ON NONNILPOTENT SUBSETS IN GENERAL LINEAR GROUPS

AZIZOLLAH AZAD

(Received 13 January 2010)
Dedicated to Professor B. Neshvadian-Bakhsh on his retirement.

Abstract

Let G be a group. A subset X of G is said to be nonnilpotent if for any two distinct elements x and y in $X,\langle x, y\rangle$ is a nonnilpotent subgroup of G. If, for any other nonnilpotent subset X^{\prime} in $G,|X| \geq\left|X^{\prime}\right|$, then X is said to be a maximal nonnilpotent subset and the cardinality of this subset is denoted by $\omega\left(\mathcal{N}_{G}\right)$. Using nilpotent nilpotentizers we find a lower bound for the cardinality of a maximal nonnilpotent subset of a finite group and apply this to the general linear group $\operatorname{GL}(n, q)$. For all prime powers q we determine the cardinality of a maximal nonnilpotent subset of the projective special linear group $\operatorname{PSL}(2, q)$, and we characterize all nonabelian finite simple groups G with $\omega\left(\mathcal{N}_{G}\right) \leq 57$.

2010 Mathematics subject classification: primary 20D60.
Keywords and phrases: general linear group, nonnilpotent set.

1. Introduction and results

Let $n>0$ be an integer. Given a class of groups \mathcal{X}, we say that a group G satisfies the condition (\mathcal{X}, n) whenever in every subset of G with $n+1$ elements, there exist distinct elements x, y such that $\langle x, y\rangle$ is in \mathcal{X}. Let \mathcal{N} be the class of nilpotent groups.

In 1994, finite groups satisfying the condition (\mathcal{N}, n) were considered by Endimioni and in [4] he proves that every finite group G satisfying (\mathcal{N}, n) is nilpotent if $n \leq 3$ and is soluble if $n \leq 20$; furthermore, these bounds cannot be improved. Tomkinson [7] proves that if G is a finitely generated soluble group which satisfies the condition (\mathcal{N}, n), then $\left|G / Z^{*}(G)\right| \leq n^{n^{4}}$, where $Z^{*}(G)$ is the hypercentre of G. Also, for a finite insoluble group G, it has been proved that G satisfies the condition $(\mathcal{N}, 21)$ if and only if $G / Z^{*}(G) \cong A_{5}$ [2, Theorem 1.2].

A subset X of a group G is said to be a nonnilpotent subset if for any two distinct elements x and y in $X,\langle x, y\rangle$ is a nonnilpotent subgroup of G. If, for any other nonnilpotent subset X^{\prime} in $G,|X| \geq\left|X^{\prime}\right|$, then X is said to be a maximal nonnilpotent subset and the cardinality of this set is denoted by $\omega\left(\mathcal{N}_{G}\right)$. For convenience, if G is a nilpotent group we define $\omega\left(\mathcal{N}_{G}\right)=1$.

[^0]It is clear that G satisfies the condition (\mathcal{N}, n) if and only if $\omega\left(\mathcal{N}_{G}\right) \leq n$. Also, $\omega\left(\mathcal{N}_{G}\right)=n$ if and only if n is the smallest number such that G satisfies the condition (\mathcal{N}, n). (We call n the smallest number for which the finite group G satisfies the condition (\mathcal{N}, n) if G does not satisfy the condition $(\mathcal{N}, n-1)$.)

In this paper we introduce $\mathcal{N} n$-groups and give some of their properties. Using nilpotent nilpotentizers and Sylow p-subgroups, we obtain a lower bound for maximal nonnilpotent subsets of n-dimensional general linear groups and we determine the cardinality of a maximal nonnilpotent subset of PSL $(2, q)$ (see Theorems 4.1 and 4.4).

We know that $\operatorname{PSL}(2,5) \cong A_{5}$, the alternating group of degree five. It is the least (with respect to the order) nonabelian simple group and $\omega\left(\mathcal{N}_{A_{5}}\right)=21$. Also, the cardinality of the maximal nonnilpotent subset of $\operatorname{PSL}(2,7)$, the second least order nonabelian simple group, is 57 . Here we give a characterization of finite nonabelian simple groups with $\omega\left(\mathcal{N}_{G}\right) \leq 57$ (see Theorem 4.5).

2. Some properties of $\boldsymbol{\mathcal { N }}$ n-groups

Let G be a group and a be an element of G. Define

$$
\operatorname{nil}_{G}(a)=\{b \in G:\langle a, b\rangle \text { is nilpotent }\}
$$

and call it the nilpotentizer of a in G. Also, for a nonempty subset X of G, define the nilpotentizer of X in G to be $\operatorname{nil}_{G}(X)=\bigcap_{x \in X} \operatorname{nil}_{G}(x)$. In particular, the set

$$
\operatorname{nil}(G)=\{x \in G:\langle x, y\rangle \text { is nilpotent for all } y \in G\}
$$

is called the nilpotentizer of G.
We know that for any group G and arbitrary a in G, the subset nil ${ }_{G}(a)$ is not necessarily a subgroup of G. For example, in the symmetric group S_{4}, $\left|\operatorname{nil}_{S_{4}}((12)(34))\right|=16$. We call a group G an n-group if $\operatorname{nil}_{G}(a)$ is a subgroup of G for every $a \in G$.

DEFINITION 2.1. A group G is said to be $\mathcal{N} n$-group if $\operatorname{nil}_{G}(a)$ is a nilpotent subgroup of G, where $a \in G \backslash \operatorname{nil}(G)$.

Proposition 2.2. The following are equivalent.

(i) G is an \mathcal{N} n-group.
(ii) If $\langle a, b\rangle$ is nilpotent, then $\operatorname{nil}_{G}(a)=\operatorname{nil}_{G}(b)$ whenever $a, b \in G \backslash \operatorname{nil}(G)$.
(iii) If $\langle a, b\rangle$ and $\langle a, c\rangle$ are nilpotent subgroups of G, then $\langle b, c\rangle$ is nilpotent whenever $a \in G \backslash \operatorname{nil}(G)$.
(iv) If A and B are subgroups of G and $\operatorname{nil}(G)<\operatorname{nil}_{G}(A) \leq \operatorname{nil}_{G}(B)<G$, then $\operatorname{nil}_{G}(A)=\operatorname{nil}_{G}(B)$.
Proof. (i) \Rightarrow (ii). Suppose that $a, b \in G \backslash \operatorname{nil}(G)$ and $\langle a, b\rangle$ is a nilpotent subgroup of G. Then $a \in \operatorname{nil}_{G}(b)$. Let $x \in \operatorname{nil}_{G}(b)$. Since $\operatorname{nil}_{G}(b)$ is a nilpotent group, $\langle a, x\rangle$ is nilpotent subgroup of $\operatorname{nil}_{G}(b)$ and so $x \in \operatorname{nil}_{G}(a)$. Thus nil ${ }_{G}(b) \subseteq \operatorname{nil}_{G}(a)$. Similarly, $\operatorname{nil}_{G}(a) \subseteq \operatorname{nil}_{G}(b)$.
(ii) \Rightarrow (iii). If b or c is an element of $\operatorname{nil}(G)$, then $\langle b, c\rangle$ is nilpotent. If neither b nor c is an element of $\operatorname{nil}(G)$, then, by $(\operatorname{ii}), \operatorname{nil}(a)=\operatorname{nil}(b)$ and $\operatorname{nil}(b)=\operatorname{nil}(c)$. Thus $\operatorname{nil}(b)=\operatorname{nil}(c)$ and so $\langle b, c\rangle$ is a nilpotent subgroup of G.
(iii) \Rightarrow (iv). \quad Suppose $\operatorname{nil}(G)<\operatorname{nil}_{G}(A) \leq \operatorname{nil}_{G}(B)<G . \quad$ Let $u \in A, \quad v \in$ $B \backslash \operatorname{nil}_{G}(A), x \in \operatorname{nil}_{G}(A) \backslash \operatorname{nil}(G)$ and $y \in \operatorname{nil}_{G}(B) \backslash \operatorname{nil}_{G}(A)$. It follows that $\langle x, u\rangle$ and $\langle x, v\rangle$ are nilpotent subgroups. Hence, by (iii), $\langle u, v\rangle$ is nilpotent. Also, by assumption, $\langle y, v\rangle$ is nilpotent. Thus, by (iii), $\langle y, v\rangle$ is nilpotent. So $\langle u, y\rangle$ is a nilpotent. Consequently $y \in \operatorname{nil}_{G}(A)$, a contradiction.
(iv) \Rightarrow (i). Let $x \in G \backslash \operatorname{nil}_{G}(a), y, z \in \operatorname{nil}_{G}(x)$ and $\langle y, z\rangle$ be nilpotent. Then $\operatorname{nil}(G)<\operatorname{nil}(\langle x, y\rangle)<\operatorname{nil}(x)<G$, a contradiction.

Lemma 2.3. Let G be a finite group and N be a maximal nonnilpotent subset of G. Then $G=\bigcup_{x \in N} \operatorname{nil}_{G}(x)$,
Proof. If $y \in G \backslash \bigcup_{x \in N} \operatorname{nil}_{G}(x)$, then for all $x \in N,\langle x, y\rangle$ is not nilpotent. Hence $N \cup\{y\}$ is a nonnilpotent subset of size $|N|+1$, a contradiction.

3. Nonnilpotent subsets in finite groups

In this section we provide some conditions on a finite group G which extend every nonnilpotent subset to a maximal nonnilpotent subset. Also, by using Sylow p-subgroups, we give a nonnilpotent subset consisting of p-elements in arbitrary finite groups.
Lemma 3.1. Let G be a finite group. Then:
(i) for any subgroup H of $G, \omega\left(\mathcal{N}_{H}\right) \leq \omega\left(\mathcal{N}_{G}\right)$;
(ii) for any normal subgroup N of $G, \omega\left(\mathcal{N}_{G / N}\right) \leq \omega\left(\mathcal{N}_{G}\right)$.

Proof. (i) This is straightforward.
(ii) Let $\left\{a_{1} N, \ldots, a_{k} N\right\}$ be a nonnilpotent subset of G / N. Then, for any two distinct elements i, j in $\{1,2, \ldots, k\}$, the subgroup

$$
\left\langle a_{i} N, a_{j} N\right\rangle=\left\langle a_{i}, a_{j}\right\rangle N / N \cong\left\langle a_{i}, a_{j}\right\rangle /\left\langle a_{i}, a_{j}\right\rangle \cap N
$$

is nonnilpotent. Thus $\left\{a_{1}, \ldots, a_{k}\right\}$ is a nonnilpotent subset of G.
Lemma 3.2. Let G be a group and let the subgroups $A_{1}, A_{2}, \ldots, A_{n}$ of G form a partition of G. If nil $_{G}(g) \leq A_{i}$, for all $g \in A_{i} \backslash \operatorname{nil}(G)$, then:
(i) $\omega\left(\mathcal{N}_{G}\right)=\sum_{i=1}^{n} \omega\left(\mathcal{N}_{A_{i}}\right)$;
(ii) if A_{i} is nilpotent for all $i \in\{1, \ldots, n\}$, then every nonnilpotent subset of G can be extended to a maximal nonnilpotent subset of G.

Proof. (i) Let $N_{i}=\left\{a_{i 1}, \ldots, a_{i t_{i}}\right\}$ be a nonnilpotent subset of A_{i}. We show that $N=\bigcup_{i=1}^{n} N_{i}$ is a nonnilpotent subset of G. Suppose that there exist a and b in N such that $\langle a, b\rangle$ is a nilpotent group. So there exist $i \neq j$ such that $a \in A_{i}$ and $b \in A_{j}$.

Thus $a \in \operatorname{nil}_{G}(b) \leq A_{j}$ and so $a \in A_{i} \cap A_{j}$, which is not possible. It follows that $\sum_{i=1}^{n} \omega\left(\mathcal{N}_{A_{i}}\right) \leq \omega\left(\mathcal{N}_{G}\right)$. Now let X be a maximal nonnilpotent subset of G. Hence

$$
X=X \cap G=X \cap\left(\bigcup_{i=1}^{n} A_{i}\right)=\bigcup_{i=1}^{n}\left(X \cap A_{i}\right)
$$

Since $X \cap A_{i}$, for $i=1, \ldots, n$, is a nonnilpotent subset of $A_{i},\left|X \cap A_{i}\right| \leq \omega\left(\mathcal{N}_{A_{i}}\right)$. So $|X|=\omega\left(\mathcal{N}_{G}\right) \leq \sum_{i=1}^{n} \omega\left(\mathcal{N}_{A_{i}}\right)$. Therefore $\omega\left(\mathcal{N}_{G}\right)=\sum_{i=1}^{n} \omega\left(\mathcal{N}_{A_{i}}\right)$.
(ii) Let $a_{i} \in A_{i} \backslash \operatorname{nil}(G)$, for $i \in\{1, \ldots, n\}$. Since A_{i} is nilpotent, $\left\langle a_{i}, x\right\rangle$ is a nilpotent group, for all $x \in A_{i}$. It follows that $A_{i} \subseteq \operatorname{nil}_{G}\left(a_{i}\right)$, for $i \in\{1, \ldots, n\}$. Hence, by assumption, $A_{i}=\operatorname{nil}_{G}\left(a_{i}\right)$, for $i \in\{1, \ldots, n\}$. Thus nil $\left(a_{i}\right)$ is a nilpotent subgroup, for $i \in\{1, \ldots, n\}$ and $G=\bigcup_{i=1}^{n} \operatorname{nil}\left(a_{i}\right)$. Let X be a nonnilpotent subset of G. Then, for each $1 \leq i \leq n,\left|X \cap \operatorname{nil}_{G}\left(a_{i}\right)\right| \leq 1$, as each $\operatorname{nil}_{G}\left(a_{i}\right)$ is nilpotent. Let $I=\left\{i \in\{1, \ldots, n\}: X \cap \operatorname{nil}_{G}\left(a_{i}\right)=\emptyset\right\}$. For each $k \in I$, choose an element $b_{k} \in$ $\operatorname{nil}_{G}\left(a_{k}\right) \backslash \operatorname{nil}(G)$. Thus $X \cup\left\{b_{k}: k \in I\right\}$ is the maximal nonnilpotent subset of G.

We denote the number of Sylow p-subgroups of a finite group G by $\nu_{p}(G)$.
Lemma 3.3. Suppose that G is a finite group and p is a prime number dividing $|G|$. Let $P=P_{1}, P_{2}, \ldots, P_{\nu_{p}(G)}$ be the Sylow p-subgroups of G. If $P \backslash \bigcup_{i=2}^{\nu_{p}(G)} P_{i} \neq \emptyset$, then $v_{p}(G) \leq \omega\left(\mathcal{N}_{G}\right)$.
Proof. Let $a \in P \backslash \bigcup_{g \in G, P g \neq P} P^{g}$. So P is the unique Sylow p-subgroup containing a. For each i, choose $x_{i} \in G$ such that $P^{x_{i}}=P_{i}$. Then it is easy to see that $a^{x_{i}} \in P_{i} \backslash\left(P_{1} \cup \cdots \cup P_{i-1} \cup P_{i+1} \cup \cdots \cup P_{\nu_{p}(G)}\right)$. Set $X=\left\{a^{x_{1}}, a^{x_{2}}, \ldots\right.$, $\left.a^{x_{v p}(G)}\right\}$. We show that X is a nonnilpotent subset. Suppose to the contrary that $\left\langle a_{i}^{x}, a_{j}^{y}\right\rangle$ is a nilpotent subgroup of G. It follows that $\left\langle a_{i}^{x}, a_{j}^{y}\right\rangle$ is p-subgroup, and so there exists a Sylow p-subgroup $P^{x_{i}}$ of G such that $\left\langle a_{i}^{x}, a_{j}^{y}\right\rangle \subseteq P^{t}$. This is a contradiction. Thus $v_{p}(G) \leq \omega\left(\mathcal{N}_{G}\right)$.

As a consequence of Lemma 3.3, we have the following result that was proved by Endimioni in [4, Lemma 3, p. 1246].
Corollary 3.4. Let G be a finite group with $\omega\left(\mathcal{N}_{G}\right)=n$ and p be a prime number dividing $|G|$. If P_{1}, \ldots, P_{k} are all Sylow p-subgroups of G such that $P_{i} \cap P_{j}=1$, where $1 \leq i \neq j \leq k$, then $v_{p}(G) \leq n$.

4. Main results

Now, using the above results, we are ready to state the main results of this paper. For the convenience of the discussion, we define

$$
\psi\left(q^{n}\right)=\left(q^{n}-1\right)\left(q^{n-1}-1\right) \cdots(q-1) /(q-1)^{n}
$$

THEOREM 4.1. We have $\omega\left(\mathcal{N}_{\mathrm{GL}(n, q)}\right) \geq \psi\left(q^{n}\right)$.

Proof. Let P be the subgroup of $\operatorname{GL}(n, q)$ of upper triangular matrices. By [5, Satz 7.1], P is a Sylow p-subgroup of $\operatorname{GL}(n, q)$. Set

$$
A=\left(\begin{array}{ccccc}
1 & 1 & 0 & \ldots & 0 \\
0 & 1 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 1 \\
0 & 0 & \ldots & 0 & 1
\end{array}\right)
$$

We show that $A \in P \backslash \bigcup P^{K}$, for all $K \in \mathrm{GL}(n, q) \backslash N_{\mathrm{GL}(n, q)}(P)$. Suppose that there exists $K \in \mathrm{GL}(n, q) \backslash N_{\mathrm{GL}(n, q)}(P)$ such that $A \in P^{K}$. So $K A=C K$, where $C \in P$. Let

$$
C=\left(\begin{array}{ccccc}
1 & a_{12} & a_{13} & \ldots & a_{1 n} \\
0 & 1 & a_{23} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & a_{n-1 n} \\
0 & 0 & 0 & \ldots & 1
\end{array}\right)
$$

$B=A-I$ and $D=C-I$, where I is the identity matrix. It follows that $K(I+B)=$ $(I+D) K$ and so $K B=D K$. An easy computation shows that $K \in N_{\mathrm{GL}(n, q)}(P)$, which is impossible. We know that $v_{p}(\operatorname{GL}(n, q))=\left(q^{n}-1\right)\left(q^{n-1}-1\right) \cdots(q-1) /$ $(q-1)^{n}$, so by Lemma 3.3, the proof is complete.

Lemma 4.2. We have $\omega\left(\mathcal{N}_{\mathrm{SL}(n, q)}\right) \geq \psi\left(q^{n}\right)$.
Proof. The Sylow p-subgroup P in the proof of Theorem 4.1 is also a Sylow p-subgroup of $\operatorname{SL}(n, p)$, and we know that

$$
v_{p}\left(\mathrm{SL}(n, q)=\left(q^{n}-1\right)\left(q^{n-1}-1\right) \cdots\left(q^{2}-1\right) /(q-1)^{n-1} .\right.
$$

So an argument similar to that of Theorem 4.1 completes the proof.
As an application of Corollary 3.4, we have the following lemma.
LEMMA 4.3. Let p be a prime number. Then $\omega\left(\mathcal{N}_{S_{p}}\right) \geq(p-2)$!, where S_{p} is the symmetric group of degree p.
Proof. We know that $v_{p}\left(S_{p}\right)=(p-2)$! and the size of Sylow p-subgroups of S_{p} is p. Clearly, if P and Q are Sylow p-subgroups of S_{p}, then $P \cap Q=1$. Now by Corollary 3.4 the proof is complete.

THEOREM 4.4. Let q be a p-power (p prime). Then

$$
\omega\left(\mathcal{N}_{\mathrm{PSL}(2, q)}\right)= \begin{cases}4 & \text { if } q=2 \\ 10 & \text { if } q=3 \\ 21 & \text { if } q=4,5 \\ q^{2}+q+1 & \text { if } q>5\end{cases}
$$

Proof. Suppose that $G=\operatorname{PSL}(2, q)$, where q is a power of a prime p and $k=$ $\operatorname{gcd}(q-1,2)$. By [5, Satz 6.14, p. 183], $\operatorname{PSL}(2,2) \cong S_{3}, \operatorname{PSL}(2,3) \cong A_{4}$ and $\operatorname{PSL}(2,4) \cong \operatorname{PSL}(2,5) \cong A_{5}$. So, by [4, Proposition 1, Lemma 3], in the case $q=2,3,4,5$ the computation of $\omega\left(\mathcal{N}_{G}\right)$ is straightforward. So we may assume that $q>5$. By [5, Satz 8.2, p. 191; Satz 8.2, 8.3, p. 192; Satz 8.5, p. 193]:
(1) a Sylow p-subgroup P of G is an elementary abelian group of order q and the number of Sylow p-subgroups of G is $q+1$;
(2) G contains a cyclic subgroup A of order $t=(q-1) / k$;
(3) G contains a cyclic subgroup B of order $s=(q+1) / k$;
(4) the set $\left\{P^{x}, A^{x}, B^{x}: x \in G\right\}$ is a partition of G.

Let

$$
X=\left\{p_{i}, a_{j}, b_{k}: p_{i} \in P^{x_{i}}, a_{j} \in A^{x_{j}}, b_{k} \in B^{x_{k}} \text { and } x_{l} \in G, p_{i}^{2}, a_{j}^{2}, b_{k}^{2} \neq 1\right\}
$$

Now, suppose that $a \in X$. It follows, by [1, Proposition 3.21], that $C_{G}(a)=P^{x}$ or A^{x} or B^{x} for some $x \in G$. Hence $C_{G}(a)$ is abelian. Suppose that $a, b \in X$ such that $\langle a, b\rangle$ is a nilpotent group. Since $Z(\langle a, b\rangle) \subseteq C_{G}(a) \cap C_{G}(b)$, we have $Z(\langle a, b\rangle)=1$. This is a contradiction. It follows from Lemma 3.2 that X is a maximal nonnilpotent subset of G and

$$
\omega\left(\mathcal{N}_{G}\right)=\sum_{x \in G} \omega\left(\mathcal{N}_{P^{x}}\right)+\sum_{x \in G} \omega\left(\mathcal{N}_{A^{x}}\right)+\sum_{x \in G} \omega\left(\mathcal{N}_{B^{x}}\right) .
$$

Therefore

$$
\omega\left(\mathcal{N}_{G}\right)=(q+1)+\frac{(q+1)(q-1) q / k}{2(q-1) / k}+\frac{(q+1)(q-1) q / k}{2(q+1) / k}=q^{2}+q+1
$$

This concludes the proof.
THEOREM 4.5. Let G be a finite nonabelian simple group. Then $\omega\left(\mathcal{N}_{G}\right) \leq 57$ if and only if $G \cong A_{5}$ or $G \cong \operatorname{PSL}(2,7)$.

Proof. Since $\operatorname{PSL}(2,5)$ and $\operatorname{PSL}(2,7)$ are nonabelian simple groups and since $\omega\left(\mathcal{N}_{\mathrm{PSL}(2,5)}\right)=21$ and $\omega\left(\mathcal{N}_{\mathrm{PGL}(2,7)}\right) \leq \omega\left(\mathcal{N}_{\mathrm{GL}(2,7)}\right)=57$, it suffices to show that these are the only nonabelian simple groups with $\omega\left(\mathcal{N}_{G}\right) \leq 57$. Suppose that the result is false, and let G be a minimal counterexample. Thus every proper nonabelian simple section of G is isomorphic to A_{5} or $\operatorname{PSL}(2,7)$. By [3, Proposition 2], G is isomorphic to one of the following groups:

- $\quad \operatorname{PSL}\left(2,2^{m}\right), m=4$ or m is a prime;
- $\quad \operatorname{PSL}\left(2,3^{p}\right), \operatorname{PSL}\left(2,5^{p}\right), \operatorname{PSL}\left(2,7^{p}\right), p$ a prime;
- $\quad \operatorname{PSL}(2, p), p$ a prime greater than 11 ;
- $\quad \operatorname{PSL}(3,3), \operatorname{PSL}(3,5), \operatorname{PSL}(3,7)$;
- $\quad \operatorname{PSU}(3,3), \operatorname{PSU}(3,4), \operatorname{PSU}(3,7)$ (the projective special unitary groups of degree three over the finite fields of orders 3, 4 and 7, respectively); or
- $\quad \mathrm{Sz}\left(2^{p}\right), p$ an odd prime.

For every prime number p and every integer $n \geq 2$, by Theorem 4.4, $\omega\left(\mathcal{N}_{\operatorname{PSL}\left(2, p^{n}\right)}\right)=$ $p^{2 n}+p^{n}+1$. Thus since $\operatorname{PSL}\left(2,2^{2}\right) \cong A_{5}$, among the projective special linear groups, we only need to investigate $\operatorname{PSL}(3,3), \operatorname{PSL}(3,5)$ and $\operatorname{PSL}(3,7)$.
$\operatorname{Now} \operatorname{PSL}(3,3), \operatorname{PSL}(3,5)$ and $\operatorname{PSL}(3,7)$ have orders $2^{4} \times 3^{3} \times 13,2^{5} \times 3 \times 5^{3} \times$ 31 and $2^{5} \times 3 \times 7^{3} \times 19$, respectively. So by Corollary 3.4, $\nu_{13}(\operatorname{PSL}(3,3))=144>$ $57, \nu_{31}(\operatorname{PSL}(3,5))=4000>57$ and $\nu_{19}(\operatorname{PSL}(3,7))=32928>57$.

Also, $\operatorname{PSU}(3,3), \operatorname{PSU}(3,4)$ and $\operatorname{PSU}(3,7)$ have orders $2^{5} \times 3^{3} \times 7,2^{6} \times 3 \times 5^{2} \times$ 13 and $2^{7} \times 3 \times 7^{3} \times 43$, respectively. So by Corollary 3.4, $\nu_{7}(\operatorname{PSU}(3,3))=288>$ $57, \nu_{13}(\operatorname{PSU}(3,4))=1600>57$ and $\nu_{43}(\operatorname{PSU}(3,7))=1+43 k$, for some $k>0$. Since 44 does not divide $|\operatorname{PSU}(3,7)|$ we have $\nu_{13}(\operatorname{PSU}(3,7))>56$.

Finally, $\operatorname{Sz}\left(2^{m}\right)$ has order $2^{2 m}\left(2^{m}-1\right)\left(2^{2 m}+1\right)$ and $\nu_{2}\left(\operatorname{Sz}\left(2^{m}\right)\right)=2^{2 m}+1 \geq 65$ (see [6, Ch. XI, Theorem 3.10]). This completes the proof.

Acknowledgement

The author is grateful to the referee for his/her helpful comments.

References

[1] A. Abdollahi, A. Akbari and H. R. Maimani, 'Noncommuting graph of a group', J. Algbera 298 (2006), 468-492.
[2] A. Abdollahi and A. Mohammadi Hassanabadi, 'Finite groups with a certain number of elements pairwise generating a nonnilpotent subgroup', Bull. Iranian Math. Soc. 30(2) (2004), 1-20, 99-100.
[3] R. D. Blyth and D. J. S. Robinson, 'Semisimple groups with the rewriting property Q_{5} ', Comm. Algebra 23(6) (1995), 2171-2180.
[4] G. Endimioni, 'Groups finis satisfaisant la condition (N, n)', C. R. Acad. Sci. Paris Ser. I 319 (1994), 1245-1247.
[5] B. Huppert, Endliche Gruppen. I (Springer, Berlin, 1967).
[6] B. Huppert and N. Blackburn, Finite Groups. III (Springer, Berlin, 1982).
[7] M. J. Tomkinson, 'Hypercentre-by-finite groups', Publ. Math. Debrecen 40 (1992), 313-321.

AZIZOLLAH AZAD, Department of Mathematics, Faculty of Sciences, Arak University, Arak 38156-8-8349, Iran
e-mail: a-azad@araku.ac.ir

[^0]: (C) 2011 Australian Mathematical Publishing Association Inc. 0004-9727/2011 \$16.00

