the reverse inequality, write

Yn = log(1 + Bn 1(Bn ≥ 0)) +
∑

i≤n−1

log Ai

for n ∈ N. Then, for large n,

P(M ′
n > n1−δ) ≤ P(Yi > (1 − δ) log n for some i ≤ x log n).

This is a finite-time ruin probability associated with the process {Yn}. Write

cY (t) = lim sup
n→∞

n−1 log E(etYn)

for t ∈ R. By (5.1), we have cY (t) = c(t) for t ∈ (0, α) and cY (t) = ∞ for t > α. Furthermore,

c∗
Y (v) = αv − c(α)

for v ≥ c′(α). It follows from Nyrhinen (1998, Theorem 2.2) that, for δ close to 0, we have

lim sup
n→∞

(log n)−1 log P(M ′
n > n1−δ) ≤ −α(1 − δ) + xc(α).

Thus, RM ′(x) ≥ ρ(x) and (5.4) holds.
For a given δ > 0 and large u, we have

{T ≤ x log u} ⊆ {(x log u)M ′�u�+1 > u} ⊆ {M ′�u�+1 > u1−δ}.
It follows that

lim sup
u→∞

(log u)−1 log P(T ≤ x log u) ≤ −ρ(x). (5.5)

For the reverse inequality, we apply Lemma 2.1 to {S′
n}. Observe that{∑

i≤n

|X′
i | 1(X′

i ≤ 0) > n1+δ

}
=

{ ∑
i≤x log n

|Bi | 1(Bi ≤ 0)A1 · · · Ai−1 > n1+δ

}

for large n. Let
α− = sup{t : E(|B1|t 1(B1 ≤ 0)) < ∞}

and write

ρ−(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

α− − xc(α−) if x ≤ 1

c′(α−)
,

xc∗
(

1

x

)
if x ∈

(
1

c′(α−)
,

1

c′(w)

)
,

w if x ≥ 1

c′(w)
.

(5.6)
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If α− = ∞ then the first case of (5.6) does not occur. By the first part of the proof, we have

lim sup
n→∞

(log n)−1 log P

(∑
i≤n

|X′
i | 1(X′

i ≤ 0) > n

)
≤ −ρ−(x).

We have assumed that α− > α. By observing that ρ(x) = xc∗
Y (1/x) for every x < 1/c′(w),

we can easily check that ρ−(x) > ρ(x) for every x < 1/c′(α). Thus, (2.3) is satisfied and (2.4)
holds. This and (5.5) prove (3.5).
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