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1. Introduction, preliminaries. We shall extend results of Samuel [19] and Griffin
[8,9] about conditions which generalise the notion of valuation domain in a field. Let U
be a commutative ring with identity, R a subring of U and L an /?-submodule of U. The
conditions we study have in common the property (EV), that the submodules L:x (x e U)
form a chain. We pay particular attention to the strongest of the conditions, viz, that L be
a Manis valuation (MV) subring, i.e. having a prime ideal P such that (L, P) is a maximal
pair in U (see [19], [16] and e.g. [4]). Such P is unique, being the union of all L:x such
that x $ L, which we call P+{L) the centre of L. This set P+ plays a key role in the study
of all our valuation conditions.

The main definitions are in Section 1. In Section 2 basic results on localisation and
factoring by a (/-ideal are followed by applications. Samuel's result [19, Theoreme 5] that
if (R, P) is (MV) then R satisfies the Bourbaki condition (BV), defined in Section 1.2, is
extended to the case where P is replaced by a finite chain of prime ideals. In Section 3 we
show that if R is (BV) then prime R-ideals containing P+{R) are also (BV). The method
gives new criteria for a submodule to be (BV). In Section 4, when L is (EV), we discuss
the evaluation map vL given by vL(x) = L:x. Our main interest is in the cases L = P+(R),
used in [16] to characterise (MV) rings, and L = R mentioned in [8]. At the end we
discuss the relation, given in [8], between (BV) rings and evaluations with cancellative
image.

1.1. Conventions. The term subring is to imply possession of 1, whilst a subalgebra
need not contain 1. Unless otherwise indicated, the term subalgebra [subring, submodule]
means R-subalgebra [subring, R-submodule] of U. The notation M:N means all x in U
such that xn e M for all n eN. We write M:{x} as M:x. The sign c means strict inclusion.
In the context of a homomorphism A —*B, if Y c.B, the contraction (i.e. inverse image)
of Y is denoted Y C\A, and we say that Y extends Y C\A.

1.2. The valuation conditions. We define here the notions which are our main
concern.

Let / = / ( A \ , . . . , Xk) be the polynomial

,,=0 it=0

over U. We shall denote the coefficient ax l by c(/). Call / an L-polynomial
if fl,, , t e L when (ix,.. . , i* )#( l , . . . , 1), and an L-power polynomial if
a,,... 4 e L*-'1- -'* when (/„ . . . , ik) * ( 1 , . . . , 1).

Let C(L, U) be the set of all c(f) such that/is an L-polynomial a n d / ( s , , . . . , sk) =
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0 for some su . . . ,sk in U\L. Extending the terminology of [11], call L a Bourbaki
valuation (BV) submodule if 1 $ C(L, U). We remark that (BV) subrings were
introduced in [19], and that (BV) subalgebras, studied in [17,12], were called Rand
valuation subalgebras in [18].

A Kirby valuation (KV) submodule is defined by replacing "/.-polynomial" by
"L-power polynomial" in the above definition of (BV) submodule. (KV) submodules
were introduced in [12].

We say that a subset N of U is (CM) if its complement U\N is multiplicatively closed.
Call L an evaluation (EV) submodule if the submodules L:x (x e U) are totally

ordered by inclusion.
Denote by TL the monoid of all distinct L:x, where x e U, with ordering =s taken to

be c and operation ° given by (L:x)°(L:y) = L:xy. Call L a Manis valuation (MV)
submodule if rL\{L:0} is a totally ordered group; by Section 1.6, this extends the usual
notion for a subring.

Clearly (BV)4>(CM) and, for L a subalgebra, (BV)=>(KV). If L is (KV), or is a
(CM) subalgebra, then it is (EV) by an argument as in the proof of [14, Lemma 2] (cf. [8]
for the case when L is a (CM) subring). That (MV) ̂ > (KV) is by a standard argument as
in the proofs of [8, Proposition 2] and [18, Lemma 6.4]. To summarise, we have

(MV)=>(KV)=>(EV)

(assuming L a subalgebra for the downward implications). We shall see in Corollary 4.5
that (KV) with (CM) implies (BV). Note, as easy exercises, that if l e L then
(KV) => (BV) and (EV) => (CM). Also, extending a comment from [12, p. 95], we see that
if 1 £ L and L is (EV) then L is a subalgebra.

It is easy to see that L.U is the unique (/-ideal maximal in respect of being contained
in L, and (cf. [20, Lemma 1.7]) if L is (CM) then the ideal L:U is prime.

1.3. Components. Let S be a non-empty subset of U. The S-component of a subset
N of U is the set N[S] of all x in U such that xs e N for some s e S. If 5 is multiplicatively
closed and 5~1f7 is the ring of fractions of U with respect to 5, denote by N5 the set of
elements of S~lU representable in the form s~ln (s eS, n e N). Thus Us = S~lU.

LEMMA 1.3.1. / / Sc.R, if S is multiplicatively closed and if N is closed under
multiplication by R then N[s] is the inverse image Nsr\U with respect to the natural map

LEMMA 1.3.2. If P is a prime ideal of R, if S c R\P and if S is multiplicatively closed
then P|5] is a prime ideal of Rls] such that P[s] D R = P.

1.4. Centres. The component N{U\N] is denoted by P+(N, U) or just P+(N). When
R is a proper valuation domain in a field, P+(R) is the maximal ideal of R. Denning
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Rad N to be all x in U such that x" e N for some integer n s= 1, it is easy to check the
following lemma.

LEMMA 1.4.1.

(1) P+(N) is empty if N = U. (2) 1 $ P+(N).
(3) P+(N)^Ne>Nis (CM). (4) P+(N)=>N<$1$N.
(5) P+(N) 2 (Rad N)\N. (6) P+(N) is a (CM) subset.
(7) P+(P+(N)) = P+(A0. (8) P+(N) 2 (N:£/)ON # £/.
(9) If N is closed under multiplication by R then so is P+(N).

1.5. Evaluation maps. An evaluation on (/ will mean a map u: (/—» F, taken (for
convenience only) to be onto, where F is a totally ordered abelian monoid with operation
° and neutral element 0, such that v(xy) = v(x)°v(y), v(x+y)^min{v(x), v(y)} and
u(l) = 0. We denote v(0u) by °°, and call v cancellative if F\{oo} is a cancellative monoid
(or is empty).

For evaluations v and w on U, we write v ^ w when w = dv for some epimorphism
d:v(U)—> w(U), and write v = w if 6 is an isomorphism. We put

®(v) = {xeU\v(x)^0} and 2P(v) = {x e U \ v(x)>0}.

Note that di(v) is (cf. [8]) a (CM) subring of which 9>(v) is, if not empty, a (CM) ideal. A
non-empty subset / of U is v-closed if y e / and v(x)~s^v(j) imply xeJ. The u-closed
subsets form a chain of 3?(u)-submodules with smallest member u~'(oo).

Suppose that the submodule L is (EV). Then the map vL:U—>rL denned by
vL(x) = L.x is an evaluation.

LEMMA 1.5.1. The set of all y such that vL(y) 5= vL(x) is L:(L:x).

Taking in turn x = 1 and x = 0, we obtain @L(vL) = L:L and v^'(<») = L:U. Also, note
that 9(vL) = P+(L).

LEMMA 1.5.2. The subring L:L and, for L=tU, its ideal P+(L,U) are both (CM),
hence (EV). Also, P+(L, U) 3 P+((L:L), U).

Proof. If xy e L:L and y $ L:L then uL(*)>0. Thus P+(L:L)cP+(L). The rest is
clear.

1.6. Conditions for a submodule to be (MTV). For a prime fl-ideal P, by [16,
Proposition 1], (R, P) is a maximal pair in U if and only if, for all y in U\R, there exists x
in P such that xy e i?\P. These conditions imply P = P+(R, U) by [15, Corollary 10.5].

LEMMA 1.6.1. (i) The submodule L is (MV) if and only if it is (EV) and, for all y in
U\L, there exists x in U such that xy e (L:L)\P+(L, U).

(ii) If L is (MV) then L:L is (MV) and, unless L is a proper U-ideal, P+(L, U) =
P+((L:L),U)andvL = vL.L.
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(iii) When L is a ring, the following are equivalent: (1) L is (MV), (2) (L, P+(L, U))
is a maximal pair, (3) for all y in U\L, there exists x in L such that xy e L\P+(L, U).

Proof, (i) is clear since L.xy = LA precisely when xy e (L:L)\P+(L, U). For (ii), by
[16, Proposition 1], vL determines the maximal pair ((L:L), P+(L)) (note that this gives
(1)=>(2) of (iii)) and so vL.L determines the maximal pair ((L:L), P+(L:L)). By
uniqueness, P+(L) = P+(L:L) and so vL = vLL by [16, Proposition 2). For (3)=>(1) of
(iii), let ab e L and a e U\L. Then xa e L\P+(L, U) for some x in L. But xab e L; hence
beL. Thus L is (CM) and so, by (i), is (MV).

Clearly, if L is a (/-ideal it is (MV) precisely if it is prime.

THEOREM 1.6.2. Suppose L is not a U-ideal. Then L is (MV) if and only if it is a
vA-closed A-submodule for some (MV) subring A.

Proof. Clearly L is uL-closed; so "only i f follows from Lemma 1.6.1(ii). For "if,
let a$L:U. Since L is vA-closed, L^A:U; whence A:U = L:U and there exists b such
that vA(ba) = 0. From vA(bax) 2= vA(x) for all x in L we obtain baL e L. Also, if bay e L
then y e L since vA(y) 2= vA(bay). Thus ba e (L:L)\P+(L) or L.ba = L.I. Finally, suppose
c e(L:a)\(L:b). Since L is t/^-closed, vA(cb)<vA(ca); whence vA(b) < vA(a). Then
vA(xb) =£ vA(xa) for all x, and so x e L:b implies x e L:a.

2. Localisation, factoring by an ideal and applications. Let 5 be a non-empty
multiplicatively closed subset of R.

LEMMA 2.1. Write P+(L[S], U) = N. Then S does not meet N and N[s] = N.

Proof. If s eN, we have sy e L[s] for some y $ L[s], and s eS would give y e Lls]. So
NHS is empty and N[S]^P+(N). But P+(N) = N by Lemma 1.4.1(7), and, applying
1.4.1(9) to L|S], we obtain WcW|S|, whence N = N[S].

In [3] it was shown that (R, P) is (MV) in the total quotient ring T of R if and only if
Rs is (MV) in Ts, where 5 = R\P. More generally we have the following result.

PROPOSITION 2.2. (1) P+(LS, Us) c (P+(L, U))s with equality if S does not meet
P+(L,U), i.e. if L[S] = L. Also, P+(LS, US) = (P+(L[S], U))s and UnP+(Ls,Us) =
P+(Lls], U).

(2) Let <£ denote one of the terms: (CM), (BV), (EV), (MV). Amongst the conditions

(i) Lis<g in U, (ii) L[s] is % in U, (iii) Ls is <€ in Us,

we have the implications (i)^(iii) and (ii)<=>(iii).
Proof. For (1), let xs"1 $ Ls and xs~lyt~x eLs, where s, teS. Then xys^L for

some SieS. But x $ L; hence ysxeP+(L) and so yt~l e (P+(L))S. Thus P+(Ls)c
(P+(L))S. Note also, for (2), that if L is (CM) then P+(L)^L; so that ysxeL and
yt~l e Ls; whence Ls is (CM).

Let s eS and m eP+(L). Then bm e L for some b e U\L. When L = Lls], the image
of b in Us is not in Ls. Since bms~x e Ls, we then have ms~l e P+(LS). Thus
P+(LS) = (P+(L))S. Replacing L by L[s] gives P+(LS) = (P+(L[S]))S since 5 does not meet
P+(L[S]). By 1.4.1(9), 1.3.1 and 2.1, we now obtain U n P+(LS) = P+(L{S]).
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If L is (BV) then so is Ls by a variant of the proof of [13, Proposition 4]. From the
identity (L:Rx)s = Ls:(Rx)s, we deduce that if L is (EV) then so is Ls. Let rt\{°°} be a
group, and let Ls:xy~l a I). Then L:x c U so that, for some a, L.ax = L and
Ls:(axy~l) = Ls. We have now proved (i)=>(iii), and (ii)=>(iii) follows.

(iii)=>(ii). Clearly the (CM) and (BV) properties are preserved upon taking inverse
images with respect to £/—>• £/s. Note that Ls:(Rx)s cLs:(Ry)s implies, by 1.3.1, that
(L:Rx)[s] c (L:Ry)lS] or L[s]:Rx <= L[s]:Ry. Hence L[s] is (EV) if Ls is. Proof of the (MV)
case is in the same vein as the foregoing.

PROPOSITION 2.3. Let K be an ideal of U for which KcL (so that KcL.U).
(i) P+(L/K, U/K) is the set of cosets (P+(L, U))/K.
(ii) Let <€ be one of: (CM), (BV), (EV), (MV). Then L is % in U if and only ifL/K

is % in U/K.

Proof. This is straightforward. The (CM), (BV) and (MV) subring cases of (ii) are
part of [8, Lemma 1].

In (ii) below we extend [7, Proposition 9], integral closure being taken in the sense of
[12, Corollary 4]. Note that if, in (i), L is (CM) it will be (BV) by Corollary 3.5.

COROLLARY 2.4. Let U have Krull dimension 0. (i) L is (MV) if it is (CM) or (KV).
(ii) L is integrally closed if and only if it is an intersection of (MV) submodules.

Proof, (i) Since 0 is not a product of elements of U\L, there is a prime, hence
maximal, (/-ideal N contained in L. Since L is (EV), by Proposition 2.3, L/N is (EV) in
the field U/N. Clearly L/N is (MV), hence L is. From (i) and [12, loc. cit.] we deduce
(ii).

Next, building on Griffin's [9, Proposition 5], we obtain criteria for a subring to be
(MV). In particular (l)£>(3a) indicates the close relation between (MV) rings and
classical valuation rings.

THEOREM 2.5. Put R\P+(R, U)=T and RT:UT = Q. The following conditions are
equivalent.

(1) /?¥=(/ and R is (MV) in U.
(2a) R is (CM) in U and (UT, Q) is a local ring.
(2b) R is (CM) in U and Q is a maximal ideal of UT.
(3a) UT/Q is a field of which RT/Q is a valuation domain.
(3b) The RT-submodules of the non-zero ring UT/Q form a chain.
(3c) RT-submodules of UT are comparable with Q, those containing Q form a chain

and Q * UT.

Proof. The implications (2a) => (2b) =>(3a) => (3b) and (3c)^>(3b) are clear. For
(l)=>(2a), if R is (MV) then R is (CM). Also, by Proposition 2.2, the local ring
(RT, (P+(R))T) is (MV) in UT; hence, by [9, loc. cit.], (UT, Q) is local. For (3b)=>(l),
put RT/Q = A and UT/Q = F. Let y e F\A. Then Ac. Ay; whence 1 = ay for some a e A.
Thus, by Lemma 1.6.1(iii), A is (MV) in Fand so, by Propositions 2.2 and 2.3, R is (MV)
in U. Finally, (1) with (2a) implies (3c) by Proposition 2.2 and [9, loc. cit.].
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On the theme of Section 2 in [4], we have the following corollary from (3b)=>(l).

COROLLARY 2.6. If the R-submodules of U form a chain then R is (MV) in U.

COROLLARY 2.7. R is (MV) with P+(R, U) the unique maximal ideal of R if and only
ifRis (CM) and (U, (R:U)) is local.

Proof. The "only if" part follows from [9, loc. cit.]. For "if", one finds that
(UT, (RT:UT)) is local which implies, by (2a)O(l), that R is (MV). So (R, P+(R, U)) is
local by [9, loc. cit.].

Before generalising a result of Samuel on maximal pairs we need some preliminaries.
From Proposition 2.3(ii) and [17, Section 4] we obtain the next lemma.

LEMMA 2.8. Let / i t / ] - * U2 be a homomorphism of rings. (Contraction) If J is a (BV)
subalgebra of U2 then UXC\J is a (BV) subalgebra of t/t. (Extension) If I is a (BV)
subalgebra of Ut then there exists a (BV) subalgebra J of U2 such that 1= UXC\J.

The next lemma is implicit in [17, Section 8].

LEMMA 2.9. Let U be a field. Then U contains a valuation domain of which P is a
prime ideal if and only if P is a (BV) subalgebra of U.

The case of Theorem 2.10 in which U is a field follows from Gilmer [6, Corollary
19.7] and Lemma 2.9.

THEOREM 2.10. Let R => P, =>. . . => Pk, where each Pi is a prime ideal of R. Then there
is a subring Qo containing a chain Qx z>. . . =3 Qk of prime ideals such that Qo, Qu . . . , Qk

are (BV) in U, Q0=>R and £>, n fl = PJor i = l,...,k.

Proof. By Lemma 2.8, Pk = P n R for some (BV) subalgebra P of U. Let N be the
prime ideal P:U of U. Then, for all i, Pi^PHR^NHR and Pi/(NDR) is prime in
R/(N n R). Let F be the field of fractions of U/N. In the subring (R + N)/N of F there is
a chain of prime ideals (Pi + N)/N = PJ(N D R) which extend (by [6, loc. cit.]) to a chain
of prime ideals //, (i = 1, . . . , k) in a valuation domain Ho of F. Each H,- (i = 0, . . . , k) is
(BV) in F (by Lemma 2.9). Hence, each //, n (U/N) is (BV) in U/N and has the form
Qi/N where, by Proposition 2.3(ii), £?, is (BV) in U. Evidently Q0/N^(R + N)/N and,
for i = 1, . . . , k, Qj is an ideal of the subring Qo such that

(Qi/N) n ((R + N)/N) = (^ + N)/N.

From QiD(R + N) = Pi + N we obtain QiDRc(Pi +N)HR = Pi + (NnR)^Pi^
QiC\R; hence ^ = QiDR.

Samuel's construction of maximal pairs [19, Lemma 2] may be generalised in two
ways as follows. If A6 (6 e A) is a family of prime ideals of R, and B6 (6 e A) a family of
prime ideals of a subring Q of U, we say that the system (Q, B6 (8 e A)) extends the
system (R, A6 (8 6 A)) if Q ̂ R and RC\Bd=Ad for all 6. Using Zorn's Lemma, one
shows the existence of maximal extensions of a given system. Similarly, restricting
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attention to chain systems, i.e. where the prime ideals form a chain, we see that each
chain system has a maximal chain system extension.

THEOREM 2.11. (i) If a system (R, B6 (8 E A)) is maximal (i.e. is the only extension of
itself) then R is an intersection of (MV) rings and U B6 2 R D P+(R).

6
(ii) / / the system consisting of R with a finite chain of prime ideals Bi =>. . . => Bk is a

maximal chain extension then R, Bx, . . . , Bk are each (BV) and BY ^ P+(R)-

Proof, (i) For each 8, let (Rs, M6) be a maximal extension of the pair (R, B6).
Putting H Ra = R'> we find that the system (R', M6 n R' (8 e A)) extends (R, B6 (8 e A))

and so R' = R. Put R\(U B6) = S. By Lemma 1.3.2, for each 8, (B6)[S] is a prime ideal of

R[s] and (B6)[s] (~)R = B6. Maximality of R now gives R[s] = R. Thus R D P+(R) does not
meet 5.

(ii) By Theorem 2.10, (R, Bx :r>. . . z> Bk) extends to a (BV) subring with a chain of
(BV) ideals which, by maximality, are just R, Bu . . . , Bk. Hence P+(R)cR, and so, as
in (i), we obtain P+(R) s BA.

3. Prime ideals containing P+. By Theorem 2.11(ii), if R is (MV), prime R-ideals
comparable with P+ are (BV). In Theorem 3.3 we shall extend this observation.

Let the submodule L (# U) be (CM) and put U\L = S. Define L<5) to be the set, in
Us, of all finite sums of terms bs~l with b e L, seS. Letting T = (L:L)\P+(L, U), we
shall consider the natural homomorphisms U—>UT^>US, where the second map is
defined to take xt~l to xs(te)"1 for arbitrary s e 5. We note that Us was used, when L = R,
in [19] and [8]. Denoting images in Us by ( )' and writing C(L, U) (see 1.2) as C, we have
the following lemma.

LEMMA 3.1. (i)IfteT,xeU and (xf1)' e L<s) then xeC.
(ii) IfxeC then x' e L<s> and, for some fr, e L, s, e 5,

xsi . . . s k + 2 *Vi . . . * , - . . s k = 0,

where A indicates an omitted term.
(Hi) L(5) HU = C.

Proof. For (i), (xt'1)' = (s}s2 • . . sk)~
x E bis1 . . . s,;. . . sk, where ft, e L, j , e S ,

implies x eC since, for some s, s0 in 5,
k

XSS0Si . . . Sk - 2 ( ' f t . ) ^ o S i ...§i...Sk=0.
1=1

If J: is c(f), where / is an L-polynomial such that f(qu . . . , qh) - 0 (<?, e 5), then
division by qxq2 . . . qh leads to x' e L{s). Now, (ii) and (iii) are straightforward.

LEMMA 3.2. If L is a (BV) subalgebra then C = P+(L, U).
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Proof. Writing L:L = A, we note that L<5> and, hence, L(Sj D (/T have natural
structures as ^-modules. If t e T and x e P ( = P+(L, U)) then xs e L for some s e S;
whence (x r 1 ) ' e L<5). Thus PT^L{s)nUT. Since L is (BV), CcL. But L c / 1 ; so
C c A By Lemma 3.1(i) and since 1 £ C, we obtain L<s> fl UTcAT. Since PT is a
maximal Ay-ideal, PT = L<s> Pi (/r. Hence, by Lemma 3.1(iii), C = L(s) D U = PT f) U =
Pin = P.

THEOREM 3.3. Let H be an (EV) submodule and let P be a prime ideal of H:H such
that P a P+((H:H), U). Then P (in particular P+(H, U)) is (CM), and is (BV) if H is
(KV).

Proof. That P is (CM) is a simple variant of what follows. Write H:H = A and let H
be (KV). Then A is (BV) by [12, Proposition 10]. Suppose f(slt . . . ,sk) = 0, where
su . . . , ske U and f(Xx, . . . , Xk) is a P-polynomial for which c(f) = 1. We may arrange
that su . . . ,sheA and sh+l,. . . ,sk$A, where 1 =£/i =£&. For the case h < k, taking
g(Xh+1, . . . , Xk) to be the P-polynomial f(su . . . ,sh, Xh+U .. . , Xk), we have
g(sh+1, . . . , sk) = 0. Then c(g) e C(A) and, by Lemma 3.2, C(A) c P+(A) c P. But
c(g) = 5j52 • • • sA + p for some p e P. Hence, for /i < k or ft = k, 5,52 . . . sh e P. So s, e P
for some /, and P is (BV).

Condition (iii) below simplifies the usual (BV) definition. Concerning (ii), note that if
H is (CM) and 1 <£ H then P+(H, U) = H.

THEOREM 3.4. For the following conditions on a submodule H,
(i) His(BV),

(ii) C(H,U) = P+(H,U),
(iii) H is (CM) and, for all k&l, s, e U\H, b, e H.

we have (ii) =^ (i) <=> (iii) and, when H is a subalgebra, (ii)<£=(i).

Proof. (ii)=>(i) since l$P+, (i)=>(iii) is trivial, (iii)^>(i) is by Lemma 3.1(ii), and
(i)z£>(ii) is Lemma 3.2.

From (iii)^(i) we obtain following corollary.

COROLLARY 3.5. For a submodule, the conjunction (CM) and (KV) implies (BV).
The converse is true (trivially) for a subalgebra.

4. Evaluations associated with a (CM) subring. For most of this section we tacitly
assume R^U. Our first aim is to give, in Proposition 4.3, a condition for R and P+(R, U)
to determine isomorphic evaluations.

LEMMA 4.1. For evaluations v and w on U, the following conditions are equivalent.
(1) v^w.
(2) v(x) 2s v(y) implies w(x) ̂  w(y) for all x, y in U.
(3) Every w-closed set is v-closed.

Further, w = v if and only if v-closed and w-closed sets coincide.
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Proof. For (3)=>(2), observe that if w(y)>w(x) then x $ {b e U \ w(b)3= w(y)}
which is w-closed, and hence u-closed; so that v(x)<v(y). For (2)=^>(1), define
6(v(x)) = w(x) for all x. The rest is straightforward.

LEMMA 4.2. Let L and M be (EV) submodules.
(i) (Griffin [8]). If v is an evaluation on U for which 8fc(v) = R then v 2> vR.
(ii) / / L:L = R then vL ^ vR.
(Hi) vL ̂  vM if and only if L:(L:x)^ M:(M:x) for all x in U.

Proof, (i) If R:yz>R:x then, for some a, we have v(ay) 3=0>u(ax) and so
v(y)>v(x). Since L:L = 9t(vL), we deduce (ii) from (i). Finally, (Hi) follows from
Lemmas 1.5.1 and 4.1.

PROPOSITION 4.3. Suppose that R is (CM), and denote by P its (CM) ideal P+(R, U).
Then vR ^ vP. Further, vR = vP if and only if P.P = R.

Proof. Let y eR:(R:x) and a e P:x. Then axz e R for some z in U\R. So az e R:x
and yazeR. Hence yaeP; so yeP:(P:x). Lemma 4.2(iii) now gives vR^vP, and
Lemmas 4.2 and 4.1 give the "further" part.

Next, when R is (CM) we aim to associate with it two (BV) overrings (see
Proposition 4.8). We start by considering an evaluation v such that the (/-ideal v~l(<*>)
( = B, say) is prime. Let 6 be the natural map UB —»(/', where U' denotes UB/BUB.
Denote by 0t'(v) the set of all 6(xy~l) for which there exist a, b such that
8(xy~l) = d(ab~l) and v(a) 3= v(b) (with y, b in U\B). One verifies that, for given y ($B)
and x, if 8(xy~1)e 9t'(v) then v(xd) 5= v(yd) for some d i B. Since 6(ab~x) $ 01'(v)
precisely when 8(ba~x) = (8(ab~l))~1 is a non-zero non-unit of 9l'(v), it is straight-
forward to verify the following lemma.

LEMMA 4.4. 9t'(v) is a valuation domain of the field U'. The maximal ideal M'(v) of
91'(v) is the set of all 8(ab~l) such that v(ad) > v(bd) for all d $ B.

The evaluation on (/' naturally determined by 9i'(v) gives, when composed with
[/—»•(/', a cancellative evaluation on U which we denote by wv.

LEMMA 4.5. (i) v^wv.

(ii) v = wv if and only if v is cancellative.

Proof. For (i), use (2)=>(1) of Lemma 4.1. For (ii), suppose that v is cancellative. If
v(y)>v(x) then v(yd)>v(xd) for all d$B, whence 8(yx~l)eM'(v) and so wv(y)>
wv(x). Now, Lemma 4.1 and (i) lead to (ii).

We note that 0t(wv), the inverse image in U of 0i'(v), is

{x e U | v(xd) 5= v(d) for some d $ B}.

Clearly ®(wv) ^9l(v)r=> 9(v)^ 0>(wv). Using Lemmas 4.4, 2.9 and 2.8, we obtain the
following result.

PROPOSITION 4.6. The ring 0i(wv) and its ideal SP(wv) are both (BV) in U.
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Using Lemma 4.1, and noting that wv(x)5zwv(y), where y^v'1^), entails
0(xy~l) e Sk'iy) and v{xd) s= v(yd) for some d $ v'1^), one obtains the next lemma.

LEMMA 4.7. Let u and v be evaluations for which there is the common prime ideal
u~'(oo) = u~'(oo). Ifv^u then wv 2> wu; whence 9t(wv) c 9t(wu).

Now let the submodule L be (EV) and such that ulX00) = L:U is prime. Take v = vL

in the foregoing and denote wv by wL. Then, by Proposition 4.6, 2%(wL) and @(wL) are
(BV) in U.

PROPOSITION 4.8. Let R be (CM), and write P+(R, U) = P. Then &(wR) and 0t(wP)
are (BV) in U, and 9t(wP) 3 9l(wR) ^P.P^R. Also, P 3 ^ K ) 3 P+(3?(w,), [/) when
I = R or I = P. If R is (MV), each of the foregoing inclusions is an equality.

Proof. That 3ft(wP) 3 9l(wR) follows from Proposition 4.3 and Lemma 4.7. Let
aeP.P. If aeR then R:al ^RA; whence a e $l(wR). If a $ R then R.a 3 P:a 3 P 3 R:a;
whence equalities which give R:a = (R:a):a; so that a e 0t(wR).

Let 0(xy'1) e M'(vP), where y$P:U. Then, for all d $ P:U, P:xd 3P:yd by Lemma
4.4, and so R:xd z> R:yd by Proposition 4.3; whence 6(xy~1) e M'(vR). If r e @(w,) then
e(r)eM'(v,)cM'(vR) and so R:r=>R:l or r e P. Further, if x e P + ( % , ) , f / ) then
xy e ®(w,) for some y $ 9t(w,). Taking images in U' gives 0(*) e P+(9?'(u/), (/') =
^ ' ( u / ) . and so x e ^(iv,).

Let R be (MV). Then wR = vR by Lemma 4.5(ii). Also, P:P = R and so vP = vR by
Proposition 4.3. The required equalities follow since 9t(wR) - $l(vR) = R and wP = wR.

The equivalence of (2) and (3) in Theorem 4.9 is closely related, when R is (MV), to
[16, Proposition 3] and [9, Proposition 4].

THEOREM 4.9. When R is (CM) and K is a submodule, consider the conditions

(1) K is wR-closed,
(2) K is vR-closed,
(3) K = K[T]^R:U, where T = R\P+(R, U).

Then (1) => (2) => (3), and R is (MV) if and only if (3) => (1) for all submodules K.

Proof. (1)=>(2) is clear by Lemma 4.5(i). For (2)=>(3), let xteK with
t e U\P+(R, U). From xt(R:xt) c R, we have x(R:xt) c R and R:xt c R:x. So x e K by (2).
Also, K 2 iV(oo) = R:U.

Suppose that (3) => (1) for all K. Since the submodules satisfying (3) are w^-closed,
they form a chain. Hence, the /?T-submodules of UT containing (R:U)UT form a chain,
since they are the extensions to UT of those K satisfying (3). Since (R:U)UT c RT:UT,
Theorem 2.5(3b) holds and so R is (MV).

For (3)^>(1), when R is (MV), use the argument after Proposition 4 in [9] (replace
Q, v therein by K, wR) noting that R = &(wR) by use of Lemma 4.5(ii).

We end with a discussion on cancellative evaluations.
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PROPOSITION 4.10. When R is (CM) the following are equivalent:
(1) vR is cancellative, (2) wR = vR, (3) 9l(wR) = R.

Proof. If (3) holds when wR^.vR by Lemma 4.2(i), but vR^.wR by Lemma 4.5(i),
and so (2) holds. The implications (1)»(2)4>(3) are clear.

REMARKS, (i) By Proposition 4.8, the conditions of Proposition 4.10 imply that R is
(BV). If U = R[X] with R a field then R is (BV) (as stated in [8]) and 9t(wR) = U *R.
Thus R being (BV) (equivalent to (PV2) in [8]) does not, in general, imply condition (1)
of Proposition 4.10 ((PV3) in [8]), contrary to a statement in [8].

(ii) As in [8, Example 5], let v be the evaluation of k[X, Y], where k is a field,
defined by extending the rule v(X"Ym) = n-m^Jl. Then R = 0l(v) is not (MV) by [8].
However, one may verify that vR is cancellative. Thus, the condition on R that vR be
cancellative is strictly intermediate between (BV) and (MV). Nevertheless we do have the
following result. The R = @L(v) part of it is in [8], but Griffin's proof does not give the P+
part.

THEOREM 4.11. When R is (BV), there is a cancellative evaluation v on U such that
R = @.(v) and P+(R, U) = 9>(v).

Proof. Put U\R = S and P+(R, U) = P+. Let Q be the subring of Us consisting of all
elements of the type

d = (g(su . . . ,sk))~
1f(sl, . . . ,sk),

where k3= 1, s,;€ 5 and/, g are R-polynomials such that c(f) eR, c(g) e R\P+. Let x in U
have image x' in Q. Then x' has the form d above, and, for some s eS,

(xg(slt . .. ,sk) -f(su ..., sk))s = 0.

If x $ R then c(g) e P+ by Lemma 3.2. So x e R; whence Qf)U = R. Since xc(g) - c(f) e
P+, we have x e P+ precisely when c(f) e P+. Let M be the set of all d in Us for which
c(f)eP+. One verifies that MC\U = P+ and M is the unique maximal ideal of Q. The
pair (Q, M) extends in Us to a maximal pair (Qa, P). By [16], there is a cancellative
evaluation vP such that 0l(vP) = QO and 8P(vP) = P. The evaluation v induced on U by vP

is cancellative. Clearly S/i(v) 3 R and @(v) ̂ P+. We find that &l(v) = R by an argument
similar to Griffin's, that if s e S then s~l e M; whence v(s) < 0. To show 0>(u) c P+) let
x e 3>(v). Then, for (all) seS, x' = (xs)s~l eQ. So x' e Q n P = M; hence xeMDU =
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