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Abstract

The Ehrenfest urn is a model for the diffusion of gases between two chambers. Classic
research deals with this system as a Markovian model with a fixed number of balls, and
derives the steady-state behavior as a binomial distribution (which can be approximated
by a normal distribution). We study the gradual change for an urn containing n (a very
large number) balls from the initial condition to the steady state. We look at the status of
the urn after kn draws. We identify three phases of kn: the growing sublinear, the linear,
and the superlinear. In the growing sublinear phase the amount of gas in each chamber
is normally distributed, with parameters that are influenced by the initial conditions. In
the linear phase a different normal distribution applies, in which the influence of the
initial conditions is attenuated. The steady state is not a good approximation until a
certain superlinear amount of time has elapsed. At the superlinear stage the mix is nearly
perfect, with a nearly perfect symmetrical normal distribution in which the effect of the
initial conditions is completely washed away. We give interpretations for how the results
in different phases conjoin at the ‘seam lines’. In fact, these Gaussian phases are all
manifestations of one master theorem. The results are obtained via martingale theory.

Keywords: Urn model; random structure; martingale; central limit theorem; diffusion of
gases
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1. The Ehrenfest urn as a model for gas diffusion

The Ehrenfest urn was first proposed as a model for the diffusion of nonreacting gases (see
Ehrenfest and Ehrenfest (1907)). We deal here with the speed of this diffusion across time
phases. The model is for two chambers (say A and B) containing gases (possibly the same).
The two chambers are connected through a pipe controlled by a valve. The valve is opened
at time 0 and the diffusion proceeds over epochs of time, which we can take as the unity. In
each time unit (diffusion step) one molecule of gas randomly chosen from the population of
molecules in both chambers jumps from its chamber to the other chamber. This continual
switching of sides affects a gradual diffusion, inducing change in the amount of gas in each
chamber. It is of interest to know the amount of gas (number of molecules) in chamber A after
a certain period of time.

This physical model of gas diffusion can be visualized in terms of a scheme of drawing
balls from an urn. We can think of the molecules in chamber A as balls of a certain color (say
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white) and those in chamber B as balls of an antithetical color (say red). The gas model with n

molecules can then be viewed as n balls of two colors all residing in one urn, which evolves in
the following manner. At each discrete point in time, we pick a ball at random from the urn. We
paint that ball with the opposite color and put it back in the urn. In this equivalent model, the
interest is to know the number of white balls (the amount of gas in chamber A) after a certain
period of time.

The classic research deals with this system as a Markovian model with a fixed number of
balls, and derives the steady-state behavior as a binomial distribution; see Bellman and Harris
(1951), Blom (1989), and Karlin and McGregor (1965), and see Mahmoud (2008, pp. 62–67)
for an overview.

Antognini (2005) looked at the speed of diffusion for a fixed number of particles. In a
physical system the number of gas molecules is very large, we will take it to be n, and is
apportioned as �αn� ∼ αn in chamber A and n − �αn� ∼ (1 − α)n in chamber B for some
α ∈ (0, 1). We are interested in knowing the behavior of the gases after a certain finite interval
of time. So, the question is: How many white balls are in the urn after k = kn draws for
functions kn of various growth rates? The study of the evolution of urns through various stages
prior to the steady state is a topic of recent interest; see, for example, Mikhailov (1977), (1980),
Vatutin and Mikhailov (1982), Mahmoud (2010), and Smythe (2009).

2. Scope

We identify three phases of kn:

(a) the sublinear phase, when kn = o(n);

(b) the linear phase, when kn = λnn for some λn > 0 of a magnitude separated from 0
and ∞;

(c) the superlinear phase, when n = o(kn).

We will prove the following general trends. Trivially, at the very low end of the sublinear
phase, when kn = O(1) as n → ∞, there is not much change in the content of the two
chambers, only a finite perturbation on the initial conditions can be felt. Changes begin to
happen when kn grows to ∞. In what follows, the normally distributed random variate with

mean 0 and variance ν2 is denoted by N (0, ν2), and ‘
d−→’ denotes convergence in distribution.

Theorem 1. Let Wkn be the number of white balls in the Ehrenfest urn (molecules in chamber A)
after kn draws (gas diffusion steps) from an urn with n balls, of which initially the number of
white balls is W0(n) = �αn�, where kn → ∞ in a sublinear, linear, or superlinear fashion.
Then,

Wkn − (n/2 + (W0(n) − n/2)((n − 2)/n)kn)√
n/4 + ((n/2 − W0(n))2 − n/4)((n − 4)/n)kn − (n/2 − W0(n))2((n − 2)/n)2kn

d−→ N (0, 1).

The shift and scale are the mean and variance of Wkn . This theorem has the following
manifestations in various phases. (We used three different approximation techniques in each
of the three phases.) When kn grows sublinearly to ∞, we see that the amount of gas in
each chamber is normally distributed, even for a fairly slow growing function kn. We call
the phase when kn grows sublinearly to ∞ the growing sublinear phase. Functions that are
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asymptotically as small as 1
20 ln ln n, for example, are sufficient to give a normally distributed

mix in each chamber. For the sublinear phase, the initial conditions persist, and the asymptotic
normal result in this case contains the initial condition α. The Gaussian law in Theorem 1 takes
the form

Wkn − n(1/2 + (α − 1/2)((n − 2)/n)kn)√
kn

d−→ N (0, 4α(1 − α)).

Normality continues to hold in the linear and superlinear phases. However, in each phase
we get a different normal distribution; the mean and scale factors are essentially different. In
the linear phase a different normal distribution (in the usual style of central limit theorems) is
in effect, and the parameters of the distribution depend on both the initial condition α and the
coefficient of linearity.

A typical instance of the linear phase is when kn = cn + o(
√

n) for a positive constant c, in
which case the Gaussian law in Theorem 1 takes the form

Wkn − ((α − 1/2)e−2c + 1/2)n√
(e4c − 1 − 4c(2α − 1)2)n/4e4c

d−→ N (0, 1).

Note how the influence of the initial conditions is attenuated as we get deeper in the linear
phase.

As one might expect, after a very long period of time, as in the superlinear case, the diffusion
is nearly complete. In the superlinear phase, and if additionally kn = 1

4n ln n + gn for any
function gn such that gn/n → ∞, Theorem 1 takes the symmetric form

Wkn − n/2√
n

d−→ N

(
0,

1

4

)
,

which is the usual approximation of the binomial distribution by the normal. Note also how
the effect of any initial conditions is washed away.

Diaconis (1996) took a different view and discussed the ‘cutoff phenomenon’in the Ehrenfest
urn model, where the total variation distance to the stationary distribution experiences a sharp
decline after a large number of draws (while keeping the size of the urn fixed).

The problem can also be viewed as an allocation scheme of balls in urns, where kn balls are
dropped randomly in n urns. A ball in the Ehrenfest urn is represented by an urn in the allocation
scheme. As a ball changes color during the history of the Ehrenfest process, the number of balls
in the corresponding urn in the allocation model changes parity. More specifically, suppose that
the balls in the Ehrenfest urn are labeled 1, . . . , n. We label the urns in the allocation scheme
with 1, . . . , n, say from left to right, and the ith urn represents the ith ball in the Ehrenfest
urn. The urns labeled 1, . . . , W0(n) are the initial white balls in the Ehrenfest model, and the
urns labeled W0(n) + 1, . . . , n are the initial red balls in the Ehrenfest model. After kn ball
drops, an urn among the W0(n) leftmost urns containing an even number of balls indicates that
the corresponding ball in the Ehrenfest urn (initially white) has been drawn an even number of
times, and it is now white; let the number of such urns be Lkn . Likewise, an urn among the
n − W0(n) rightmost urns containing an odd number of balls indicates that the corresponding
ball in the Ehrenfest urn (initially red) has been drawn an odd number of times, and it is now
white; let the number of such urns be Rkn . Then,

Wkn = Lkn + Rkn.

Allocation scheme formulations, such as this one, received quite a bit of attention; see, for
example, Kolchin et al. (1976), where the schemes were handled by the method of moments.
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3. Organization

The rest of this paper has the following organization. In Section 4 we set up a stochastic
recurrence and discuss moments. In Section 5 we derive the underlying martingale. In Section 6
we discuss the three phases, the growing sublinear, the linear, and the superlinear, with a
subsection devoted to each phase. In these subsections we prove the announced results. Detailed
proofs are relegated to Appendices A and B.

Throughout, we will use the following standard probability notation. We will use the symbol

‘
p−→’ to denote convergence in probability. The notation oL1(g(n)) will stand for a sequence

of random variables that is o(g(n)) in the L1 norm, that is, when we describe a sequence of
random variables Xn to be oL1(g(n)), we mean that E[|Xn|]/|g(n)| → 0 as n → ∞. We let
Fj be the sigma field generated by the first j draws.

Unless stated otherwise, all asymptotics will mean asymptotic equivalents and bounds as
n → ∞. The number n/(n − 2) will appear often, and we will give it the designation ρn.
We will repeatedly use well-known facts about ρ

yn
n for y > 0, such as the fact that ρ

yn
n is

asymptotically e2y + O(1/n).
We will also need the backward difference operator ∇, which when applied to a function h(i),

with integer argument i, gives the difference between two successive steps, that is, ∇h(i) =
h(i) − h(i − 1).

4. Exact moments

Let Wj = Wj(n) be the number of white balls (molecules in chamber A) after j draws
(diffusion steps). Let IW

n and IR
n respectively be the indicators of picking a white or a red ball

in the nth step. Because of their mutual exclusion, we have IR
n = 1 − IW

n . There is stochastic
dependence between Wj−1 and Wj . After j − 1 draws, the number of white balls in the urn is
Wj−1, and the number of white balls will increase by 1 after one draw if a red ball is picked,
but will decrease by 1 if a white ball is picked. So,

Wj = Wj−1 + IR
n − IW

n = Wj−1 + 1 − 2IW
n . (1)

A recurrence for the mean follows from the expectation of the stochastic recurrence (1) and a
recurrence for the variance follows from the expectation of its square. Solving these recurrences
we obtain

E[Wj ] = 1

2
n +

(
W0(n) − n

2

)(
n − 2

n

)j

, (2)

var[Wj ] = 1

4
n +

((
n

2
− W0(n)

)2

− n

4

)(
n − 4

n

)j

−
(

n

2
− W0(n)

)2(
n − 2

n

)2j

. (3)

(The special case of W0(2n) = n was developed and solved in Antognini (2005).)
Note that, under the assumption that W0(n) = �αn� ∼ αn, the mean after kn diffusion steps

experiences phases according to how fast kn grows. For the growing sublinear, linear, and
superlinear phases, we have the mean asymptotics

E[Wkn ] ∼

⎧⎪⎨
⎪⎩

αn for kn = o(n),((
α − 1

2

)
e−2λn + 1

2

)
n for kn = λnn,

1
2n for n = o(kn).
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Like the mean, under the assumption that W0(n) = �αn� ∼ αn, the variance of the amount
of gas in chamber A after kn diffusion steps experiences phases according to how fast kn grows.
For the growing sublinear, linear, and superlinear phases, we have the variance asymptotics

var[Wkn ] ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4α(1 − α)kn for kn = o(n),

e4λn − 1 − 4λn(2α − 1)2

4e4λn
n for kn = λnn,

1
4n for n = o(kn).

Observe how the average and variance of the three phases meet at the seam lines. The linear
phase with λn = 0 gives the result in the growing sublinear phase, and with λn = ∞ gives the
result in the superlinear phase.

5. A martingale underlying gas diffusion

Conditioning the recurrence (1) on the content of the sigma field Fj−1, we obtain

E[Wj | Fj−1] =
(

1 − 2

n

)
Wj−1 + 1. (4)

There is an associated martingale as in the following lemma.

Lemma 1. For j = 0, 1, . . . ,

Mj := ρ
j
nWj − ρ

j+1
n − ρn

ρn − 1

is a martingale, where ρn = n/(n − 2).

Proof. Introduce the transformation

Mj = ajWj + bj .

We wish to turn Mj into a martingale with suitable choices of deterministic sequences aj and bj .
So, Mj must satisfy

E[Mj | Fj−1] = Mj−1 = aj−1Wj−1 + bj−1. (5)

We compute

E[Mj | Fj−1] = E[ajWj + bj | Fj−1] = aj E[Wj | Fj−1] + bj .

From (4) we proceed with

E[Mj | Fj−1] = aj

(
1 − 2

n

)
Wj−1 + aj + bj .

Matching the coefficients of this equality with those in (5), we arrive at recurrences for aj

and bj . We have aj = ρnaj−1. This recurrence unfolds easily to give aj = ρ
j
na0 for any

arbitrary value of a0; we take a0 = 1.
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We also have the recurrence bj = bj−1 − aj , which unwinds into

bj = b0 −
j∑

k=1

ρk
n

for arbitrary b0; we take b0 = 0 and simplify the sum to

bj = −ρ
j+1
n − ρn

ρn − 1
.

This completes the proof.

The fact that Mj is a martingale is key to proving Gaussian limits in all the phases. We will
deal with the centered martingale

M̃j = Mj − W0(n)

(which has mean 0) to employ the martingale central limit theorem, which requires calculations
on a zero-mean martingale. Sufficient conditions for the central limit theorem for a zero-mean
martingale Xj,n are the conditional Lindeberg condition and the conditional variance condition
on the martingale differences ∇Xj,kn = Xj,kn − Xj−1,kn ; see Theorem 3.2 and Corollary 3.1
of Hall and Heyde (1980, p. 58).

Specifically, in our case, the conditional Lindeberg condition requires that, for some positive
increasing sequence ξn and all ε > 0,

Un :=
kn∑

j=1

E

[(∇M̃j

ξn

)2

1{|∇M̃j /ξn|>ε}

∣∣∣∣ Fj−1

]
p−→ 0,

where the indicator 1E is a function of a sample space that assumes the value 1 if E occurs and
the value 0 otherwise, and, for a constant c, a c-conditional variance condition requires that

Vn :=
kn∑

j=1

E

[(∇M̃j

ξn

)2 ∣∣∣∣ Fj−1

]
p−→ c. (6)

When both conditions hold, the sum

kn∑
j=1

∇M̃j

ξn

= Mkn − M0

ξn

= Mkn − W0(n)

ξn

converges to the normally distributed random variable N (0, c2).
In all the phases we take ξn = ρ

kn
n

√
var[Wkn ]. For calculations involved in the conditional

Lindeberg condition, the following uniform bound is helpful in all the phases.

Lemma 2. We have ∣∣∣∣∇M̃j

ρ
j
n

∣∣∣∣ ≤ 4.
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Proof. With the help of (1), write the absolute differences as

|∇M̃j | = |(Mj − W0(n)) − (Mj−1 − W0(n))|
= |(ρj

nWj + bj ) − (ρ
j−1
n Wj−1 + bj−1)|

= |(ρj
n(Wj−1 + IR

j − IW
j ) + bj ) − (ρ

j−1
n Wj−1 + bj−1)|

≤ ρ
j−1
n ((ρn − 1)Wj−1 + ρn|IR

j − IW
j | + ρn)

≤ ρ
j−1
n

(
2

n − 2
Wj−1 + 2n

n − 2

)
.

The number of white balls at any stage is at most n, and the lemma follows.

Lemma 2 enables us to verify the conditional Lindeberg condition in all the phases.

Lemma 3. We have

Un =
kn∑

j=1

E

[( ∇M̃j

ρ
j
n

√
var[Wkn ]

)2

1{|∇M̃j /ρ
j
n

√
var[Wkn ]|>ε}

∣∣∣∣ Fj−1

]
p−→ 0.

Proof. In all the growing phases, the variance grows with n. Therefore, for any given ε > 0,
the uniform bound in Lemma 2 asserts that the sets {|∇M̃j | > ερ

j
n

√
var[Wkn ]} are all empty

for all n greater than some positive integer n0(ε). For large n, we have

Un =
n0(ε)∑
j=1

E

[( ∇M̃j

ρ
j
n

√
var[Wkn ]

)2

1{|∇M̃j /ρ
j
n

√
var[Wkn ]|>ε}

∣∣∣∣ Fj−1

]

≤ 1

var[Wkn ]
n0(ε)∑
j=1

E

[(∇M̃j

ρ
j
n

)2 ∣∣∣∣ Fj−1

]

≤ 16n0(ε)

var[Wkn ]
→ 0 as n → ∞.

This completes the proof.

For calculations involved in the conditional Lindeberg condition, we need

E[(∇M̃j )
2 | Fj−1]

(see the definition of Vn in (6)), which is

E[(∇M̃j )
2 | Fj−1] = E[M2

j | Fj−1] − M2
j−1

= E[(ρj
nWj + bj )

2 | Fj−1] − (ρ
j−1
n Wj−1 + bj−1)

2

= E[(ρj
n(Wj−1 + 1 − 2IW

j ) + bj )
2 | Fj−1]

− (ρ
j−1
n Wj−1 + bj−1)

2.
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After some laborious but straightforward calculations involving (1) we obtain

E[(∇M̃j )
2 | Fj−1] =

(
ρ

2j
n − ρ

2j−2
n − 4

n
ρ

2j
n

)
W 2

j−1

+
(

2ρ
2j
n + 2bjρ

j
n − 4

n
bjρ

j
n − 2ρ

j−1
n bj−1

)
Wj−1

+ 2bjρ
j
n + ρ

2j
n + b2

j − b2
j−1.

This further simplifies to

E[(∇M̃j )
2 | Fj−1] = − 4

n2 ρ
2j
n W 2

j−1 + 4

n
ρ

2j
n Wj−1.

Summing over j , we construct Vn as

Vn = 1

ρ
2kn
n var[Wkn ]

(
− 4

n2

kn∑
j=1

ρ
2j
n W 2

j−1 + 4

n

kn∑
j=1

ρ
2j
n Wj−1

)
. (7)

6. Phases during long-term drawing

Suppose that the gas diffusion process is perpetuated indefinitely. We will see that as the
ball drawing continues from the Ehrenfest urn the process experiences different phases.

6.1. The growing sublinear phase

Let kn be in the growing sublinear phase (kn grows to ∞ and kn = o(n)). The number of
white balls after 0 ≤ j ≤ kn draws has obvious bounds—if all the draws are of red balls, an
increase by j goes in favor of the number of white balls over their initial number, and if all the
draws are of white balls, a deficit of j occurs against the initial number of white balls. We have
the inequalities

W0(n) − j ≤ Wj ≤ W0(n) + j.

We can ascertain that
Wj = αn + O(kn) (8)

for all 0 ≤ j ≤ kn.

Proof of Theorem 1 in the sublinear phase. In Lemma 3 the conditional Lindeberg condi-
tion has been verified throughout the growing sublinear phase. The proof will be complete if
we show that Vn converges to a constant in probability.

In (7) replace Wj−1 by the asymptotic equivalent in (8) to obtain

Vn = 1

ρ
2kn
n var[Wkn ]

(
− 4

n2

kn∑
j=1

ρ
2j
n (αn + O(kn))

2 + 4

n

kn∑
j=1

ρ
2j
n (αn + O(kn))

)

= 1

4α(1 − α)kn(1 + o(1))

(
4α(1 − α) + O

(
kn

n

)
+ O

(
k2
n

n2

)) kn∑
j=1

ρ
2j
n .

Recall that ρn = n/(n − 2). We can bound the remaining sum asymptotically:

kn ≤
kn∑

j=1

ρ
2j
n ≤ knρ

2kn
n = kn(1 + o(1)).
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So, we have

Vn = 1

kn(1 + o(1))

(
1 + O

(
kn

n

)
+ O

(
k2
n

n2

))
(kn + o(kn)) → 1.

The 1-conditional variance condition has been verified in the growing sublinear phase.
With both conditions checked, the martingale central limit theorem gives

kn∑
j=1

∇M̃j

ρ
kn
n

√
var[Wkn ]

= Mkn − W0(n)

ρ
kn
n

√
var[Wkn ]

d−→ N (0, 1).

Subsequently, we write

ρ
kn
n Wkn − (ρ

kn+1
n − ρn)/(ρn − 1) − W0(n)

ρ
kn
n

√
var[Wkn ]

d−→ N (0, 1),

which after reorganization is the statement of the theorem.

6.2. The linear phase

In the linear phase, kn = λnn for some λn > 0 of a magnitude uniformly bounded from
above and below, that is, for two positive constants, S1 and S2, and all n,

S1 ≤ λn ≤ S2.

At this phase of the gas diffusion we have the asymptotic equivalents (as n → ∞), following
from (2) and (3),

E[Wkn ] = µnn + o(n) (9)

and
var[Wkn ] = vnn + o(n), (10)

where
µn = (

α − 1
2

)
e−2λn + 1

2

and

vn = e4λn − 1 − 4λn(1 − 2α)2

4 e4λn
= O(1).

We start with a first-order result for Wkn .

Theorem 2. For kn = λnn for some λn > 0 of a magnitude separated from 0 and ∞,

Wkn

((α − 1/2)e−2λn + 1/2)n

p−→ 1.

Proof. By Chebyshev’s inequality,

P(|Wkn − E[Wkn ]| ≥ ε E[Wkn ]) ≤ var[Wkn ]
ε2(E[Wkn ])2

∼ vnn

ε2µ2
nn

2

→ 0 as n → ∞.
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Hence,
Wkn

E[Wkn ]
p−→ 1.

From the convergence E[Wkn ]/(µnn) → 1, and Slutsky’s theorem in its multiplicative form
(cf. Karr (1993, p. 147)), we obtain

Wkn

µnn

p−→ 1.

This completes the proof.

Before we dwell on the proof of a central limit theorem for the amount of gas in chamberA by
the end of some linear phase, we need a technical lemma, which shows that Wkn grows linearly
with n, like its mean, with correction terms that are oL1(n). The purpose of this calculation is
for later summation to verify the conditional Lindeberg condition.

Lemma 4. Let Wkn be the number of white balls in the urn after kn draws, where kn = λnn

for some λn such that 0 < S1 ≤ λn ≤ S2 < ∞. Then

Wkn = µnn + oL1(n)

and
W 2

kn
= µ2

nn
2 + oL1(n

2),

Proof. From the asymptotics of the mean and variance, as given in (9) and (10), for large n,
we have

E[(Wkn − µnn)2] = var[Wkn ] + (E[Wkn ] − µnn)2

= vnn + o(n2)

= o(n2). (11)

So, by Jensen’s inequality,

E[|Wkn − µnn|] ≤
√

E[(Wkn − µnn)2] = o(n),

which implies that
Wkn = µnn + oL1(n).

Moreover, by the Cauchy–Schwarz inequality we have

E[|W 2
kn

− µ2
nn

2|] = E[|Wkn + µnn||Wkn − µnn|]
≤

√
E[(Wkn + µnn)2] E[(Wkn − µnn)2].

Obviously, Wkn + µnn ≤ n + e−2S1n + o(n) = O(n). We employ (11) to bound
√

E[(Wkn − µnn)2]
by o(n). Subsequently, we obtain

E[|W 2
kn

− µ2
nn

2|] = o(n2),

which, according to our definition, is the second statement of the lemma.
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Proof of Theorem 1 in the linear phase. In Lemma 3 the conditional Lindeberg condition
has been verified throughout the linear phase. It remains to verify the conditional variance
condition.

Recall the expressions for Vn (cf. (6)). In this phase the asymptotic equivalents in Lemma 4
apply only in the linear phase. However, before the linear phase the obvious bound n on Wj−1
is sufficient for our purpose. A precise execution of this line to extract the asymptotics is given
in Appendix A, where it is shown that Vn

p−→ 1. The 1-conditional variance condition has been
verified in the linear phase.

According to the martingale central limit theorem

kn∑
j=1

∇M̃j

ρ
kn
n

√
var[Wkn ]

= Mkn − M0

ρ
kn
n

√
var[Wkn ]

d−→ N (0, 1).

Subsequently, we write

ρ
kn
n Wkn − (ρ

kn+1
n − ρn)/(ρn − 1) − W0(n)

ρ
kn
n

√
var[Wkn ]

d−→ N (0, 1).

This completes the proof.

6.3. The superlinear phase

Suppose that the gas diffusion continued for a long period of time. As seen from the behavior
of the average, the initial conditions are attenuated through the linear phase and the fixed average
component 1

2n becomes more pronounced and eventually dominates in the superlinear phase.
Many of the principles of the proof for the linear phase apply within the superlinear phase, so
we will be brief in presenting an adjustment of these proofs. For instance, via the asymptotic
equivalents of the mean and variance in the superlinear phase, we can mimic the proof of
Theorem 2, and obtain a similar result. Namely, when n = o(kn), we have

Wkn

n

p−→ 1

2
.

Also, in view of the mean and variance asymptotics we can replicate the result of Lemma 4.
We only need to replace µn by 1

2 , and the proof goes through verbatim to obtain

Wkn = 1
2n + oL1(n)

and
W 2

kn
= 1

4n2 + oL1(n
2).

Proof of Theorem 1 in the superlinear phase. In Lemma 3 the conditional Lindeberg con-
dition has been verified throughout the superlinear phase. The 1-conditional variance condition
is checked in Appendix B.

According to the martingale central limit theorem

ρ
kn
n Wkn − (ρ

kn+1
n − ρn)/(ρn − 1) − W0(n)

ρ
kn
n

√
var[Wkn ]

d−→ N (0, 1).

This completes the proof.
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Appendix A. Verification of the conditional variance in the linear phase

To asymptotically handle the sums in the conditional Lindeberg condition (going over the
range of indices 1 to kn = λnn), let us break them up at some point near the beginning of the
linear phase. Choose a small positive ε < S1 and break up the sums in Vn into sums going
from 1 to �εn� − 1, and sums starting at �εn� and ending at kn. Applying the asymptotics of
Lemma 4, we write (7) in the form

Vn = 1

ρ
2kn
n (vnn + o(n))

×
(

− 4

n2

�εn�−1∑
j=1

ρ
2j
n W 2

j−1 + 4

n

�εn�−1∑
j=1

ρ
2j
n Wj−1

− 4

n2

kn∑
j=�εn�

ρ
2j
n

(((
α − 1

2

)
e−2j/n+o(1) + 1

2

)2

n2 + oL1(n
2)

)

+ 4

nρ
2kn
n

kn∑
j=�εn�

ρ
2j
n

(((
α − 1

2

)
e−2j/n+o(1) + 1

2

)
n + oL1(n)

))

= 1

1 + o(1)
(Cn + C′

n + Dn + Hn),

where

Cn := − 4

n3vne4λn

�εn�−1∑
j=1

ρ
2j
n W 2

j−1,

C′
n := 4

n2vne4λn

�εn�−1∑
j=1

ρ
2j
n Wj−1,

Dn := − 4

n3vne4λn

kn∑
j=�εn�

ρ
2j
n

(((
α − 1

2

)
e−2j/n+o(1) + 1

2

)2

n2 + oL1(n
2)

)
,

and

Hn := 4

n2vne4λn

kn∑
j=�εn�

ρ
2j
n

(((
α − 1

2

)
e−2j/n+o(1) + 1

2

)
n + oL1(n)

)
.

For large n, we have

|Cn| ≤ 4

n3vne4λn

�εn�−1∑
j=1

ρ
2j
n n2 ≤ 4

nvne4λn

�εn�∑
j=1

2e4S2 = O(ε) as ε → 0.

Likewise, we have

|C′
n| = O(ε) as ε → 0.
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The formula for Dn reduces to

Dn = − 4

nvne4λn

kn∑
j=�εn�

ρ
2j
n

(((
α − 1

2

)
e−2j/n+o(1) + 1

2

)2

+ oL1(1)

)

= − 4

nvne4λn

kn∑
j=�εn�

ρ
2j
n

((
α − 1

2

)2

e−4j/n +
(

α − 1

2

)
e−2j/n + 1

4
+ oL1(1)

)

= − 4

nvne4λn

((
α − 1

2

)2( kn∑
j=0

ρ
2j
n e−4j/n −

�εn�−1∑
j=0

ρ
2j
n e−4j/n

)

+
(

α − 1

2

)( kn∑
j=0

ρ
2j
n e−2j/n −

�εn�−1∑
j=0

ρ
2j
n e−2j/n

)

+ 1

4

( kn∑
j=0

ρ
2j
n −

�εn�−1∑
j=0

ρ
2j
n

)
+ oL1(1)

kn∑
j=�εn�

ρ
2j
n

)
.

This calculation involves several sums of the form

bn−1∑
j=0

ρ
2j
n e−γj/n = (n/(n − 2))2bne−γ bn/n − 1

(n/(n − 2))2e−γ /n − 1
,

with bn = βnn + rn, and the remainder function rn is o(n). Using the asymptotic relation

(
n

n − 2

)2βnn

= e4βn + 4βne4βn

n
+ O

(
1

n2

)
,

and the standard local expansion

ec/n = 1 + c

n
+ c2

2n2 + O

(
1

n3

)
,

we obtain

bn−1∑
j=0

ρ
2j
n e−γj/n

= ((e4βn + 4βne4βn/n + O(1/n2))(n/(n − 2))2rne−(γβnn+γ rn)/n − 1)

((4 − γ )n + (γ 2/2 − 4) + O(1/n))
(n − 2)2

= e(4−γ )βn(1 + 4βn/n + O(1/n2))e2rn(2/n+O(1/n2))e−γ rn/n − 1

((4 − γ )n + (γ 2/2 − 4) + O(1/n))
(n − 2)2

= e(4−γ )βn(1 + 4βn/n + O(1/n2))(1 + O(rn/n)) − 1

((4 − γ )n + (γ 2/2 − 4) + O(1/n))
(n − 2)2

=
⎧⎨
⎩

e(4−γ )βn − 1

4 − γ
n + o(n) if γ = 4,

βnn otherwise.
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Applying these formulae with γ = 4, 2, 0, we have

Dn = − 1

vne4λn

(
4

(
α − 1

2

)2

λn + 2

(
α − 1

2

)
(e2λn − 1) + 1

4
(e4λn − 1)

)

+ O(ε) + o(1) + oL1(1).

Similarly, we have

Hn = 1

vne4λn

(
2

(
α − 1

2

)
(e2λn − 1) + 1

2
(e4λn − 1)

)
+ O(ε) + o(1) + oL1(1).

Consequently, we have

Vn = 1

1 + o(1)
(O(ε) + 1 + o(1) + oL1(1)).

Taking the limit, as ε → 0, we obtain

lim
ε→0

Vn = Vn = 1

1 + o(1)
(1 + o(1) + oL1(1)).

Now, let n → ∞ to obtain
Vn

p−→ 1.

Appendix B. Verification of the conditional variance in the superlinear phase

For the sum in the conditional variance condition, we apply the bound Wj−1 ≤ n until
the superlinear phase. More precisely, to asymptotically handle the sums in the conditional
Lindeberg condition (going over the range of indices 1 to kn), we break up the sums in Vn into
sums going from 1 to k′

n − 1, which is any superlinear function of order less than kn (giving
ignorable contribution), and sums starting at k′

n and ending at kn (most of the contribution
comes near kn). We can take k′

n = �kn/ ln(kn/n)�. Then

Vn = 1

ρ
2kn
n var[Wkn ]

×
(

− 4

n2

k′
n−1∑
j=1

ρ
2j
n W 2

j−1 + 4

n

k′
n−1∑
j=1

ρ
2j
n Wj−1 − 4

n2

kn∑
j=k′

n

ρ
2j
n

(
n2

4
+ oL1(n

2)

)

+ 4

n

kn∑
j=k′

n

ρ
2j
n

(
n

2
+ oL1(n)

))

= 1

1 + o(1)
(C̃n + D̃n + H̃n),

where

C̃n := − 16

n3ρ
2kn
n

k′
n−1∑
j=1

ρ
2j
n W 2

j−1 + 16

n2ρ
2kn
n

k′
n−1∑
j=1

ρ
2j
n Wj−1,

D̃n := − 16

n3ρ
2kn
n

kn∑
j=�εn�

ρ
2j
n

(
n2

4
+ oL1(n

2)

)
,
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and

H̃n := 16

n2ρ
2kn
n

kn∑
j=k′

n

ρ
2j
n

(
n

2
+ oL1(n)

)
.

We have

|C̃n| ≤ 32

nρ
2kn
n

k′
n−1∑
j=1

ρ
2j
n = O(ρ

2k′
n−2kn

n ).

We also have

D̃n + H̃n = 4

nρ
2kn
n

(
ρ

2kn+2
n − ρ

k′
n

n

ρ2
n − 1

)
(1 + oL1(1)) = 1 + oL1(1).

Putting the terms together we see that

Vn
p−→ 1.
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