BULL. AUSTRAL. MATH. SOC. VOL. 23 (1981), 361-365.

A CRITERION FOR THE HALL-CLOSURE OF FITTING CLASSES

OWEN J. BRISON

In a recent paper, Cusack has given a criterion, in terms of the Fitting class "join" operation, for a normal Fitting class to be closed under the taking of Hall *m*-subgroups. Here we show that Cusack's result can be slightly modified so as to give a criterion for *any* Fitting class of finite soluble groups to be closed under taking Hall *m*-subgroups.

1. Introduction

We will take our groups and classes of groups from the universe \underline{S} of all finite soluble groups. Let \underline{F} be a Fitting class and π be a set of primes, and let \underline{S}_{π} denote the class of all (finite, soluble) π -groups. Then \underline{F} is said to be *Hall* π -closed if whenever G belongs to \underline{F} , then the Hall π -subgroups of G also belong to \underline{F} . If we define $Y(\underline{S}_{\pi}, \underline{F})$ to be the class of all those groups whose Hall π -subgroups belong to \underline{F} , then it is clear that \underline{F} is Hall π -closed if and only if $\underline{F} \subseteq Y(\underline{S}_{\pi}, \underline{F})$. It is not hard to see that $Y(\underline{S}_{\pi}, \underline{F})$ is itself a Fitting class. If \underline{G} is a further Fitting class, then the *join*, $\underline{F} \vee \underline{G}$, is the smallest Fitting class to contain both \underline{F} and \underline{G} . In [6], Lockett associates with each Fitting class \underline{F} the "new" Fitting classes \underline{F}^{*} and \underline{F}_{*} , and shows that \underline{S}_{*} is the so-called smallest normal Fitting class introduced in [2]. Then the result of Cusack in which we are interested is the following.

Received 28 November 1980.

THEOREM [5, Theorem 5]. Let \underline{F} be a normal Fitting class and π be a set of primes. Then \underline{F} is Hall π -closed if and only if

 $\underline{F} = (\underline{S}_{\pi} \cap \underline{F}) \vee (\underline{Y}(\underline{S}_{\pi}, \underline{S}_{*}) \cap \underline{F}) .$

2. Preliminaries

If \underline{F} and \underline{G} are Fitting classes, then \underline{FG} denotes the class

$$\underline{FG} = (X \in \underline{S} : X/X_{\underline{F}} \in \underline{G}),$$

where $X_{\underline{F}}$ denotes the <u>F</u>-radical of X. It is well-known that <u>FG</u> is again a Fitting class.

We refer to [6] for the definitions of the classes \underline{F}^* and \underline{F}_* ; the following result, which is due to Lockett, collects the properties we need of these classes.

THEOREM 2.1 [6]. Let \underline{F} be a Fitting class and let $H \in \underline{F}$. Then (a) \underline{F}^* and \underline{F}_* are Fitting classes with $\underline{F}_* \subseteq \underline{F} \subseteq \underline{F}^*$; (b) $H' \leq H_{F_*}$;

(c) $(H \times H)_{\underline{F}} = H_{\underline{F}} \times H_{\underline{F}} \langle (h^{-1}, h) : h \in H \rangle$; and

(d) if \underline{G} is a further Fitting class then $(\underline{F} \cap \underline{G})^* = \underline{F}^* \cap \underline{G}^*$.

Recall that if G and H are groups and $N \leq G \times H$, then N is said to be *subdirect* in $G \times H$ if $N(1 \times H) = G \times H = (G \times 1)N$. It is clear that any subgroup of $H \times H$ which contains $\langle (h^{-1}, h) : h \in H \rangle$ is subdirect in $H \times H$. We need the following result of Cusack.

THEOREM 2.2 [4, Corollary 2.6]. Let \underline{U} and \underline{V} be Fitting classes such that $\underline{U} \subseteq \underline{V}^*$. Then a group G lies in $\underline{U} \vee \underline{V}$ if and only if there exists a group $H \in \underline{U}$ such that $(G \times H)_V$ is subdirect in $G \times H$.

The following facts about $Y(\underline{S}_{\Pi}, \underline{F})$ can be found in [3] (where $Y(\underline{S}_{\Pi}, \underline{F})$ is called $K_{\Pi}(\underline{F})$). Note that part (b) has also appeared in [1].

THEOREM 2.3. Let \underline{F} be a Fitting class, π be a set of primes and G be a group. Then

(a)
$$G_{Y(\underline{S}_{\Pi},\underline{F})} \cap H = H_{\underline{F}}$$
 for any Hall π -subgroup H of G ;
(b) $Y(\underline{S}_{\Pi}, \underline{F}^{*}) = (Y(\underline{S}_{\Pi}, \underline{F}))^{*}$;
(c) $Y(\underline{S}_{\Pi}, \underline{F}) = Y(\underline{S}_{\Pi}, \underline{F})\underline{S}_{\Pi}$, ; and
(d) if \underline{F} is Hall π -closed, then so also are \underline{F}^{*} and \underline{F}_{*} .

3. The theorem

We model our proof on Cusack's; in particular, the three results below correspond, in order, to Lemma 3, Theorem 4 and Theorem 5 of [5]. The main difference is that here we use Theorem 2.3.

LEMMA 3.1. Let π be a set of primes and \underline{W} be a Hall π -closed Fitting class. Suppose that $G \in \underline{WS}_{\pi}$ and that H is a Hall π -subgroup of G. Then G_WH_W is the $Y(\underline{S}_{\pi}, \underline{W})$ -radical of G.

Proof. Let \underline{Y} denote $Y(\underline{S}_{\Pi}, \underline{W})$; then $G_{\underline{W}} \leq G_{\underline{Y}}$ since \underline{W} is Hall π -closed. Now $G = G_{\underline{W}}^{H}$ by hypothesis, while $G_{\underline{Y}} \cap H = H_{\underline{W}}$ by Theorem 2.3 (a). Applying Dedekind's law, we find that $G_{\underline{Y}} = G_{\underline{W}}(H \cap G_{\underline{Y}}) = G_{\underline{W}}H_{\underline{W}}$, as claimed.

PROPOSITION 3.2. Let π be a set of primes and \underline{F} be a Hall π -closed Fitting class. Then $\underline{F} = (\underline{S}_{\pi} \cap \underline{F}) \vee (\underline{Y}(\underline{S}_{\pi}, \underline{F}_{*}) \cap \underline{F})$.

Proof. Let \underline{Y} denote $Y(\underline{S}_{\pi}, \underline{F}_{\star})$. It follows from Theorem 2.3 (c), (d) that $\underline{F}_{\star}\underline{S}_{\pi}, \underline{\subseteq} \underline{YS}_{\pi}, = \underline{Y}$, and so

$$(3.3) \qquad \underline{F}_{\underline{S}}, \cap \underline{F} \subseteq \underline{Y} \cap \underline{F}.$$

Now let $G \in \underline{\underline{F}}_{\underline{s}} \subseteq \underline{\underline{F}}_{\underline{s}} \cap \underline{\underline{F}}$, and let H be a Hall π -subgroup of G; then $H \in \underline{\underline{F}}$. Form $G \times H \in \underline{\underline{F}}$. Applying Lemma 3.1 with $\underline{\underline{W}} = \underline{\underline{F}}_{\underline{s}}$, and Theorem 2.1 (*a*) with $H \in \underline{\underline{F}}$, we find that

$$(G \times H)_{\underline{Y}} = (G \times H)_{\underline{F}*} (H \times H)_{\underline{F}*}$$
$$\geq (G_{\underline{F}*} + \underline{F}* \times H_{\underline{F}*}) (h^{-1}, h) : h \in H \rangle$$

But clearly $G = G_{\underline{F}} H$, and it follows that $(G \times H)_{\underline{Y}}$ is subdirect in

 $G \times H$. Since $G \times H \in \underline{F}$, this says that $(G \times H)_{\underline{Y} \cap \underline{F}}$ is subdirect in $G \times H$.

We now wish to apply Theorem 2.2 with $\underline{U} = \underline{S}_{\Pi} \cap \underline{F}$ and $\underline{V} = \underline{Y} \cap \underline{F}$. Note that by Theorem 2.1 (d) and Theorem 2.3 (b), (d), we have

 $\underline{\underline{V}}^* = \underline{\underline{Y}}^* \cap \underline{\underline{F}}^* = \underline{\underline{Y}}(\underline{\underline{S}}_{\pi}, \underline{\underline{F}}^*) \cap \underline{\underline{F}}^* = \underline{\underline{F}}^* \ .$

Thus $\underline{\underline{U}} \subseteq \underline{\underline{V}}^*$, and Theorem 2.2 implies that (3.4) $\underline{\underline{F}}_{\underline{x}}\underline{\underline{S}}_{\underline{x}} \cap \underline{\underline{F}} \subseteq (\underline{\underline{S}}_{\underline{x}} \cap \underline{\underline{F}}) \vee (\underline{\underline{Y}} \cap \underline{\underline{F}})$.

But it follows from Theorem 2.1 (b) that

$$\underline{F} = (\underline{F}_{\star}\underline{S}_{\pi} \cap \underline{F}) \vee (\underline{F}_{\star}\underline{S}_{\pi}, \cap \underline{F}) ,$$

and so, combining (3.3) and (3.4), we conclude that

 $\underline{F} = (\underline{S}_{\pi} \cap \underline{F}) \vee (\underline{Y} \cap \underline{F}) ,$

as required.

THEOREM 3.5. Let π be a set of primes and \underline{F} be a Fitting class. Then \underline{F} is Hall π -closed if and only if

$$\underline{F} = (\underline{S}_{\Pi} \cap \underline{F}) \vee (Y(\underline{S}_{\Pi}, \underline{F}_{\star}) \cap \underline{F}) .$$

Proof. The "only if" assertion has been proved above. Thus suppose that $\underline{F} = (\underline{S}_{\pi} \cap \underline{F}) \vee (\underline{Y}(\underline{S}_{\pi}, \underline{F}_{\star}) \cap \underline{F})$. Since $\underline{S}_{\pi} \cap \underline{F} \subseteq \underline{Y}(\underline{S}_{\pi}, \underline{F})$, and since the operator $\underline{Y}(\underline{S}_{\pi}, \mathbf{f})$ clearly respects inclusions, then Theorem 2.1 (a) implies that

$$\underline{\mathbf{F}} \subseteq \underline{\mathbf{Y}}(\underline{\mathbf{S}}_{\pi}, \underline{\mathbf{F}}) \vee (\underline{\mathbf{Y}}(\underline{\mathbf{S}}_{\pi}, \underline{\mathbf{F}}) \cap \underline{\mathbf{F}}) = \underline{\mathbf{Y}}(\underline{\mathbf{S}}_{\pi}, \underline{\mathbf{F}}) \ .$$

Thus \underline{F} is Hall π -closed, and the proof is complete.

References

- [1] James C. Beidleman und Peter Hauck, "Über Fittingklassen und die Lockett-Vermutung", Math. Z. 167 (1979), 161-167.
- [2] Dieter Blessenohl und Wolfgang Gaschütz, "Über normale Schunck- und Fittingklassen", Math. 2. 118 (1970), 1-8.

- [3] Owen J. Brison, "Hall operators for Fitting classes", Arch. Math. (Basel) 33 (1979), 1-9.
- [4] Elspeth Cusack, "The join of two Fitting classes", Math. 2. 167 (1979), 37-47.
- [5] Elspeth Cusack, "Normal Fitting classes and Hall subgroups", Bull. Austral. Math. Soc. 21 (1980), 229-236.
- [6] F. Peter Lockett, "The Fitting class <u>F</u>* ", Math. Z. 137 (1974), 131-136.

Secção de Matemática Pura, Faculdade de Ciências, Avenida 24 de Julho, 134, 3°, 1.300 Lisboa, Portugal.