Bull. Aust. Math. Soc. **83** (2011), 369–375 doi:10.1017/S0004972711002012

ON NONNILPOTENT SUBSETS IN GENERAL LINEAR GROUPS

AZIZOLLAH AZAD

(Received 13 January 2010)

Dedicated to Professor B. Neshvadian-Bakhsh on his retirement.

Abstract

Let *G* be a group. A subset *X* of *G* is said to be nonnilpotent if for any two distinct elements *x* and *y* in *X*, $\langle x, y \rangle$ is a nonnilpotent subgroup of *G*. If, for any other nonnilpotent subset *X'* in *G*, $|X| \ge |X'|$, then *X* is said to be a maximal nonnilpotent subset and the cardinality of this subset is denoted by $\omega(\mathcal{N}_G)$. Using nilpotent nilpotentizers we find a lower bound for the cardinality of a maximal nonnilpotent subset of a finite group and apply this to the general linear group GL(*n*, *q*). For all prime powers *q* we determine the cardinality of a maximal nonnilpotent subset of the projective special linear group PSL(2, *q*), and we characterize all nonabelian finite simple groups *G* with $\omega(\mathcal{N}_G) \le 57$.

2010 *Mathematics subject classification*: primary 20D60. *Keywords and phrases*: general linear group, nonnilpotent set.

1. Introduction and results

Let n > 0 be an integer. Given a class of groups \mathcal{X} , we say that a group G satisfies the condition (\mathcal{X}, n) whenever in every subset of G with n + 1 elements, there exist distinct elements x, y such that $\langle x, y \rangle$ is in \mathcal{X} . Let \mathcal{N} be the class of nilpotent groups.

In 1994, finite groups satisfying the condition (\mathcal{N}, n) were considered by Endimioni and in [4] he proves that every finite group *G* satisfying (\mathcal{N}, n) is nilpotent if $n \leq 3$ and is soluble if $n \leq 20$; furthermore, these bounds cannot be improved. Tomkinson [7] proves that if *G* is a finitely generated soluble group which satisfies the condition (\mathcal{N}, n) , then $|G/Z^*(G)| \leq n^{n^4}$, where $Z^*(G)$ is the hypercentre of *G*. Also, for a finite insoluble group *G*, it has been proved that *G* satisfies the condition $(\mathcal{N}, 21)$ if and only if $G/Z^*(G) \cong A_5$ [2, Theorem 1.2].

A subset X of a group G is said to be a *nonnilpotent subset* if for any two distinct elements x and y in X, $\langle x, y \rangle$ is a nonnilpotent subgroup of G. If, for any other nonnilpotent subset X' in G, $|X| \ge |X'|$, then X is said to be a maximal nonnilpotent subset and the cardinality of this set is denoted by $\omega(\mathcal{N}_G)$. For convenience, if G is a nilpotent group we define $\omega(\mathcal{N}_G) = 1$.

^{© 2011} Australian Mathematical Publishing Association Inc. 0004-9727/2011 \$16.00

It is clear that *G* satisfies the condition (\mathcal{N}, n) if and only if $\omega(\mathcal{N}_G) \leq n$. Also, $\omega(\mathcal{N}_G) = n$ if and only if *n* is the smallest number such that *G* satisfies the condition (\mathcal{N}, n) . (We call *n* the smallest number for which the finite group *G* satisfies the condition (\mathcal{N}, n) if *G* does not satisfy the condition $(\mathcal{N}, n-1)$.)

In this paper we introduce $\mathcal{N}n$ -groups and give some of their properties. Using nilpotent nilpotentizers and Sylow *p*-subgroups, we obtain a lower bound for maximal nonnilpotent subsets of *n*-dimensional general linear groups and we determine the cardinality of a maximal nonnilpotent subset of PSL(2, *q*) (see Theorems 4.1 and 4.4).

We know that PSL(2, 5) \cong A_5 , the alternating group of degree five. It is the least (with respect to the order) nonabelian simple group and $\omega(\mathcal{N}_{A_5}) = 21$. Also, the cardinality of the maximal nonnilpotent subset of PSL(2, 7), the second least order nonabelian simple group, is 57. Here we give a characterization of finite nonabelian simple groups with $\omega(\mathcal{N}_G) \leq 57$ (see Theorem 4.5).

2. Some properties of $\mathcal{N}n$ -groups

Let G be a group and a be an element of G. Define

$$\operatorname{nil}_G(a) = \{b \in G : \langle a, b \rangle \text{ is nilpotent} \}$$

and call it the *nilpotentizer* of *a* in *G*. Also, for a nonempty subset *X* of *G*, define the nilpotentizer of *X* in *G* to be $nil_G(X) = \bigcap_{x \in X} nil_G(x)$. In particular, the set

$$\operatorname{nil}(G) = \{x \in G : \langle x, y \rangle \text{ is nilpotent for all } y \in G\}$$

is called the *nilpotentizer* of G.

We know that for any group *G* and arbitrary *a* in *G*, the subset $\operatorname{nil}_G(a)$ is not necessarily a subgroup of *G*. For example, in the symmetric group S_4 , $|\operatorname{nil}_{S_4}((12)(34))| = 16$. We call a group *G* an *n*-group if $\operatorname{nil}_G(a)$ is a subgroup of *G* for every $a \in G$.

DEFINITION 2.1. A group *G* is said to be Nn-group if $\operatorname{nil}_G(a)$ is a nilpotent subgroup of *G*, where $a \in G \setminus \operatorname{nil}(G)$.

PROPOSITION 2.2. The following are equivalent.

- (i) G is an $\mathcal{N}n$ -group.
- (ii) If (a, b) is nilpotent, then $\operatorname{nil}_G(a) = \operatorname{nil}_G(b)$ whenever $a, b \in G \setminus \operatorname{nil}(G)$.
- (iii) If $\langle a, b \rangle$ and $\langle a, c \rangle$ are nilpotent subgroups of G, then $\langle b, c \rangle$ is nilpotent whenever $a \in G \setminus nil(G)$.
- (iv) If A and B are subgroups of G and $nil(G) < nil_G(A) \le nil_G(B) < G$, then $nil_G(A) = nil_G(B)$.

PROOF. (i) \Rightarrow (ii). Suppose that $a, b \in G \setminus \operatorname{nil}(G)$ and $\langle a, b \rangle$ is a nilpotent subgroup of G. Then $a \in \operatorname{nil}_G(b)$. Let $x \in \operatorname{nil}_G(b)$. Since $\operatorname{nil}_G(b)$ is a nilpotent group, $\langle a, x \rangle$ is nilpotent subgroup of $\operatorname{nil}_G(b)$ and so $x \in \operatorname{nil}_G(a)$. Thus $\operatorname{nil}_G(b) \subseteq \operatorname{nil}_G(a)$. Similarly, $\operatorname{nil}_G(a) \subseteq \operatorname{nil}_G(b)$.

(ii) \Rightarrow (iii). If *b* or *c* is an element of nil(*G*), then $\langle b, c \rangle$ is nilpotent. If neither *b* nor *c* is an element of nil(*G*), then, by (ii), nil(*a*) = nil(*b*) and nil(*b*) = nil(*c*). Thus nil(*b*) = nil(*c*) and so $\langle b, c \rangle$ is a nilpotent subgroup of *G*.

(iii) \Rightarrow (iv). Suppose $\operatorname{nil}_G(A) < \operatorname{nil}_G(A) \le \operatorname{nil}_G(B) < G$. Let $u \in A$, $v \in B \setminus \operatorname{nil}_G(A)$, $x \in \operatorname{nil}_G(A) \setminus \operatorname{nil}(G)$ and $y \in \operatorname{nil}_G(B) \setminus \operatorname{nil}_G(A)$. It follows that $\langle x, u \rangle$ and $\langle x, v \rangle$ are nilpotent subgroups. Hence, by (iii), $\langle u, v \rangle$ is nilpotent. Also, by assumption, $\langle y, v \rangle$ is nilpotent. Thus, by (iii), $\langle y, v \rangle$ is nilpotent. So $\langle u, y \rangle$ is a nilpotent. Consequently $y \in \operatorname{nil}_G(A)$, a contradiction.

(iv) \Rightarrow (i). Let $x \in G \setminus \operatorname{nil}_G(a)$, $y, z \in \operatorname{nil}_G(x)$ and $\langle y, z \rangle$ be nilpotent. Then $\operatorname{nil}(G) < \operatorname{nil}(\langle x, y \rangle) < \operatorname{nil}(x) < G$, a contradiction.

LEMMA 2.3. Let G be a finite group and N be a maximal nonnilpotent subset of G. Then $G = \bigcup_{x \in N} \operatorname{nil}_G(x)$,

PROOF. If $y \in G \setminus \bigcup_{x \in N} \operatorname{nil}_G(x)$, then for all $x \in N$, $\langle x, y \rangle$ is not nilpotent. Hence $N \cup \{y\}$ is a nonnilpotent subset of size |N| + 1, a contradiction.

3. Nonnilpotent subsets in finite groups

In this section we provide some conditions on a finite group G which extend every nonnilpotent subset to a maximal nonnilpotent subset. Also, by using Sylow p-subgroups, we give a nonnilpotent subset consisting of p-elements in arbitrary finite groups.

LEMMA 3.1. Let G be a finite group. Then:

- (i) for any subgroup H of G, $\omega(\mathcal{N}_H) \leq \omega(\mathcal{N}_G)$;
- (ii) for any normal subgroup N of G, $\omega(\mathcal{N}_{G/N}) \leq \omega(\mathcal{N}_G)$.

PROOF. (i) This is straightforward.

(ii) Let $\{a_1N, \ldots, a_kN\}$ be a nonnilpotent subset of G/N. Then, for any two distinct elements i, j in $\{1, 2, \ldots, k\}$, the subgroup

$$\langle a_i N, a_j N \rangle = \langle a_i, a_j \rangle N / N \cong \langle a_i, a_j \rangle / \langle a_i, a_j \rangle \cap N$$

is nonnilpotent. Thus $\{a_1, \ldots, a_k\}$ is a nonnilpotent subset of G.

LEMMA 3.2. Let G be a group and let the subgroups A_1, A_2, \ldots, A_n of G form a partition of G. If $nil_G(g) \le A_i$, for all $g \in A_i \setminus nil(G)$, then:

- (i) $\omega(\mathcal{N}_G) = \sum_{i=1}^n \omega(\mathcal{N}_{A_i});$
- (ii) if A_i is nilpotent for all $i \in \{1, ..., n\}$, then every nonnilpotent subset of G can be extended to a maximal nonnilpotent subset of G.

PROOF. (i) Let $N_i = \{a_{i1}, \ldots, a_{it_i}\}$ be a nonnilpotent subset of A_i . We show that $N = \bigcup_{i=1}^{n} N_i$ is a nonnilpotent subset of *G*. Suppose that there exist *a* and *b* in *N* such that $\langle a, b \rangle$ is a nilpotent group. So there exist $i \neq j$ such that $a \in A_i$ and $b \in A_j$.

A. Azad

Thus $a \in \operatorname{nil}_G(b) \le A_j$ and so $a \in A_i \cap A_j$, which is not possible. It follows that $\sum_{i=1}^n \omega(\mathcal{N}_{A_i}) \le \omega(\mathcal{N}_G)$. Now let X be a maximal nonnilpotent subset of G. Hence

$$X = X \cap G = X \cap \left(\bigcup_{i=1}^{n} A_i\right) = \bigcup_{i=1}^{n} (X \cap A_i).$$

Since $X \cap A_i$, for i = 1, ..., n, is a nonnilpotent subset of A_i , $|X \cap A_i| \le \omega(\mathcal{N}_{A_i})$. So $|X| = \omega(\mathcal{N}_G) \le \sum_{i=1}^n \omega(\mathcal{N}_{A_i})$. Therefore $\omega(\mathcal{N}_G) = \sum_{i=1}^n \omega(\mathcal{N}_{A_i})$.

(ii) Let $a_i \in A_i \setminus \operatorname{nil}(G)$, for $i \in \{1, \ldots, n\}$. Since A_i is nilpotent, $\langle a_i, x \rangle$ is a nilpotent group, for all $x \in A_i$. It follows that $A_i \subseteq \operatorname{nil}_G(a_i)$, for $i \in \{1, \ldots, n\}$. Hence, by assumption, $A_i = \operatorname{nil}_G(a_i)$, for $i \in \{1, \ldots, n\}$. Thus $\operatorname{nil}(a_i)$ is a nilpotent subgroup, for $i \in \{1, \ldots, n\}$ and $G = \bigcup_{i=1}^n \operatorname{nil}(a_i)$. Let X be a nonnilpotent subset of G. Then, for each $1 \le i \le n$, $|X \cap \operatorname{nil}_G(a_i)| \le 1$, as each $\operatorname{nil}_G(a_i)$ is nilpotent. Let $I = \{i \in \{1, \ldots, n\} : X \cap \operatorname{nil}_G(a_i) = \emptyset\}$. For each $k \in I$, choose an element $b_k \in \operatorname{nil}_G(a_k) \setminus \operatorname{nil}(G)$. Thus $X \cup \{b_k : k \in I\}$ is the maximal nonnilpotent subset of G. \Box

We denote the number of Sylow *p*-subgroups of a finite group G by $\nu_p(G)$.

LEMMA 3.3. Suppose that G is a finite group and p is a prime number dividing |G|. Let $P = P_1, P_2, \ldots, P_{\nu_p(G)}$ be the Sylow p-subgroups of G. If $P \setminus \bigcup_{i=2}^{\nu_p(G)} P_i \neq \emptyset$, then $\nu_p(G) \le \omega(\mathcal{N}_G)$.

PROOF. Let $a \in P \setminus \bigcup_{g \in G, P^g \neq P} P^g$. So *P* is the unique Sylow *p*-subgroup containing *a*. For each *i*, choose $x_i \in G$ such that $P^{x_i} = P_i$. Then it is easy to see that $a^{x_i} \in P_i \setminus (P_1 \cup \cdots \cup P_{i-1} \cup P_{i+1} \cup \cdots \cup P_{v_p(G)})$. Set $X = \{a^{x_1}, a^{x_2}, \ldots, a^{x_{v_p(G)}}\}$. We show that *X* is a nonnilpotent subset. Suppose to the contrary that $\langle a_i^x, a_j^y \rangle$ is a nilpotent subgroup of *G*. It follows that $\langle a_i^x, a_j^y \rangle$ is *p*-subgroup, and so there exists a Sylow *p*-subgroup P^{x_i} of *G* such that $\langle a_i^x, a_j^y \rangle \subseteq P^t$. This is a contradiction. Thus $v_p(G) \leq \omega(\mathcal{N}_G)$.

As a consequence of Lemma 3.3, we have the following result that was proved by Endimioni in [4, Lemma 3, p. 1246].

COROLLARY 3.4. Let G be a finite group with $\omega(\mathcal{N}_G) = n$ and p be a prime number dividing |G|. If P_1, \ldots, P_k are all Sylow p-subgroups of G such that $P_i \cap P_j = 1$, where $1 \le i \ne j \le k$, then $v_p(G) \le n$.

4. Main results

Now, using the above results, we are ready to state the main results of this paper. For the convenience of the discussion, we define

$$\psi(q^n) = (q^n - 1)(q^{n-1} - 1) \cdots (q - 1)/(q - 1)^n.$$

THEOREM 4.1. We have $\omega(\mathcal{N}_{\mathrm{GL}(n,q)}) \geq \psi(q^n)$.

Nonnilpotent sets

PROOF. Let P be the subgroup of GL(n, q) of upper triangular matrices. By [5, Satz 7.1], P is a Sylow p-subgroup of GL(n, q). Set

	1	1	0		0)	
	0	1	1		0	
A =	÷	÷	÷	÷	:	
	0	0 0		1	1	
	0	0		0	1)	

We show that $A \in P \setminus \bigcup P^K$, for all $K \in GL(n, q) \setminus N_{GL(n,q)}(P)$. Suppose that there exists $K \in GL(n, q) \setminus N_{GL(n,q)}(P)$ such that $A \in P^K$. So KA = CK, where $C \in P$. Let

$$C = \begin{pmatrix} 1 & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & 1 & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{n-1n} \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

B = A - I and D = C - I, where *I* is the identity matrix. It follows that K(I + B) = (I + D)K and so KB = DK. An easy computation shows that $K \in N_{GL(n,q)}(P)$, which is impossible. We know that $\nu_p(GL(n, q)) = (q^n - 1)(q^{n-1} - 1) \cdots (q - 1)/((q - 1)^n)$, so by Lemma 3.3, the proof is complete.

LEMMA 4.2. We have $\omega(\mathcal{N}_{\mathrm{SL}(n,q)}) \geq \psi(q^n)$.

PROOF. The Sylow *p*-subgroup *P* in the proof of Theorem 4.1 is also a Sylow *p*-subgroup of SL(n, p), and we know that

$$\nu_p(\mathrm{SL}(n,q) = (q^n - 1)(q^{n-1} - 1) \cdots (q^2 - 1)/(q - 1)^{n-1}.$$

So an argument similar to that of Theorem 4.1 completes the proof.

As an application of Corollary 3.4, we have the following lemma.

LEMMA 4.3. Let p be a prime number. Then $\omega(\mathcal{N}_{S_p}) \ge (p-2)!$, where S_p is the symmetric group of degree p.

PROOF. We know that $v_p(S_p) = (p-2)!$ and the size of Sylow *p*-subgroups of S_p is *p*. Clearly, if *P* and *Q* are Sylow *p*-subgroups of S_p , then $P \cap Q = 1$. Now by Corollary 3.4 the proof is complete.

THEOREM 4.4. Let q be a p-power (p prime). Then

$$\omega(\mathcal{N}_{\text{PSL}(2,q)}) = \begin{cases} 4 & \text{if } q = 2\\ 10 & \text{if } q = 3\\ 21 & \text{if } q = 4, 5\\ q^2 + q + 1 & \text{if } q > 5. \end{cases}$$

A. Azad

PROOF. Suppose that G = PSL(2, q), where q is a power of a prime p and k = gcd(q - 1, 2). By [5, Satz 6.14, p. 183], PSL(2, 2) $\cong S_3$, PSL(2, 3) $\cong A_4$ and PSL(2, 4) $\cong PSL(2, 5) \cong A_5$. So, by [4, Proposition 1, Lemma 3], in the case q = 2, 3, 4, 5 the computation of $\omega(\mathcal{N}_G)$ is straightforward. So we may assume that q > 5. By [5, Satz 8.2, p. 191; Satz 8.2, 8.3, p. 192; Satz 8.5, p. 193]:

- (1) a Sylow *p*-subgroup *P* of *G* is an elementary abelian group of order *q* and the number of Sylow *p*-subgroups of *G* is q + 1;
- (2) *G* contains a cyclic subgroup *A* of order t = (q 1)/k;
- (3) G contains a cyclic subgroup B of order s = (q + 1)/k;
- (4) the set $\{P^x, A^x, B^x : x \in G\}$ is a partition of *G*.

Let

$$X = \{p_i, a_j, b_k : p_i \in P^{x_i}, a_j \in A^{x_j}, b_k \in B^{x_k} \text{ and } x_l \in G, p_i^2, a_j^2, b_k^2 \neq 1\}.$$

Now, suppose that $a \in X$. It follows, by [1, Proposition 3.21], that $C_G(a) = P^x$ or A^x or B^x for some $x \in G$. Hence $C_G(a)$ is abelian. Suppose that $a, b \in X$ such that $\langle a, b \rangle$ is a nilpotent group. Since $Z(\langle a, b \rangle) \subseteq C_G(a) \cap C_G(b)$, we have $Z(\langle a, b \rangle) = 1$. This is a contradiction. It follows from Lemma 3.2 that X is a maximal nonnilpotent subset of G and

$$\omega(\mathcal{N}_G) = \sum_{x \in G} \omega(\mathcal{N}_{P^x}) + \sum_{x \in G} \omega(\mathcal{N}_{A^x}) + \sum_{x \in G} \omega(\mathcal{N}_{B^x}).$$

Therefore

$$\omega(\mathcal{N}_G) = (q+1) + \frac{(q+1)(q-1)q/k}{2(q-1)/k} + \frac{(q+1)(q-1)q/k}{2(q+1)/k} = q^2 + q + 1.$$

This concludes the proof.

THEOREM 4.5. Let G be a finite nonabelian simple group. Then $\omega(\mathcal{N}_G) \leq 57$ if and only if $G \cong A_5$ or $G \cong PSL(2, 7)$.

PROOF. Since PSL(2, 5) and PSL(2, 7) are nonabelian simple groups and since $\omega(\mathcal{N}_{PSL(2,5)}) = 21$ and $\omega(\mathcal{N}_{PGL(2,7)}) \le \omega(\mathcal{N}_{GL(2,7)}) = 57$, it suffices to show that these are the only nonabelian simple groups with $\omega(\mathcal{N}_G) \le 57$. Suppose that the result is false, and let *G* be a minimal counterexample. Thus every proper nonabelian simple section of *G* is isomorphic to A_5 or PSL(2, 7). By [3, Proposition 2], *G* is isomorphic to one of the following groups:

- PSL $(2, 2^m), m = 4 \text{ or } m \text{ is a prime};$
- PSL(2, 3^{*p*}), PSL(2, 5^{*p*}), PSL(2, 7^{*p*}), *p* a prime;
- PSL(2, p), p a prime greater than 11;
- PSL(3, 3), PSL(3, 5), PSL(3, 7);
- PSU(3, 3), PSU(3, 4), PSU(3, 7) (the projective special unitary groups of degree three over the finite fields of orders 3, 4 and 7, respectively); or
- $Sz(2^p)$, p an odd prime.

Nonnilpotent sets

For every prime number p and every integer $n \ge 2$, by Theorem 4.4, $\omega(\mathcal{N}_{PSL(2,p^n)}) = p^{2n} + p^n + 1$. Thus since $PSL(2, 2^2) \cong A_5$, among the projective special linear groups, we only need to investigate PSL(3, 3), PSL(3, 5) and PSL(3, 7).

Now PSL(3, 3), PSL(3, 5) and PSL(3, 7) have orders $2^4 \times 3^3 \times 13$, $2^5 \times 3 \times 5^3 \times 31$ and $2^5 \times 3 \times 7^3 \times 19$, respectively. So by Corollary 3.4, $\nu_{13}(PSL(3, 3)) = 144 > 57$, $\nu_{31}(PSL(3, 5)) = 4000 > 57$ and $\nu_{19}(PSL(3, 7)) = 32\,928 > 57$.

Also, PSU(3, 3), PSU(3, 4) and PSU(3, 7) have orders $2^5 \times 3^3 \times 7$, $2^6 \times 3 \times 5^2 \times 13$ and $2^7 \times 3 \times 7^3 \times 43$, respectively. So by Corollary 3.4, $\nu_7(\text{PSU}(3, 3)) = 288 > 57$, $\nu_{13}(\text{PSU}(3, 4)) = 1600 > 57$ and $\nu_{43}(\text{PSU}(3, 7)) = 1 + 43k$, for some k > 0. Since 44 does not divide |PSU(3, 7)| we have $\nu_{13}(\text{PSU}(3, 7)) > 56$.

Finally, $Sz(2^m)$ has order $2^{2m}(2^m - 1)(2^{2m} + 1)$ and $v_2(Sz(2^m)) = 2^{2m} + 1 \ge 65$ (see [6, Ch. XI, Theorem 3.10]). This completes the proof.

Acknowledgement

The author is grateful to the referee for his/her helpful comments.

References

- A. Abdollahi, A. Akbari and H. R. Maimani, 'Noncommuting graph of a group', J. Algbera 298 (2006), 468–492.
- [2] A. Abdollahi and A. Mohammadi Hassanabadi, 'Finite groups with a certain number of elements pairwise generating a nonnilpotent subgroup', *Bull. Iranian Math. Soc.* 30(2) (2004), 1–20, 99–100.
- [3] R. D. Blyth and D. J. S. Robinson, 'Semisimple groups with the rewriting property Q_5 ', *Comm.* Algebra **23**(6) (1995), 2171–2180.
- [4] G. Endimioni, 'Groups finis satisfaisant la condition (N, n)', C. R. Acad. Sci. Paris Ser. I 319 (1994), 1245–1247.
- [5] B. Huppert, Endliche Gruppen. I (Springer, Berlin, 1967).
- [6] B. Huppert and N. Blackburn, Finite Groups. III (Springer, Berlin, 1982).
- [7] M. J. Tomkinson, 'Hypercentre-by-finite groups', Publ. Math. Debrecen 40 (1992), 313–321.

AZIZOLLAH AZAD, Department of Mathematics, Faculty of Sciences, Arak University, Arak 38156-8-8349, Iran e-mail: a-azad@araku.ac.ir