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Abstract. The general problem of the statistics of the primordial curvature perturbation field
in cosmology is reviewed. The search for non-Gaussian signatures in cosmological perturbations,
originated from inflation in the early Universe is discussed both from the theoretical point of
view and in connection with constraints coming from recent observations and future prospects
for observing/constraining them.
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1. Introduction
A very relevant fraction of the datasets used to obtain cosmological parameters and

to understand the overall cosmological scenario relies on cosmological random fields,
like the matter density fluctuation field, the gravitational potential field, the galaxy
number density fluctuation field and their peculiar velocity field. These random fields are
considered to be mutually connected either because of some common origin or owing to
some dynamical mechanism.

In most theoretical treatments these fields are considered to be well described by
Gaussian random fields prior to the action of gravity, that tends to create mode-coupling,
owing to its intrinsically non-linear character. Of course, we see phase coherence (i.e.
deviation from Gaussianity) in the sky, even on very large scales. A simple – and by many
respects attractive – idea is that all the non-Gaussianity we observe is of gravitational
origin and that perturbations (e.g. in the matter density field or in the so-called peculiar
gravitational potential) were primordially Gaussian.

Historically, the first determination of the galaxy 3-point correlation function, i.e. the
first evidence for a non-Gaussian signal in the galaxy distribution, was obtained in the late
seventies, when Groth and Peebles (Groth & Peebles 1977) analysed the high-resolution
Shane-Wirtanen catalog of galaxies and fitted the spatial three-point function ζ (indi-
rectly obtained from angular correlations, thanks to the Limber equation) by the so-called
hierarchical model: ζ(1, 2, 3) = Q (ξ(1, 2) + ξ(1, 3) + ξ(2.3)), where ξ(i, j) indicates the
spatial two-point function at separation |ri − rj | and Q is a phenomenological constant
that they determined to be Q = 1.29 ± 0.21.

The expectation was (and still is) that such a hierarchical formula arises due to the
non-linear gravitational action. At that time, however, there also existed some radically
alternative ideas on the origin of the large-scale structure of the Universe, which made
of use of strongly non-Gaussian initial conditions for clustering: the so-called explosion
scenario and various scenarios based upon the idea that cosmic defects (strings, textures)
could have triggered structure formation in the Universe. Numerical N-body simulations
of Large-Scale Structure (LSS), assuming some simple non-Gaussian models for the initial
conditions were also performed (Moscardini et al. 1991; Weinberg & Cole 1992). Simple
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ideas were also proposed to study non-Gaussianity in Cosmic Microwave Background
(CMB) temperature anisotropies (Coles & Barrow 1987).

Independently on the specific reasons which led to abandon these alternative ideas, we
can say that the incredible improvement on the amount and quality of data on galaxy clus-
tering and CMB temperature anisotropies (which had not been yet observed at that time)
implied that the “rule of the game” on non-Gaussianity has completely changed! Nowa-
days we restrict ourselves to consider only slight variations on the Gaussian paradigm.
Primordial fluctuations are assumed to be either exactly Gaussian or very mildly non-
Gaussian, as described in the next section.

The plan of the paper is as follows. In Section 2 Ithe early-Universe model that is
used to describe the mildly non-Gaussian random field considered in the cosmological
framework will be introduced. Section 3 deals with CMB constraints on primordial non-
Gaussianity. Section 4 briefly describes how LSS constrains primordial non-Gaussianity.
Section 5 provides some general conclusions.

2. Origin of perturbations and primordial non-Gaussianity
It has now become standard practice to parametrise primordial non-Gaussianity by

means of a Taylor expansion in powers of a Gaussian zero-mean field ϕ. One writes
(Gangui et al. 1994; Wang & Kamionkowski 2000; Komatsu & Spergel 2001)

Φ(x) = ϕ(x) + fNL �
(
ϕ(x)2 − 〈ϕ2〉

)
+ gNL �

(
ϕ(x)3 − 〈ϕ2〉ϕ(x)

)
+ . . . . (2.1)

Here the potential Φ is defined in terms of the “comoving curvature perturbation” ζ
on super-horizon scales by Φ ≡ (3/5)ζ. In matter domination, on super-horizon scales, Φ
is equivalent to Bardeen’s gauge-invariant gravitational potential (Bardeen 1980), and I
adopt this notation for historical consistency. The non-linearity parameters fNL and gNL
set the amplitude of quadratic and cubic non-Gaussianity are constants in the simplest
case (dubbed local non-Gaussianity) or may depend on space themselves for more general
shapes. In all generality the symbol � denotes a convolution which reduces to a product
in the local case (see e.g. Bartolo et al. 2004). Notice that, owing to the smallness of the
gravitational potential itself (and hence of the Gaussian field ϕ) whose r.m.s. is smaller
than 10−5 , our Taylor expansion makes sense even for relatively large values of fNL and
even larger values of gNL. In other words the percent of quadratic non-Gaussianity in the
model is fNLΦrms (and gNLΦ2

rms for cubic non-Gaussianity).
Besides having the great advantage of simplicity, the model above is actually well-

motivated in the frame of inflationary models for the early Universe (see e.g. Bartolo
et al. 2004, Chen 2010 for a review), which indeed predict non-Gaussianity of this type.
The shapes of non-Gaussianity are fully described by their impact on the bispectrum
(we restrict ourselves to quadratic non-Gaussianity, for simplicity; the case of cubic NG
follows very similar lines, making use of the trispectrum). which is defined as

〈Φ(�k1)Φ(�k2)Φ(�k3)〉 = (2π)3δ(3)(�k1 + �k2 + �k3)BΦ(k1 , k2 , k3), (2.2)

The bispectrum BΦ(k1 , k2 , k3) measures the correlation among 3 perturbation modes.
Assuming translational and rotational invariance, it depends only on the magnitudes of
the three wave-vectors. In general, the bispectrum can be written as

BΦ(k1 , k2 , k3) = fNLF (k1 , k2 , k3) . (2.3)

The bispectrum is measured by sampling triangles in Fourier space. The dependence of
the function F (k1 , k2 , k3) on the type of triangle (i.e., the configuration) formed by the
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three wave-vectors describes the shape (and the scale-dependence) of the bispectrum,
which encodes a lot of physical information. Different non-Gaussianity shapes are linked
to distinctive physical mechanisms that can generate such non-Gaussian fingerprints in
the early Universe. Notice that, according to the latter notation, we treat fNL as a
constant and ascribe the shape dependence to the function F (k1 , k2 , k3). Let us provide
here the most important shapes. We have

Blocal
Φ (k1 , k2 , k3) = 2f local

NL

[
PΦ(k1)PΦ(k2) + PΦ(k1)PΦ(k3)

+ PΦ(k2)PΦ(k3)
]

= 2A2f local
NL

[
1

k4−n s
1 k4−n s

2
+ cycl.

]
, (2.4)

for the local case, havine parametrised the Φ power-spectrum as PΦ(k) = Akn s−4 , with
A is a constant amplitude and ns is the spectral index of scalar perturbations.

”Equilateral” non-Gaussianity is described via

Bequil
Φ (k1 , k2 , k3) = 6A2f equil

NL

×
{
− 1

k4−n s
1 k4−n s

2
− 1

k4−n s
2 k4−n s

3
− 1

k4−n s
3 k4−n s

1
− 2

(k1k2k3)2(4−n s )/3

+

[
1

k
(4−n s )/3
1 k

2(4−n s )/3
2 k4−n s

3

+ (5 permutations)

]}
, (2.5)

”Orthogonal” non-Gaussianity can be described by the template

Bortho
Φ (k1 , k2 , k3) = 6A2f ortho

NL

×
{
− 3

k4−n s
1 k4−n s

2
− 3

k4−n s
2 k4−n s

3
− 3

k4−n s
3 k4−n s

1
− 8

(k1k2k3)2(4−n s )/3

+

[
3

k
(4−n s )/3
1 k

2(4−n s )/3
2 k4−n s

3

+ (5 perm.)

]}
. (2.6)

Other bispectrum shapes are of course allowed. We refer to ... for a general discussion
of this important problem, as well as to the general discussion of trispeectrum shapes.

3. Cosmic Microwave Background constraints on primordial
non-Gaussianity

As described above, quadratic inflationary non-Gaussianity in Bardeen’s gravitational
potential can be characterised by the dimensionless non-linearity parameter fNL, for any
given non-Gaussianity shape. The Planck collaboration (see Planck Collaboration 2013a,
for general overview) estimated fNL for various non-Gaussianity shapes – including the
three fundamental ones, local, equilateral, and orthogonal – predicted by different classes
of inflationary models, using nominal mission CMB temperature maps.

Results for these three fundamental shapes are f local
NL = 2.7 ± 5.8, f equil

NL = −42 ± 75,
f ortho

NL = −25±39 (Planck Collaboration 2013b). These results were obtained using a suite
of optimal bispectrum estimators. The reported values are obtained after marginalising
over the bispectrum contribution of diffuse point-sources – assumed to be Poissonian
– and subtracting the bias due to the secondary bispectrum arising from the coupling
of the Integrated Sachs-Wolfe (ISW) effect and the weak gravitational lensing of CMB
photons.
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The Planck collaboration (Planck Collaboration 2013b) also obtained constraints on
key, primordial, non-Gaussian models and provided a survey of scale-dependent features
and resonance models of inflation.

It is worth mentioning here that the Planck collaboration will soon release results based
on full mission CMB temperature data plus CMB polarisation. The analysis of such
an extended dataset is expected to improve accuracy in constraining the non-linearity
parameter fNL by a factor ∼ 30%.

Let me now very synthetically describe the way the analysis of CMB data – to the goal
of searching for primordial non-Gaussiani signals described by Eq. (2.1) – is performed.
The CMB temperature field can be characterised using the multipoles of a spherical
harmonic decomposition of the CMB temperature map

ΔT

T
(xO , n̂) =

∑
	m

aT
	m (xO )Y m

	 (n̂) , (3.1)

where Y m
	 are spherical harmonics and xO is the observer’s position. At linear order, the

relation between the primordial perturbation field and the CMB multipoles reads

a	m (xO ) = 4π(−i)	

∫
d3k

(2π)3 ek·xO Φ(k)Y m
	 (k̂)Δ	(k) , (3.2)

where Φ is our primordial (Bardeen’s) gravitational potential and Δ	 the linear CMB
radiation temperature transfer function and, with our any loss of generality, we can set
the observer’s position in the origin xO = 0.

The CMB angular bispectrum is defined as

Bm 1 m 2 m 3
	1 	2 	3

≡ 〈a	1 m 1 a	2 m 2 a	3 m 3 〉 . (3.3)

If the CMB sky is rotationally invariant the angular bispectrum can be factorised as

〈a	1 m 1 a	2 m 2 a	3 m 3 〉 = G	1 	2 	3
m 1 m 2 m 3

b	1 	2 	3 , (3.4)

where b	1 	2 	3 is the so-called reduced bispectrum, and G	1 	2 	3
m 1 m 2 m 3

is the Gaunt integral,
defined as the integral over the solid angle of the product of three spherical harmonics.

G	1 	2 	3
m 1 m 2 m 3

≡
∫

Y	1 m 1 (n̂)Y	2 m 2 (n̂)Y	3 m 3 (n̂) d2 n̂ . (3.5)

The Gaunt integral, which can also be written in terms of Wigner 3j-symbols, enforces
rotational symmetry, and allows us to restrict attention to a tetrahedral domain of mul-
tipole triplets {	1 , 	2 , 	3}, satisfying both a triangle condition and a limit given by some
maximum resolution 	max of the given experiment.

To the goal of extracting the non-linearity parameter fNL from the data, for different
primordial shapes, one fits a theoretical CMB bispectrum b	1 	2 	3 to the observed 3-point
function (see e.g. Liguori et al. 2010, for a general introduction). Theoretical predictions
for CMB angular bispectra arising from inflation models can be obtained by applying
the relation between a	m and Φ to the primordial bispectra of the previous section.

A very general expression for the optimal estimator of non-linearity parameter has
been recently derived by (Verde et al. 2013). Such an expression is based on a second-
order Edgeworth expansion for the multivariate PDF of the harmonic coefficients a	m ; it
reads

P(a|fNL) =
(det C−1)1/2

(2π)n/2 exp

[
−1

2

∑
		′mm ′

a∗m
	 (C−1)	m	′m ′am ′

	′ )

]
×
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1 +

1
6

∑
all 	i m j

〈am 1
	1

am 2
	2

am 3
	3

〉
[
(C−1a)m 1

	1
(C−1a)m 2

	2
(C−1a)m 3

	3
− 3(C−1)m 1 m 2

l1 ,l2
(C−1a)m 3

l3

]
+

1
24

∑
all 	m

〈am 1
	1

am 2
	2

am 3
	3

am 4
	4

〉
[
3(C−1)m 1 m 2

	1 	2
(C−1)m 3 m 4

	3 ,	4

−6(C−1)m 1 m 2
	1 ,	2

(C−1a)m 3
	3

(C−1a)m 4
	4

+ (C−1a)m 1
	1

(C−1a)m 2
	2

(C−1a)m 3
	3

(C−1a)m 4
	4

]
+

1
72

∑
l1 ,...,l6

〈am 1
	1

am 2
	2

am 3
	3

〉〈am 4
	4

am 5
	5

am 6
	6

〉 ×

[
(C−1a)m 1

	1
(C−1a)m 2

	2
(C−1a)m 3

	3
(C−1a)m 4

	4
(C−1a)m 5

	5
(C−1a)m 6

	6

−15(C−1)m 1 m 2
	1 	2

(
(C−1a)m 3

	3
(C−1a)m 4

	4
(C−1a)m 5

	5
(C−1a)m 6

	6
+ (C−1)m 3 m 4

	3 	4
(C−1)m 5 m 6

	5 	6

)
+45(C−1)m 1 m 2

	1 	2
(C−1)m 3 m 4

	3 	4
(C−1a)m 5

	5
(C−1a)m 6

	6

]}
, (3.6)

where C−1 is the inverse of the covariance matrix C	1 m 1 ,	2 m 2 ≡ 〈a	1 m 1 a	2 m 2 〉,.
In the second line of the latter equation one can recognise the standard formulation for

approximating the PDF (Babich 2005) which is the starting point to derive the standard
fNL estimator (see e.g. Komatsu 2010). applied by the Planck collaboration (see Planck
Collaboration 2013b, for details), which can be written as (Babich 2005; Creminelli et al.
2006; Yadav et al. 2008; Senatore, Smith & Zaldarriaga 2010)

f̂NL =
1
N

∑
	i ,m i

G 	1 	2 	3
m 1 m 2 m 3

bth
	1 	2 	3

× (3.7)

[
C−1

	1 m 1 ,	′1 m ′
1
a	′1 m ′

1
C−1

	2 m 2 ,	′2 m ′
2
a	′2 m ′

2
C−1

	3 m 3 ,	′3 m ′
3
a	′3 m ′

3
− 3C−1

	1 m 1 ,	2 m 2
C−1

	3 m 3 ,	′3 m ′
3
a	′3 m ′

3

]
,

where N is a suitable normalisation chosen to produce unit response to bth
	1 	2 	3

.

It should be mentioned here that such a standard estimator can be expressed in
different ways, depending on how one expands the reduced bispectrum: KSW (Ko-
matsu, Spergel & Wandelt 2005), modal (Fergusson, Liguori & Shellard 2010, 2012),
binned (Bucher, Van Tent & Carvalho 2010), skew-C	 (Munshi & Heavens 2010), needlet
(Donzelli et al. 2012) and wavelet (Curto, Mafrtinez-Gonzalez & Barreiro 2009) bis-
pectrum algorithms represent different representations of the same underlying optimal
bispectrum estimator.

In the following lines of Eq. (3.6) one can recognise Eq. (32), but more specifically
Eq. (158), of (Regan et al. 2010) as well as “new” terms that arise from expanding the
exponential to second order in fNL, thus involving a term proportional to the bispectrum
squared. Interpreting this as a likelihood for fNL enables one to combine optimally bis-
pectrum and trispectrum measurements and obtain both best-fit value and confidence
intervals for the non-Gaussianity parameter.

This expression is valid for general non-Gaussianity shapes, as long as deviations from
Gaussianity are small. This expression is strictly speaking second order in fNL. Within a
given non-Gaussian model where the bispectrum and trispectrum amplitudes are specified
by a single parameter, this PDF can be used to constrain such a parameter. Moreover,
in a model-independent approach one could use the above PDF to find joint constraints
on the amplitude of the bispectrum and trispectrum for comparison with theory.

https://doi.org/10.1017/S1743921314011119 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921314011119


Statistics of cosmological fields 121

4. Large-Scale Structure constraints on primordial non-Gaussianity
The search for signatures of primordial non-Gaussianity in LSS data is made more

complex by the very fact that non-linear gravity adds up its own non-Gaussian imprints
on LSS observables during the evolution of perturbations. A second complication arises
from the unavoidably “biased” which connects the galaxy to the matter distributions.
Such a relation (called “galaxy bias” by cosmologists) may well involve non-linear, hence
non-Gaussian terms (e.g. Verde et al. 2000). On the other hand, the LSS datasets has the
obvious statistical advantage of being intrinsically 3-dimensional, contrary to the CMB
pattern, which is restricted to a sphere around the observer; this fact can be in principle
exploited to improve our determination of e.g. fNL (e.g. Sefusatti & Komatsu 2007).

This field, however, experienced a remarkable boost (see e.g. Komatsu et al. 2009;
Liguori et al. 2010; Verde 2010, for recent reviews on the field) when theoretical cosmol-
ogists started to work-out the consequences of a well-known fact: cosmic objects prefer-
entially form on matter density fluctuation peaks. See also Licia Verde’s contribution to
these proceedings.

This idea can be traced back to the Press & Schechter model (Press & Schechter 1974),
as well as to the Kaiser model for the formation of galaxy clusters (Kaiser 1984), later
extended to the galaxies themselves (Bardeen et al. 1986).

Needless to say, peaks represent rare events in the underlying dark matter density field:
such peaks, while having the apparent disadvantage of being rare they have the obvious
advantage of probing the tails of the underlying PDF, hence being more sensitive to
deviations from Gaussianity of the underlying matter distribution. If we make the rough
approximation that all existing galaxies reside In suitably high peaks of the dark matter
density field, there is no loss of information arising from considering these “rare” events
(unless one can somehow observe the underlying gravitational potential field itself, as is
the case of gravitational lensing).

Moreover, on suitably large scales, one should expect that matter density peaks are
less affected by non-linear gravitational evolution than the underlying (smoothed) matter
density field, hence preserving a better memory of their initial conditions, including their
primordial statistical distribution.

It is this very fact which makes the analysis of galaxy clustering a potential gold mine
from the point of view of the search for primordial non-Gaussian signatures. The effects of
primordial non-Gaussianity on the clustering of peaks was studied in the eighties (Grin-
stein & Wise 1986; Matarrese, Lucchin & Bonometto 1986; Lucchin & Matarrese 1987;
Lucchin, Matarrese & Vittorio 1988), when very general relations were obtained. The
implementation of the physically motivated non-Gaussian model of Eq.(2.1) to analyse
the clustering of peaks led to some very interesting results for observables such as the
mass-function of cosmic objects (Matarrese, Verde & Jimenez 2000; Verde et al. 2001)
the linear bias of dark mater halos (Dalal et al. 2008; Matarrese & Verde 2008), as ap-
pearing in the galaxy power-spectrum, as well as some promising results on higher-order
correlations (Giannantonio & Porciani 2010; Baldauf, Seljak & Senatore 2011).

A very promising technique to constrain primordial non-Gaussianity is that of study-
ing the large-scale limit of galaxy biasing, which, in the presence of primordial non-
Gaussianity as described by the model of Eq. (2.1) gets an extra contribution, linearly
proportional to the parameter fNL. In the local case, one indeed gets a scale-dependent
term which, for small wave numbers k goes like ΔbNG ∝ fNLk−2 (Dalal et al. 2008;
Matarrese & Verde 2008).

Analyses of available LSS datasets have so far led to interesting and promising results
(see, e.g. Slosar et al. 2008; Xia et al. 2011, Giannantonio et al. 2014; Karagiannis, Shanks
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& Ross 2014; Leistedt, Peiris & Roth 2014). Owing to uncertainties on systematics affect-
ing galaxy surveys, the present limits on fNL are still uncertain. For instance, Leistedt
et al. (Leistedt, Peiris & Roth 2014), analysing the clustering of 800,000 photometric
quasars from the Sloan Digital Sky Survey in the redshift range 0.5 < z < 3.5 obtain
−49 < fNL < 31 (95% CL) for the local case.

One should mention here that future prospects in this field are extremely exciting.
Future galaxy surveys are indeed expected to provide constraints to values of local fNL
around unity (e.g. Carbone, Verde & Matarrese 2008), hence opening the window to the
possibility of probing signatures of General Relativity on LSS (Verde & Matarrese 2009;
Bruni, Hidalgo & Wands 2014).

5. Conclusions
The analysis of primordial non-Gaussianity in cosmology proved to be an extremely

relevant source of information on the physics of the early Universe. Indeed, contrary to
earlier naive expectations of the eighties, some level of non-Gaussianity is generically
present in all inflation models. The level of non-Gaussianity predicted in the simplest
(single-field, slow-roll, canonical kinetic term, “Bunch-Davies” initial state, General Rel-
ativity as the correct theory of gravitation up to the energy scale at which inflation took
place) inflation is below the minimum value detectable by Planck. However, even the
expected amount of non-Gaussianity of the simplest inflation models is at reach of future
galaxy surveys, if one accounts for general relativistic effects which held a contribution
to fNL of order unity.

Constraining/detecting non-Gaussianity is a powerful tool to discriminate among com-
peting scenarios for perturbation generation some of which imply large non-Gaussianity.
Thanks to the analysis of Planck data, non-Gaussianity has become the smoking-gun for
non-standard inflation models and a powerful tool to probe fundamental physics and the
highest energy scales.

Primordial non-Gaussianity appears in a surprisingly large variety of cosmic phenom-
ena, hence opening the possibility to constraining it by several complementary techniques.
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