A CRITERION FOR THE
HALL-CLOSURE OF FITTING CLASSES

Owen J. Brison

In a recent paper, Cusack has given a criterion, in terms of the Fitting class "join" operation, for a normal Fitting class to be closed under the taking of Hall π-subgroups. Here we show that Cusack's result can be slightly modified so as to give a criterion for any Fitting class of finite soluble groups to be closed under taking Hall π-subgroups.

1. Introduction

We will take our groups and classes of groups from the universe \mathcal{S} of all finite soluble groups. Let F be a Fitting class and π be a set of primes, and let \mathcal{S}_π denote the class of all (finite, soluble) π-groups. Then F is said to be Hall π-closed if whenever G belongs to F, then the Hall π-subgroups of G also belong to F. If we define $Y(\mathcal{S}_\pi, F)$ to be the class of all those groups whose Hall π-subgroups belong to F, then it is clear that F is Hall π-closed if and only if $F \subseteq Y(\mathcal{S}_\pi, F)$. It is not hard to see that $Y(\mathcal{S}_\pi, F)$ is itself a Fitting class. If G is a further Fitting class, then the join, $F \vee G$, is the smallest Fitting class to contain both F and G. In [6], Lockett associates with each Fitting class F the "new" Fitting classes F^* and $F^\#$, and shows that S_4 is the so-called smallest normal Fitting class introduced in [2]. Then the result of Cusack in which we are interested is the following.

Received 28 November 1980.
THEOREM [5, Theorem 5]. Let \mathcal{F} be a normal Fitting class and π be a set of primes. Then \mathcal{F} is Hall π-closed if and only if

$$
\mathcal{F} = (\mathcal{S}_\pi \cap \mathcal{F}) \cup (Y(\mathcal{S}_\pi, \mathcal{S}_\pi) \cap \mathcal{F})
$$

2. Preliminaries

If \mathcal{F} and \mathcal{G} are Fitting classes, then $\mathcal{F}\mathcal{G}$ denotes the class

$$
\mathcal{F}\mathcal{G} = \{ X \in \mathcal{F} : X/\mathcal{F}_X \in \mathcal{G} \},
$$

where \mathcal{F}_X denotes the \mathcal{F}-radical of X. It is well-known that $\mathcal{F}\mathcal{G}$ is again a Fitting class.

We refer to [6] for the definitions of the classes \mathcal{F}^* and \mathcal{F}_*; the following result, which is due to Lockett, collects the properties we need of these classes.

THEOREM 2.1 [6]. Let \mathcal{F} be a Fitting class and let $H \in \mathcal{F}$. Then

(a) \mathcal{F}^* and \mathcal{F}_* are Fitting classes with $\mathcal{F}_* \subseteq \mathcal{F} \subseteq \mathcal{F}^*$;

(b) $H' \leq H_{\mathcal{F}^*}$;

(c) $(H \times H)_{\mathcal{F}_*} = H_{\mathcal{F}_*} \times H_{\mathcal{F}_*} \langle (h^{-1}, h) : h \in H \rangle$; and

(d) if \mathcal{G} is a further Fitting class then $(\mathcal{F} \cap \mathcal{G})^* = \mathcal{F}^* \cap \mathcal{G}^*$.

Recall that if G and H are groups and $N \leq G \times H$, then N is said to be subdirect in $G \times H$ if $N(1 \times H) = G \times H = (G \times 1)N$. It is clear that any subgroup of $H \times H$ which contains $\langle (h^{-1}, h) : h \in H \rangle$ is subdirect in $H \times H$. We need the following result of Cusack.

THEOREM 2.2 [4, Corollary 2.6]. Let \mathcal{U} and \mathcal{V} be Fitting classes such that $\mathcal{U} \subseteq \mathcal{V}^*$. Then a group G lies in $\mathcal{U} \vee \mathcal{V}$ if and only if there exists a group $H \in \mathcal{U}$ such that $(G \times H)_{\mathcal{V}_H}$ is subdirect in $G \times H$.

The following facts about $Y(\mathcal{S}_\pi, \mathcal{F})$ can be found in [3] (where $Y(\mathcal{S}_\pi, \mathcal{F})$ is called $K_\pi(\mathcal{F})$). Note that part (b) has also appeared in [1].

THEOREM 2.3. Let \mathcal{F} be a Fitting class, π be a set of primes and G be a group. Then
Hall-closure of Fitting classes 363

(a) \(G_y(S_n, F) \cap H = H_{F_y} \) for any Hall \(\pi \)-subgroup \(H \) of \(G \);

(b) \(y(S_n, F^a) = (y(S_n, F))^a \);

(c) \(y(S_n, F) = y(S_n, F)S_{n'} \); and

(d) if \(F \) is Hall \(\pi \)-closed, then so also are \(F^a \) and \(F^a \).

3. The theorem

We model our proof on Cusack's; in particular, the three results below correspond, in order, to Lemma 3, Theorem 4 and Theorem 5 of [5]. The main difference is that here we use Theorem 2.3.

Lemma 3.1. Let \(\pi \) be a set of primes and \(F \) be a Hall \(\pi \)-closed Fitting class. Suppose that \(G \in WS_n \) and that \(H \) is a Hall \(\pi \)-subgroup of \(G \). Then \(G_{W_{n}, \pi} \) is the \(Y(S_n, W) \)-radical of \(G \).

Proof. Let \(Y \) denote \(Y(S_n, W) \); then \(G_{W_{n}, \pi} \leq G_{\pi} \) since \(W \) is Hall \(\pi \)-closed. Now \(G = G_{W_{n}, \pi} \) by hypothesis, while \(G_{\pi} \cap H = H_{W_{n}, \pi} \) by Theorem 2.3 (a). Applying Dedekind's law, we find that \(G_{\pi} = G_{W_{n}, \pi}(H \cap G_{\pi}) = G_{W_{n}, \pi}H_{W_{n}, \pi} \), as claimed.

Proposition 3.2. Let \(\pi \) be a set of primes and \(F \) be a Hall \(\pi \)-closed Fitting class. Then \(F = (S_n \cap F) \vee (y(S_n, F^a) \cap F) \).

Proof. Let \(Y \) denote \(Y(S_n, W) \). It follows from Theorem 2.3 (c), (d) that \(F_{S_n, n} \subseteq \overline{Y_{S_n}} = Y \), and so

\[(3.3) \quad F_{S_n, n} \setminus F \subseteq Y \setminus F.\]

Now let \(G \in F_{S_n, n} \cap F \), and let \(H \) be a Hall \(\pi \)-subgroup of \(G \); then \(H \in F \). Form \(G \times H \in F \). Applying Lemma 3.1 with \(W = F^a \), and Theorem 2.1 (a) with \(H \in F \), we find that

\[
(G \times H)_{F^a} = (G \times H)_{F^a}(H \times H)_{F^a} \\
\geq (G_{F^a}H_{F^a} \times H_{F^a})(h^{-1}, h) : h \in H).
\]

But clearly \(G = G_{F^a}H \), and it follows that \((G \times H)_{F^a} \) is subdirect in
364 Owen J. Brison

Since $G \times H \in \mathbb{F}$, this says that $(G \times H)_{Y \mathbb{F}}$ is subdirect in $G \times H$.

We now wish to apply Theorem 2.2 with $U = S_{\pi} \cap \mathbb{F}$ and $V = Y \cap \mathbb{F}$.

Note that by Theorem 2.1 (d) and Theorem 2.3 (b), (d), we have

$$Y^{*} = Y_{\mathbb{F}} = Y_{\mathbb{F}} \cap \mathbb{F}^{*} = \mathbb{F}^{*}.$$

Thus $U \subseteq V^{*}$, and Theorem 2.2 implies that

$$(3.4) \quad F_{\mathbb{F}} \cap \mathbb{F} \subseteq (S_{\pi} \cap \mathbb{F}) \cup (Y \cap \mathbb{F}).$$

But it follows from Theorem 2.1 (b) that

$$F = (F_{\mathbb{F}} \cap \mathbb{F}) \cup (F_{\mathbb{F}} \cap \mathbb{F}),$$

and so, combining (3.3) and (3.4), we conclude that

$$F = (S_{\pi} \cap \mathbb{F}) \cup (Y \cap \mathbb{F}),$$

as required.

THEOREM 3.5. Let π be a set of primes and \mathbb{F} be a Fitting class. Then \mathbb{F} is Hall π-closed if and only if

$$\mathbb{F} = (S_{\pi} \cap \mathbb{F}) \cup (Y(S_{\pi}, \mathbb{F}) \cap \mathbb{F}).$$

Proof. The "only if" assertion has been proved above. Thus suppose that $\mathbb{F} = (S_{\pi} \cap \mathbb{F}) \cup (Y(S_{\pi}, \mathbb{F}) \cap \mathbb{F})$. Since $S_{\pi} \cap \mathbb{F} \subseteq Y(S_{\pi}, \mathbb{F})$, and since the operator $Y(S_{\pi}, \mathbb{F})$ clearly respects inclusions, then Theorem 2.1 (a) implies that

$$\mathbb{F} \subseteq Y(S_{\pi}, \mathbb{F}) \cup (Y(S_{\pi}, \mathbb{F}) \cap \mathbb{F}) = Y(S_{\pi}, \mathbb{F}).$$

Thus \mathbb{F} is Hall π-closed, and the proof is complete.

References

Secção de Matemática Pura,
Faculdade de Ciências,
Avenida 24 de Julho, 134, 3º,
1.300 Lisboa,
Portugal.