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JO ÃO COSTA SECO

NOVA LINCS – Universidade Nova de Lisboa, Lisboa, Portugal

PAULO FERREIRA and HUGO LOURENÇO
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Abstract

One key aspect of data-centric applications is the manipulation of data stored in persistent

repositories, which is moving fast from querying a centralized relational database to the ad-hoc

combination of constellations of data sources. The extension of general purpose languages

with query operations is increasingly popular, as a tool to improve reasoning and optimizing

capabilities of interpreters and compilers. However, not much is being done to integrate and

orchestrate different and separate sources of data. We present a data manipulation language

that abstracts the nature and location of data-sources. We define its semantics and a type

directed query localization mechanism to be used in development tools for heterogeneous

environments to efficiently compile them into native queries. We introduce a localization

procedure based on rewriting of query expressions that is confluent, terminating and provides

the maximum mapping between site capabilities and the structure of the query. We provide

formal type safety results that support the sound distribution of query fragments over remote

sites. Our approach is also suitable for an interactive query construction environment by

rich user interfaces that provide immediate feedback on data manipulation operations. This

approach is currently the base for the data layer of a development platform for mobile and

web applications.

1 Introduction

The state of the art on development of data-centric web, cloud and mobile

applications is highly based on the use of frameworks, tools, languages and

abstractions, especially designed to hide many development and runtime details. One

of the key aspects is the safe and easy manipulation of persistent data repositories,

usually performed with the help of abstractions like object mappings (e.g., Java

JPA), or specialized query languages like Microsoft LINQ.

Obvious benefits are obtained by typefuly integrating query languages in the host

programming languages, thus increasing the validation and optimizing power of

interpreters and compilers (Serrano et al., 2006; Cooper et al., 2007; Fu et al., 2013;

Chlipala, 2015). However, the data manipulation paradigm is moving fast from

querying a single data repository to combining data coming from a constellation
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of data sources. The emergence of big data has contributed to this shift with

the proliferation of multiple, disjoint sources of real-time data. As a consequence,

heterogeneous queries are pervasive, in scenarios like medical databases and search

engines, web service orchestrations, mobile applications and web or cloud applica-

tions that enrich their interfaces with remote web services. Such queries are usually

accomplished with ad-hoc code, which many times is inefficient, error prone and

highly resistant to being changed.

An urgent need arises for development platforms that integrate and query different

and separate data sources, in a typeful and seamless way. The wide range of skills

needed, e.g., to query a relational database, efficiently combine the results with a

web service response and then produce a map-reduce algorithm to join and filter the

results in a NoSQL database, is not part of the skill-set of the average developer.

Moreover, such an approach contrasts with the data integration efforts of hiding

different sources behind a common interface in a very expressive, but predefined

way (cf. Halevy et al., 2006).

This paper introduces a model for a data manipulation language for heteroge-

neous data-centric environments, and a compilation method based on type and

location information on data-sources. We define a model to generate specialized

and distributed querying code for each (remote) data source, and the corresponding

in-memory post-processing code. We model each kind of database system (relational

or NoSQL), parametrized data repository (web services), or in-memory data, by a set

of capabilities (e.g., to join collections, group-by arbitrary expressions, nest results

and filter), that guide the way operations are split between locations (Vassalos &

Papakonstantinou, 2000). Languages like Microsoft LINQ do allow for several kinds

of data sources to be involved in a query, but, in their case, the default execution

includes fetching all data first and then combining the pieces in a centralized

location. Our model focuses on the decentralization of parts of a query as in Wong

(2000), but in a way that is guided by the internal capabilities of each site, and that

includes their specialization according to data usage. We intentionally view this as

orthogonal and composable in a pipeline of optimizations to other processes that

seek the parallel execution of independent query parts, or that reorder operations

by analysing developer hints or data profiles, which may not be available in such

heterogeneous environments.

This paper extends and refines the approach presented in Seco et al. (2015). Our

construction and query combination model is designed from first principles, targeting

a general model of data sources, from relational data to nested collections (e.g.,

Colby, 1989; Cheney et al., 2014). We explore a novel language operation, introduced

in Seco et al. (2015), whose semantics is the in-place modification of nested data,

given a tree-like path (cf. XPath; Clark & DeRose, 1999; Cheney et al., 2014).

This operation can either be applied as an in-memory step or be re-written during

the code generation process, and incorporated into the target query code, to be

executed remotely. This operation is particularly useful both in supporting the

visual counterpart of this model, that supports the incremental and interactive

construction of nested queries with immediate feedback on results, and in providing

a compositional and incremental way of building queries.
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We refine the query transformation process presented in Seco et al. (2015) by

decomposing it into three separate phases, and analysing the contribution of each

step in a precise and separate way. We also add extra formal results and proofs. The

first phase of our transformation inserts explicit projection operations in an abstract

query expression, and eliminates unnecessary code, to adjust a query to its concrete

usage type. This can be seen as a compiler related technique of function inlining

and specialization. Then, in a second phase, we orderly annotate all subexpression

abstract nodes with site locations by means of a (label) rewriting system, according

to each location’s capabilities. This second phase uses an intermediate representation

for joins that helps distributing the inner queries by the available locations. A third

phase is used to translate the located query to the initial syntax and places the

necessary remote invocation expressions. Besides the modular design, compared to

our previous work, this new approach also provides a uniform process that deals

with inner queries in filters and group criteria expressions.

Our approach is being used as the model of an industrial grade development

platform for mobile and web applications, the OutSystems Platform (OutSystems,

2016), where different kinds of data sources can be used in a typeful way (Cardelli,

1989), and where the data manipulation language provides type safety and language

integration to developers, while it is compiled in a type preserving way to the state

of the art database systems and their native query languages.

In the remainder of the paper, we introduce the language by means of a running

example (Section 3), that we then use to also illustrate the localization process,

presented in Section 6. We formalize the operational semantics of language λCDL

and its type system in Sections 4 and 5. The localization process, divided into three

phases, is proven sound with relation to the language semantics. Formal results

are presented together with summarized proofs; however, they are expanded and

presented in full in a companion technical report (Seco et al., 2017).

2 Syntax

In this section, we introduce the data manipulation language (λCDL), whose expres-

sions and types are defined by the syntax given in Figure 1. An example using this

language is presented in Section 3. The core expression language is a typed lambda

calculus, with base values (num , bool , string , date) and the corresponding predefined

operations (abstracted as op), also with records and multisets, and equipped with a

data manipulation language fragment, capable of querying nested structured data

repositories (cf. relational databases, structured JSON data objects, etc.), similar to

works using NRC (Buneman et al., 1995; Cheney et al., 2014). Our language is based

on a set of predefined named data sources t, variables x, y, z, and record labels a, b.

We use the list notation [v] to denote the bag construction [v1] � [v2] . . . � [vn]. We

assume as given a finite set of predefined location identifiers �, for sites hosting data

sources.

Our type language includes basic types for integer numbers, strings and dates.

We follow standard lines to type records, multisets and abstractions. Our language
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Fig. 1. Syntax of expressions.

includes also a special type to describe queries that are first-class values in the

language.

We extend the core calculus with query operations, starting by an expression

that represents queries on parametrized data sources (db�(t, e)), and base queries

that are directly defined by base language expressions, yielding their denoted values

(return e). We introduce a general iteration operation, over a set of joined inner

queries (e), of the form (foreachc { x← e } e′), using cursors (x), and filtered by

a condition (c). We introduce an operation, of the form (groupbya=e
b { x ← e }),

that groups the results of an inner query (e) by a set of computed criteria (a = e)

where the label to access the details of each group is also given (b). This operation

corresponds to the specification of nested query results, regardless of the underlying

support. Cursor x is bound in the grouping criteria expressions e. We also include

https://doi.org/10.1017/S095679681700017X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681700017X


Capability-based localization of distributed and heterogeneous queries 5

an explicit projection operation τπσ(e), from type σ to type τ that is defined for

expressions yielding record or list values. Finally, expression [ e ]� represents the

remote evaluation of a query expression e in a site identified by location �.

In order to manipulate and transform structured nested data, we introduce a

general purpose operation that operates deep in the nested query results. The

operation, of the form (do e↓p{e′}), applies the abstraction, from query to query,

denoted by expression e to the sub-query e′ identified by path p. Paths, where a

is a record label and p a complete path, specify the traversal of a data structure

composed of records (.a · p), and lists (/p). We sometimes abbreviate the traversal

of a list of records (/.a · p) with (/a · p). This so called ‘at’ operation allows in-place

modification of parts of nested results, by iterating or filtering them, joining them

with other data-sources, or grouping them with local criteria. We adopt this kind

of operation as a generalization of functional map operations in semi-structured

manipulation languages. The ‘at’ operation is designed to allow for query rewriting

manipulations that simplify it and transport operations closer to the specified

location. These optimizations can be considered together with other operations, and

can also be compiled into imperative style query languages, such as the ones found in

No-SQL data stores (e.g., local storage with indexedDB, manipulated by JavaScript

programs).

We define queries as logically separated values, described by types of the form

Q(τ), that can be gradually composed by query operations and executed separately

(cf. staged computations; Davies & Pfenning, 2001; Cheney et al., 2013). The base

constructors have the form return e and db�(t, e), and the expression exec x : τ =

e in e′ represents the execution of the query denoted by e, having a usage type τ,

binding its results to x in e′. In this way, we are able to conveniently model a type

based query localization and optimization procedure (based on the usage type) just

by isolating query typed values. A query whose result type is τ is described by means

of a special type Q(τ). The query resulting data is then obtained by the explicit

evaluation of the query expression in a exec expression. For the sake of simplicity,

we write run e to abbreviate exec x : τ = e in x, and db�(t) to abbreviate db�(t, 〈〉)
when t has type 〈〉 → τ, where 〈〉 is the empty record type used here to represent the

unit type.

3 Example

To illustrate and motivate the language semantics, we use the running example

below. Consider a mobile application that organizes the daily job of field technicians

in a telecom company. Its core data is stored in two separate cloud-based relational

databases named SALESDB and SAP, as depicted in Figures 2–4, whose schemas are

as follows:

− Team : 〈〉 → τ∗T where τT = 〈id: num, name: string〉
− Job : 〈〉 → τ∗J where τJ = 〈id: num, title: string, teamId: num,

clientId: num, date: date, time: num〉
− Client : 〈〉 → τ∗C where τC = 〈id: num, name: string, address: string〉
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Fig. 2. Teams – SALESDB.

Fig. 3. Jobs – SALESDB.

Fig. 4. Clients – SAP.

The system also uses a geolocation web service, named GEO, to obtain the GPS

coordinates for a given street address, which is specified by the following function

type:

− Coords : string→ τL where τL = 〈lat: num, lng: num〉

A developer wants to list the tasks assigned to a team in a given date, e.g., May

8. So, she gradually builds a query. The first step is to join the tables Team, Job and

Client, Figure 5, using a foreach expression, a basic filter and a record constructor

expression:

work = foreacht.id=j.teamId ∧ j.clientId=c.id ∧ j.date=8/5

⎧⎨
⎩

t← teams,

j ← jobs,

c← clients

⎫⎬
⎭

〈team = t, job = j, client = c〉

Next, the developer groups the results by team’s name, with a groupby expression,

Figure 6. The result is a nested collection of records, each containing a team’s name,
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Fig. 5. Work assignment for May 8.

Fig. 6. Group by team’s name.

and a list of records (job, team and client).

workByTeam = groupbyname=x.team.name
details { x← work }

In our example, we still need the GPS coordinates of each client’s address. To obtain

them, we call the Coords web-service for each one of the addresses, by modifying

the current query with an in-place operation using path /details. See Figure 7 for

the data resulting from

addLoc = λx.foreach { y ← x }
(y ⊕ 〈loc = run dbGEO(Coords, y.client.address)〉)

withLoc = do addLoc↓/details{workByTeam}

Our approach is useful in the scenario of an incremental query composition

environment where the original data is originally nested, via other queries or web

services, and the developer writes refinements over existing queries, in opposition to

modifying the initial query to include the new column. It is also suited for a visual

manipulation environment where a user interface can be designed to naturally define

‘at’ operations, by pointing to the displayed data. Notice that the path /details refers

to a sub-query whose results is a list, and hence, we need a foreach expressions to

join new data to all its elements.
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Fig. 7. Get address coordinates.

The complete, expanded, query is the following:

do↓/details
(λx.foreach { y ← x } (y ⊕ 〈loc = run dbGEO(Coords, y.client.address))〉))
{

groupbyname=x.team.name
details { x←

foreacht.id=j.teamId ∧ j.clientId=c.id ∧ j.date=8/5

⎧⎨
⎩

t← dbSALESDB(Team),

j ← dbSALESDB(Job),

c← dbSAP(Client)

⎫⎬
⎭

〈team = t, job = j, client = c〉
}

}

The query refers to multiple data sources, located at different sites (SALESDB, SAP,

GEO). Intuitively, the best way to orchestrate this query is to dispatch the join between

the Team and Job tables to the SALESDB database server running SQL, while the

join with the Client table needs to be performed in the caller site, using in-memory

data structures, since the data comes from location SAP, a different database server.

The Coords web-service must also be called and its results processed in memory

by the query starting location, after the remaining results are fetched and explicitly

joined. Moreover, we aim at using (typing) information about the concrete usage of

data. For instance, if a given client application is not using the GPS coordinates,

the call to the Coords web service can be safely discarded and a significant amount

of processing and data transmission time can be spared.

In the following sections, we define the semantics of the language, and the

corresponding typing relation.

4 Semantics of λCDL

The semantics for λCDL is inductively defined with relation to a state (S) that

contains all the referred data repositories. We define 〈〈e〉〉, a function that denotes the

computed value of an expression e, using the cases in Figures 9 and 10. The syntax

of values is defined by the grammar in Figure 8. The evaluation of query expressions

corresponds to the staging of queries, that are afterwards executed with relation to

https://doi.org/10.1017/S095679681700017X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681700017X


Capability-based localization of distributed and heterogeneous queries 9

Fig. 8. Language values.

Fig. 9. Semantics of expressions.

the given state, by means of an exec expression. In our scenario, this corresponds to

executing queries in remote database systems. We use sets ({e}) and multi-sets ([e]),

with list comprehension notation, as the basis to define the semantics of executing

query values r, by the relation �r�, defined in Figure 11. Our functional approach to
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Fig. 10. Semantics of query expressions.

Fig. 11. Semantics of query values.

defining the semantics is inspired by works like (Buneman et al., 1994, 1995; Peyton

Jones & Wadler, 2007; Cheney et al., 2014).

The call-by-value semantics of expressions is straightforwardly defined in the

structure of the expressions in most of the cases; hence, we avoid a detailed

explanation. Instead, we describe the cases of non-standard constructs. For instance,

we resort to a native definition of the semantics for predefined operations (op) on

values of basic types. In the case of a projection operation, the base cases are defined

on record values, by removing the fields filtered out, and the projection operator

commutes with all other operators like abstraction and list construction. Notice that

a projection operation is only meaningful if the resulting type is strictly a supertype

of the source type. Moreover, note that if a projection operation is applied to a

query, it is staged and thus promoted to a query value itself. In the case of expression
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exec x : τ = e in e′, it first evaluates (stages) the query value denoted by e, and

proceeds with the evaluation of e′ binding x to the results of the query (cf. Davies

& Pfenning, 2001). We use this expression as an extension point where to introduce

the typed compilation procedure that transforms queries before actually executing

them.

The language fragment that represents query operations is interpreted by the

top-level semantic function (〈〈e〉〉), by the cases in Figure 10, thus producing closed

query values. The semantics of executing query values (Figure 11) states that a

data source invocation (db�(t, v)) is represented by directly accessing state S, and

calling the data source end point with the given parameters. This general model

using sources with parameters allows the representation of both web services that

require parameters, and database tables that do not. The execution of an iteration

operation (foreach) includes joining the results of inner queries, and then producing

and filtering a value for each tuple. Group-by operations (groupby) compute the

unique values given by the grouping criteria (i.e., the keys), and use them to produce

a nested structure, which pairs each key with a details field containing all the original

values that are grouped under it. Projection operations (τπσ(r)) convert the provided

value to the target type τ, removing the (possibly nested) fields that are no longer

present. The return operation (return) simply yields its inner value, and the remote

evaluation ([ r ]�) sends the query r to be executed in the location �.

The semantics of operations of the form do e↓p{r} is defined by case analysis of the

path given. In the case of an empty path (ε), the operation is mapped onto applying

the abstraction denoted by expression e to the results of query r. The case of a list

path (/p), which corresponds to a map operation, recursively follows the remaining

path for each of the elements in the collection. The case of record traversal (.a · p)
specifies the navigation in the structure of the target value and recursively follows

the remaining path.

5 Typing

In order to typecheck λCDL expressions, we recall the types introduced in Figure 1

τ, σ ::= num | bool | string | date | 〈a : τ〉 | τ∗ | τ→ σ | Q(τ)

that include basic types for integer numbers, strings and dates to match our running

example, record types, multiset types and abstractions. We also assume a predefined

typing relation for all predefined operations on base values. Recall that a query

whose result type is τ is described by means of a special type Q(τ), and that its

resulting data is only obtained by the explicit evaluation of the query expression in

a exec expression. The typing relation for λCDL is defined inductively in terms of

the judgement Δ 
 e : τ, according to the rules in Figure 12. We focus mainly on the

rules for typing queries, as the rules for the functional fragment of the language are

quite standard, and are combined with rules for query expressions, projection and

remote execution of expressions. Regarding queries, rule (Source) ensures that all

data sources are properly accessed, according to the function type signature given
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Fig. 12. Typing relation.

by the typing environment Δ. The data source access expression is typed as a query

that returns values of the prescribed type in its signature. Iteration operations, in

rule (Select), are typed so that cursors, representing elements of the results of inner

queries, and that conditions and select expression are well-typed. Also, in group

operations, rule (Group), the inner query must be well-typed and the group criteria

expressions given the corresponding cursor type. Return operations are the base

cases of typing, they allow that any expression can be used in the context of a query,

rule (Return). Rule (At) types an operation that is applied, in-place, deep in the
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structure of a query. We define below a type transformation function that, given a

path, follows it through the structure of the type, and when matching the type at the

end of the path applies a type transformation in-place, called type-at, and defined

below

Definition 5.1 (Type at)

For all types τ, τ′, σ, σ′, paths p and labels a, the type-at, written τ↓p{σ
′
/τ′ }, operation

is defined inductively in the size of path p:

τ↓ε{σ/τ} � σ

τ∗↓/p{σ
′
/τ′ } � (τ↓p{σ

′
/τ′ })∗

(〈a : τ〉 ⊕ σ)↓.a·p{σ
′
/τ′ } � 〈a : τ↓p{σ

′
/τ′ }〉 ⊕ σ

Since the ‘at’ operation applies a query transformation of type Q(τ′) → Q(σ′) on a

given path, the type-at operation on types τ↓p{σ
′
/τ′ } perform the corresponding ‘deep’

transformation of the target query type. The type transformation is only defined in

cases where there is a perfect match at the target subtype pointed by path p. To

better represent the intuition of staged query values, we designed the ‘at’ operation

as a query transformation function, from query to query, as an alternative to the

more general form τ′ → Q(σ′), targeting the common use cases of deeply nested filter,

join and group-by operations in an interactive query construction environment. In

future work, this will allow us to extend the system with optimization procedures

that rewrite and reorder operations. This is still not part of the present semantics

where inner queries are evaluated first and the operation is applied deep into the

structure of the query results.

The typing of the query execution expressions, rule (Exec), checks that a query is

executed and used according to the expression’s type annotation, representing the

actual usage of the results. The remote execution of expressions, rule (Remote), checks

that the remotely executed (sub) expression is well typed. Finally, the (Project) rule

checks that a projection is only performed when the subtyping relationship, defined

below, is guaranteed.

Subtyping. We also consider the universal (transitive) subtyping relation for function,

record, queries and lists, introduced in typing by means of rule (Sub):

τ � τ
τi � τ′i i = 0..n

〈a : τ, b : σ〉 � 〈a : τ′〉
τ′ � τ σ � σ′

τ→ σ � τ′ → σ′
τ � σ

τ∗ � σ∗
τ � τ′

Q(τ) � Q(τ′)

We introduce subtyping in the language as a way to express the soundness invariant

of the code transformation defined ahead. However, in some of the database systems,

we are considering type coercion under this universal subtyping is not automatic.

Thus, in source programs, we always consider typing as being derived without the

subsumption rule (Sub).

Example. Here, we illustrate the application of the typing relation presented here to

our running example. In order to type the query definitions in Figures 2–7, let the

typing context Δ � { Team : 〈〉 → τ∗T , Job : 〈〉 → τ∗J , Client : 〈〉 → τ∗C, Coords :
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string→ τL }, with τT , τJ , τC and τL as defined in Section 3. Then, we have

− Δ 
 teams : Q(τ∗T )

− Δ 
 jobs : Q(τ∗J)

− Δ 
 clients : Q(τ∗C )

− Δ 
 work : Q(〈team : τT , job : τJ , client : τC〉∗)
− Δ 
 workByTeam : Q(〈name : string, details : 〈team : τT , job : τJ , client : τC〉∗〉∗)
− Δ 
 withLoc : Q(〈name : string, details : 〈team : τT , job : τJ , client : τC, loc : τL〉∗〉∗)

Given the above subtyping relation and the type-at, we prove an intermediate result

about the covariance of the at operation.

Lemma 5.2 (Type-at is covariant)

For all types τ, σ, δ, δ′, δ′′ and paths p, if τ � σ and δ′ � δ′′, then τ↓p{δ
′
/δ} � σ↓p{δ

′′
/δ}.

Proof. According to Definition 5.1, the substitution occurs only on positive positions,

thus the covariance is directly proved by induction on the definition. �
In order to prove soundness of the type system, we also state a derivable weakening

property (both width and depth), based on the following auxiliary definition.

Definition 5.3 (Environment subtyping)

For all typing environments Δ,Δ′, we write Δ′ � Δ, if and only if Dom(Δ′) = Dom(Δ),

∀y∈Dom(Δ). Δ
′(y) � Δ(y).

Lemma 5.4 (Weakening)

For all typing environments Δ,Δ′, expressions e and types τ, σ, if Δ 
 e : τ and

x �∈ FV (e), then Δ′, x : σ 
 e : τ′ with τ′ � τ, and Δ′ � Δ.

Proof. The proof follows by induction on the derivation of the typing relation, and

having in mind that the in-place substitution of types (the type-at operation) is

covariant in rule (At), and using the transitivity of subtyping in rules (Exec) and

(Project). �

We prove the soundness to the typing relation with relation to the operational

semantics following standard lines, in Theorem 5.5.

Theorem 5.5 (Type soundness)

1. If Δ 
 e : τ and 〈〈e〉〉 = v then Δ 
 v : τ′ with τ′ � τ.

2. If Δ 
 r : Q(τ) and �r� = v then Δ 
 v : τ′ with τ′ � τ.

Proof. The proof follows by induction on the typing and type transformation

definitions, and supports the usual properties of absence of runtime errors for

terminating expressions. See Seco et al. (2017) for the detailed proof. �

6 Localization

Optimizations are a well-known problem in relational databases, with many vari-

ants (Silberschatz et al., 2006) that shape the execution plan in order to optimize

the usage of memory and CPU time. In a distributed and heterogeneous setting,

https://doi.org/10.1017/S095679681700017X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681700017X


Capability-based localization of distributed and heterogeneous queries 15

the criteria to optimize a query’s execution plan are somewhat different. The way

different data sources are interplayed can shorten the execution time of a query in a

significant way because the determining factor is no longer memory usage and CPU

time, but the amount of data that is interchanged through the network (Taylor, 2010;

Grade et al., 2013), the number of locations visited, the local indexing structures

on each location (Wong, 2000) and the native capabilities used on each database

system or data repository.

We next extend the data manipulation language introduced in Section 2 with a

location and type-based transformation process for queries. Queries are transformed

in such a way that subexpressions are grouped to be shipped to remote locations, and

executed in the most efficient way possible. We use knowledge about the capabilities

of each remote site (Papakonstantinou et al., 1998), in order to place the operations

as close as possible to the origin of the data. The parts of a query that can be

computed remotely are grouped and dispatched, and an in-memory post-processing

phase is generated to complete the job, in the starter location. We leverage not only

on the locations of data sources, but also on the actual usage of data, which is

expressed as type information. The transformation process prunes the query tree,

to avoid fetching unnecessary data, and eliminates all remote invocations that have

impact on the processing time but do not influence the query result. We divide the

compilation process into the use of type information to prune parts of the query

and the eager localization of the query components. For an optimized distributed

execution, we foresee that we can use orthogonal strategies to further optimize and

efficiently execute it (e.g., Grade et al., 2003; Taylor, 2010). We also identify each

remote location as containing different data sources and capabilities, which rules out

optimizations that seek to parallelize (similar) parts of a query to different nodes.

We improve and refine the process presented in Seco et al. (2015) and present a

query transformation process consisting of three separate and orthogonal steps. The

first phase corresponds to the pruning of the query expression based on the result

usage type. The process takes as input a query expression and the corresponding

usage type and recursively transforms it by either erasing unnecessary subexpressions

or explicitly inserting projection expressions in the query code. The second phase

of the process is based on a rewriting system on expressions. Each (sub)expression

node in a query is annotated with a location such that the whole expression is

executable in the starting location. The rewriting process then refines the location of

expression nodes based on their intrinsic capabilities and the locations assigned to

its children nodes. We prove that the rewriting function is monotone, and hence the

process stops when a fixed point is reached. This phase uses a special representation

and organization of iteration operation binders, so that binders and conditions

can be grouped according to their intrinsic locations. Finally, the third phase of

our transformation process is designed to explicitly produce located query code, by

introducing remote calls when needed and expanding groups of binders into located

sub-queries.

One important aspect on our setting is that it does not change the structure of

the query, it is based solely only on the location of subexpressions. Standard use of

a cost model may lead to further optimizations in the execution of query fragments
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in remote nodes. This step is orthogonal to our current focus, and should be easily

incorporated as an extra query processing phase in our pipeline.

6.1 Phase I: Usage-based projection

The first step in our compilation process consists on recursively transforming

query expressions, by inserting explicit projection operations, and trimming record

construction operations to adjust them to the actual usage type. We define a type

directed projection relation, represented by the judgement,

Δ; Γ 
 e : τ⇒ e′ : σ

that denotes the transformation of expression e to expression e′, based on the

expression type τ, the actual usage type σ, the typing environment Δ that maps all

free variables of e to their type, and the usage typing environment Γ that maps

all free variables in e′ to their actual usage. Algorithmically, the rules should be

read as if the typing environment Δ, type τ and usage type σ are given as input,

the algorithm’s outputs are the transformed expression e′ and its usage typing

environment Γ.

Definition 6.1 (Type directed projection)

We inductively define the type directed projection relation, written Δ; Γ 
 e : τ ⇒
e′ : σ, by the rules in Figures 13 and 14.

The expected soundness invariant in the projection relation is that the expression

type τ is a subtype of its possible usages σ. This is expressed and verified by the

soundness Lemma 6.2. Notice that for all basic values, rules (π-Num), (π-Bool),

(π-Date), (π-String), types and expressions are not changed. In the case of identifiers,

a projection operation is introduced, only if the types strictly differ, rules (π-Id)

and (π-Id-sub). Recall that the projection operation is also defined for abstraction

values and corresponds to projecting its resulting value, Figure 9. In the case of

function literals, the projection is expanded to the function body. The case of record

literal expressions, the filtered out field expressions are simply omitted (since we are

in a purely functional setting), rule (π-Record), while the case for concatenation of

records splits the required usage between both its record expressions, rule (π-Concat).

Notice that τ⊕σ denotes the concatenation of disjoint record types, in the same lines

of record values concatenation. List construction and concatenation result directly

from the type directed projection of their sub-expressions, by rules (π-Singleton)

and (π-Append).

Query expressions are recursively transformed according to the usage type, and

projections are inserted when no transformation is possible or the inner query results

are needed for the current operation. For instance, in rule (π-Source), a projection

is always inserted, although it can be compiled to code when transformed into

native query code. Rule (π-Select) propagates the usage of query cursors, given

by the transformation of the select expression (δ′′), and the transformation of the

query condition (δ′), into the transformation of the inner query expressions. Recall

that we algorithmically interpret the right-hand side type of the transformation
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Fig. 13. Type directed projection transformation (I).

judgement as an input, denoting the target type for the projection. We interpret the

types in environment Γ, as outputs of the transformation algorithm. The target to

transform the inner queries is δ′′′, which is the greatest lower bound of δ′ and δ′′, the

subtype that supports the typing of both condition and select expressions. Notice

also types δ, which are the types of the query cursors. Given that our type system

does not include a � type, we have no specific projection transformation for queries

bound to a cursor that is not used in both the select and condition expressions. In

rule (π-Group), the usage of attributes is not changed to avoid interfering with the

groupby results; hence, an explicit projection must be used. The usage type of an ‘at’

operation, in rule (π-At), influences both the abstraction being applied and the target
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Fig. 14. Type directed projection transformation (II).

query. Given the application path and the full usage type, we are able to decompose

it and determine the desired return type for the abstraction, and infer the usage type

of the target query. This is a rule whose implementation is not direct and requires

type inference reasoning to reach a final projection of the code. Rule (π-Exec) must

use the annotated type as guide for the usage, with the compliance of both query

and continuation expressions being given by the relation invariant. Also, type σ′′

in the premise corresponds to the typing of the expression without subsumption

(see remark about subtyping in Section 5). Notice that since the annotated type is

invariant in the rule, we are effectively blocking optimization opportunities arising

from x not being bound in e′. The same limitation applies to rule (π-Abstraction).

Technically, a stronger result of typing environment contraction is needed to drop

the annotation in the expression, thus allowing optimization of those scenarios. Rule

(π-Project) incorporates the explicit projection in the code and recursively simplifies

the code.

Lemma 6.2 (Type soundness – phase I )

If Δ; Γ 
 e : τ⇒ e′ : σ, then τ � σ, Δ � Γ, and Δ 
 e′ : σ.
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Proof. We prove this result by simple induction on the size of the derivations and

using subsumption in the cases where a common supertype is needed. See the

detailed proof in Seco et al. (2017). �

Lemma 6.3 (Semantic preservation – phase I )

If Δ; Γ 
 e : τ⇒ e′ : σ, then σπτ(〈〈e〉〉) = 〈〈e′〉〉.

Proof. Many cases are solved by simple induction on the size of the derivation, while

the cases where an explicit projection operation is inserted, the result is reached by

the definition of the semantics of the projection operation. �
This code transformation leads to a trimmed down version of the resulting data,

while maintaining the soundness of the original program. Namely, it preserves all

intermediate information not present in the final result but required to compute it. It

follows a type and language-based technique, similar to the ones used by compilers

to detect dead code.

Example Recall the query withLoc from Section 3

addLoc = λx.foreach { y ← x }
(y ⊕ 〈loc = run dbGEO(Coords, y.client.address)〉)

withLoc = do addLoc↓/details{workByTeam}

In Section 5, we have determined its type to be Q(τ∗), with

τ = 〈name : string, details : τ∗d〉
τd = 〈team : τT , job : τJ , client : τC, loc : τL〉

Consider an usage of this query where we do not need the GEO location information,

i.e., let the actual usage type be Q(σ∗), with

σ = 〈name : string, details : σ∗d〉
σd = 〈team : τT , job : τJ , client : τC〉

It is possible to observe that by (1) applying (π-Id), (π-Record) and (π-Concat), then

(2) (π-Select) and (π-Abstraction) and finally (3) (π-Group) and (π-At):

1) Δ, x : Q(σd
∗), y : σd; ∅, y : σd 


y ⊕ 〈loc = run dbGEO(Coords, y.client.address)〉 : τd ⇒
y ⊕ 〈〉 : σd

2) Δ; ∅ 
 addLoc : Q(σ∗d)→ Q(τ∗d)⇒ addLoc′ : Q(σ∗d)→ Q(σ∗d)

3) Δ; ∅ 
 withLoc : Q(τ∗)⇒ withLoc′ : Q(σ∗)

where

addLoc′ = λx.foreach { y ← x } y ⊕ 〈〉

withLoc′ = do addLoc′↓/details{workByTeam}
Note that abstraction addLoc is doing nothing. During compilation we can detect

and omit patterns like these.
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6.2 Phase II: Localization of expression nodes

The second phase of the localization and optimization process is responsible for

assigning concrete locations to each of the query expression nodes. We assume a

finite set of site locations L, and a lattice (L∪ {�,⊥},�). Location � represents

in-memory execution in the starting location, where all query operations can be

evaluated. Location ⊥ is assigned to expressions that can be computed or transported

to any location (e.g., literals, identifiers, etc.). We define the usual order relation

between ⊥ and � and all other locations:

∀�∈L. � � � ∧⊥ � �

Since at this stage we are ignoring site delegation, all locations other than ⊥ and

�, representing the different sites locations of the system, are kept unrelated. Query

delegation between sites is an interesting extension of this model that is out of the

scope of this work. We give hints on how details should be worked out to support

delegation along the technical parts of the paper, but do not really take them into

account in the formal results.

We consider also a set of predefined predicates to specify capabilities of locations.

The truth value of the predicates is predetermined and immutable. The selection of

predicates used here is inspired on the concrete experience of developing a domain-

specific language (DSL) (OutSystems, 2016) for data manipulation, and is adapted

to the set of operations that is included in the language. We say that proposition

can group(�) holds if the database engine running at location � is able to execute a

group-by operation with aggregation of results, as in relational databases. Predicate

can nestgroups(�) holds for locations (�) running database engines that have

support for the nested grouping operations, i.e., return a query together with the

details of its groups. This is the case of some NoSQL databases such as MongoDB.

Predicate can join(�) states that the database repository at location � supports the

joining of two (or more) sources given a condition, and can iterate(�) indicates

that it supports the iteration of a list and the computing of a given expression

on all elements of a query. Predicates can lambda(�) and can call(�) refer to the

definition and use of abstractions. As for predicates can createrecords(�) refers

to handling of record expressions, and can createlists(�) refers to handling of

list expressions.

Notice that predefined functions can be encoded in native operations (op), each

one with a different capability. For instance, SQL databases provide function NOW()

and MongoDB provides specialized operators such as $near to compare GPS

coordinates. Common operations must be encoded in a single (abstract) operation

and then compiled differently on each source. As an extra example, consider a classic

REST interface, yielding a JSON object. None of the above predicates holds since

the interface’s only capability is to return the data. The extension of this relation to

a meta-level, between operations and locations, is out of the scope of this work, and

will be pursued in the future.

We define an intermediate format for expressions to support this second transfor-

mation phase. We use location labelled expressions e� ∈ E, where e is an expression
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given by the syntax of Figure 1, where each subexpression is labelled with a location

from L ∪ {�,⊥}. We then define a localization system on labelled expressions by

means of a rewriting system, as follows:

Definition 6.4 (Localization system)

We define the localization system as a rewrite system (E,�), on location labelled

expressions E, and a relation � defined by the rewriting rules of Figures 15 and 16.

The rewriting rules used above are designed to update the locations assigned to

expressions, that indicate where they may or should be evaluated, according to

each site capabilities and maximizing the query code discharged to the remote sites

– without actually changing the query structure. Precisely because the localization

rules do not change the query structure, queries of similar semantics or intention

will possibly result in a different number of remote calls to the same sites, depending

on their actual structure. For instance, nesting iteration operations with sources

in different sites will partition the application of the localization rules, limiting

their scope. Using ‘at’ operations also creates a localization silo inside their query

transformation functions, since they are always executed in-memory. We foresee the

combination of our rewriting system with a query normalization technique, that for

instance eliminates unnecessary ‘at’ operations, similar to the one in Cheney et al.

(2013), as a possible solution to be explored in future work.

The rewriting system starts in a given initial state defined below, and runs until a

fix point is reached. We prove ahead that this relation is confluent, and hence the

localization system always terminates. Literals are labelled with location ⊥ in the

initial state, meaning that they can be computed in any location. The remaining

expression nodes are labelled with the � location in the initial state, which means

that all can be evaluated in-memory. The rewrite system will converge to assign each

expression with a more specific evaluation location. The locations obtained in the

final stage of the localization process are then used by the process phase III to

produce located code. Data source expressions nodes are explicitly given location �

in the expression syntax, even if the whole node containing argument expressions

is given location �. The initial labelled expression is therefore (db�(t, e)�), where

� corresponds to the location where the computation of arguments should be

performed, and location � corresponds only to the site where data is located and

from where data transmission occurs. In this intermediate form, we also introduce a

specialized and flexible labelling scheme for expression binders in foreach expressions

(following the earlier approach of Seco et al., 2015). This includes a partition of

binders by location, and an association of Boolean conditions – parts of the original

condition in the conjunctive form – to each one of the binder partitions. Hence, a

foreach expression takes the transient syntactical form:

foreachc

{
y ← e, (x← e�, c)�

}
e

where there is a set of ungrouped binders (y) that correspond to the binders (still)

in the � location, and a set of partitions containing binders attached to conditions

that only refer to the corresponding identifiers (x). In the general form, there are

(possibly empty) partitions for all possible locations in L (except for � or ⊥). This
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Fig. 15. Location rewriting rules (I).

transient form is compiled back to the original representation in the third step of

our query transformation process (Section 6.3) to

foreach
c{z.x/x}

{
y ← e, z ←

[
foreachc

{
x← [ e ]�

}
〈x = x〉

]
�

}
e{z.x/x}

thus transforming groups of binders into subqueries, and adjusting both the condi-

tions and the select expression with explicit substitutions. This intermediate form can

be easily encoded into the original language, but it technically helps us to prove the

confluence of our definition up to equivalence of partitions (binders and conditions).

Formally, the initial labelling of locations to expressions is defined as follows.

Definition 6.5 (Initial expression labelling)

1. Literals are labelled with location ⊥.

2. All other expressions are labelled with location �.

3. Binders in foreach expressions are initially ungrouped, and groups of binders

for all possible locations inL are given an empty set of binders and condition

true⊥.

Given the initial state for location labelled expressions, we introduce the rewriting

rules in Figures 15 and 16, where operations such as record concatenation and list

append are encoded in the case of the general operation op. Most rules are of the

form em � em′ , where the final location m′ is the least upper bound of all locations

in the subexpressions of e, restricted with extra conditions on the capabilities of the

target site. This evolution is the basis for our confluence and termination results.

Notice for instance in rule (�Op) that if the chosen site m′, where the operands

can both be computed, has the capability to perform a certain operation, then the

whole expression gets localized there. The same happens in all the rules in Figure 15.

Notice that the old location is ignored on all steps of the rewriting process.

In the case of query expressions, Figure 16, we have that the location of a

data source expression ((db�(t, e�))m) is given by the least upper bound of the data

source location and its arguments �� � �, by rule (�Source). This kind of rewriting
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Fig. 16. Location rewriting rules (II).

rules propagate the locations of data sources from the expression leafs, up the

abstract syntax tree, according to the capabilities of remote sites. Rules (�project),

(�Singleton) and (�Return) are particular cases of the pattern used in Figure 15,

propagating the location of the single inner expression directly to the top level

expression.

Special treatment is given to binders in foreach expressions, which are grouped

according to the locations of the corresponding inner queries, based on the interme-

diate representation described above. Rule (�Binder) encodes the actual grouping

of binders, while rule (�Filter) distributes filter conditions in the foreach expression
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according to the locations of the bound cursors and their usage. A fully localized

binder list is finally captured by rule (�Select) provided that the appointed remote

site has the capability to iterate and join data sources, and that the condition and

select expression can also be evaluated there. The rules for group-by operations cover

two possible cases regarding nested data. If nested data is required, rule (�Nesting)

can be applied only when the location has the capability of processing nested data,

hence discharging the whole operation of the remote site. In the case of nested

data being discarded by an explicit projection, rule (�Group) can be applied on

sites where the grouping operation does not provide nested buckets of detail rows,

but are able to group data anyway. This effect is provided by the syntactic pattern

on rule (�Group) detecting the pattern containing a projection. Note also that

identifiers are initially located at �, the expressions where they are used are also, by

definition, located at �. Rules (�Group-Cursor) and (�Binder) localize the usages

of specific cursors (from a groupby or foreach, respectively) to the location of the

corresponding source, enabling the specific localization of the expressions using its

identifier.

In order to state the soundness property of the localization system, we need a few

auxiliary results, that help establishing the system’s invariant. Consider the following

definitions on locations of expressions.

Definition 6.6 (Locations of strict sub-expressions)

For any expression e, L(e) denotes all the locations in strict sub-expressions of e.

The particular case of L(db�(t, e�)) also includes the location �.

This definition is used to establish the systems’ invariant, that is that the location of

each expression is ‘higher’ in our lattice than the locations of all subexpressions.

Definition 6.7 (Minimal distribution)

A labelled expression em is minimally distributed, if all its strict sub-expressions are

minimally distributed and m � � implies that m = �L(e).

The notion of minimal distribution is at the core of the rewriting system’s invariant.

Each defined rewriting step preserves that property as stated in Lemma 6.10. In

particular, the initial state of a location labelled expression is minimally distributed,

according to Definition 6.7, as stated in Lemma 6.8.

Lemma 6.8 (Minimally distributed initial labelling)

Initially labelled expressions are minimally distributed.

Proof. The lemma is proven by induction on the expression structure and analysis

of the two cases in Definition 6.5. Notice that the terminal cases in the expression

syntax, except the identifiers, are labelled with ⊥ in the initial state, and all other

expressions are labelled with �. In the case of e�, we have a false hypothesis in the

definition’s implication, and hence the invariant trivially holds. In the case of e⊥,

we have an empty set of strict subexpressions, and the join of an empty set is ⊥, as

required. �
The soundness of our localization system is established by a preservation property

of the system’s invariant, the minimal distribution (Definition 6.7), throughout the

rewriting process (Lemma 6.10).
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Lemma 6.9 (Fixed distribution)

If em is minimally distributed, m � � and em � e′m′ , then m′ = m.

Proof. Proven by the case analysis of the possible rewriting reductions, leveraging

the fact that rules that change m do not change e, and are precisely those that have

m′ = �L(e′). �

Lemma 6.10 (Preservation of minimal distribution)

If em is minimally distributed and em � e′m′ , then e′m′ is minimally distributed.

Proof. Proven by induction on the expression structure and case analysis of the

possible rewriting reductions. Rule (�Filter) does not change m and only moves

its strict sub-expressions. Rules (�Binder) and (�Group-Cursor) are similar, but

change the location of some sub-expressions to a necessarily lower one. In reductions

where sub-expressions are changed, such as (�Group), we proceed by case analysis

of m, and Lemma 6.9. In the remaining cases, minimal distribution is given directly

by definition, as m′ = �L(e). �
Another important property of the rewriting system is confluence, stated in

Theorem 6.16 below. Consider first some auxiliary results, among which are:

the termination of the system (Lemma 6.14) and the local confluence property

(Lemma 6.15) of the rewriting relation when restricted to our invariant.

Corollary 6.11 (Transitive preservation of minimal distribution)

If expression em is minimally distributed and em �∗ e′m′ , then e′m′ is minimally

distributed.

Proof. Trivially by repeated application of Lemma 6.10. �

Lemma 6.12 (Well-locatedness)

If e� is minimally distributed, then �L(e) � �.

Proof. Follows directly by case analysis of � and Definition 6.7. �

Lemma 6.13 (Location monotonicity)

If expression em is minimally-distributed and em � e′m′ , then m′ � m.

Proof. Follows directly by case analysis of m and Lemma 6.9. �

Lemma 6.14 (Termination)

The localization relation � is terminating for minimally distributed expressions.

Proof. Consider as induction measure the lexicographic order of the all linearized

locations in an expression, the number of ungrouped binders in a foreach expression

and its number of ungrouped conditions.

By Lemma 6.10, we know that for any minimally distributed expression em,

the derivation em � e′m′ leads to another minimally distributed expression. By

Lemma 6.12, we know then that �L(e′) � m′, and by Lemma 6.13 we know that

m′ � m. When applied, rules (�Op) to (�Return), (�Select), (�Nesting) and

(�Group) have �L(e) � m′ (or they are not applied at all). In the normal form,

�L(e) = m′ or the site does not have the needed capabilities. In the case of rules

(�Binder) and (�Filter), the distance measure stays the same but the number of
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ungrouped binders or ungrouped conditions in the foreach expression decreases,

respectively. �

Lemma 6.15 (Local confluence)

Relation � is locally confluent for minimally distributed expressions: for any

minimally distributed expressions e�, e1�1
and e2�2

such that e� � e1�1
and e� � e2�2

,

there exists an expression e′�′ such that e1�1
�∗ e′�′ and e2�2

�∗ e′�′

Proof. By the case analysis of the initial expression e� and the possible e1�1
and e2�2

pairs.

We have to consider the particular cases of the (few) overlapping rewriting rules,

but the remaining are proven using the same proof strategy. Overlapping rewritings

by rules (�Group), (�Group-Cursor) and (�Nesting) do not change the expression

structure, and localize the groupby expression at the exact same location. Contrary

to (�Select), rules (�Binder) and (�Filter) both rewrite foreach expressions

with ungrouped binders, but they commute as they move different sub-expressions

(binders and conditions, respectively) to binder groups that are guaranteed to be

unique per location.

Cases where e1�1
and e2�2

are obtained by reduction of independent sub-

expressions commute, so it is just a matter of rewriting the other sub-expression

accordingly.

The remaining cases are simply proofs that reduction of the top-level expression

commutes with the reduction of one of the sub-expressions in zero or more steps.

Since all rewriting rules that change � do not change e, and forget it in favour

of �L(e), re-applying the top-level reduction after the sub-expression reduction

ensures both converge. If the rewriting requires a specific capability, it is ensured by

leveraging Lemma 6.9. �

Theorem 6.16 (Confluence)

Relation � is confluent for minimally distributed expressions.

Proof. By Lemma 6.10, we know that minimal distribution is preserved through

reductions of �. Since � is both locally confluent (Lemma 6.15) and terminating

(Lemma 6.14), by Newman’s Lemma (Newman, 1942) we can say that� is confluent

for minimally distributed expressions. �
We now illustrate the rewriting process using our running example.

Example. Recall the query work from Section 3

foreacht.id=j.teamId ∧ j.clientId=c.id ∧ j.date=8/5

⎧⎨
⎩

t← dbSALESDB(Team),

j ← dbSALESDB(Job),

c← dbSAP(Client)

⎫⎬
⎭

〈team = t, job = j, client = c〉
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The localization of this query would begin by labelling it according to Definition 6.5:

⎛
⎝foreachfilter

⎧⎨
⎩

t← dbSALESDB(Team)�,

j ← dbSALESDB(Job)�,

c← dbSAP(Client)�

⎫⎬
⎭ select

⎞
⎠
�

where filter = (t�.id� = j�.teamId�)�
∧ (j�.clientId� = c�.id�)�
∧ (j�.date� = 8/5⊥)�

select = 〈team = t�, job = j�, client = c�〉�

Since the initial location of all identifiers is �, repeated rewriting of both the

foreach’s filter and its select expression would keep everything localized at �.

Rewriting by applying rule (�Source), however, would locate all the db expressions

in their respective locations:

foreachfilter

⎧⎨
⎩

t← dbSALESDB(Team)SALESDB,

j ← dbSALESDB(Job)SALESDB,

c← dbSAP(Client)SAP

⎫⎬
⎭ select

The localization process would then proceed by rewriting with the rule (�Binder)

repeatedly, which would group foreach’s binders by location, and appropriately

locate the usages of their cursors, t, j and c, in the filter and select expressions:

foreachfilter

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎝t← dbSALESDB(Team)SALESDB,

j ← dbSALESDB(Job)SALESDB,

true⊥

⎞
⎠
SALESDB(

c← dbSAP(Client)SAP,

true⊥

)
SAP

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

select

where filter = (tSALESDB.id� = jSALESDB.teamId�)�
∧ (jSALESDB.clientId� = cSAP.id�)�
∧ (jSALESDB.date� = 8/5⊥)�

select = 〈team = tSALESDB, job = jSALESDB, client = cSAP〉�

At this point, any rewritings of select expression by rule (�Record) will maintain

location �, as the team and job fields are located in SALESDB, while the client

field is located in SAP. However, repeated rewriting of the filter expression using

rules (�Field) and (�Op) would result in

(t.idSALESDB = j.teamIdSALESDB)SALESDB
∧ (j.clientIdSALESDB = c.idSAP)�
∧ (j.dateSALESDB = 8/5⊥)SALESDB
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which would allow for the localization of the first and third comparisons to the

SALESDB binder group, using rule (�Filter):

foreachfilter

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝
t← dbSALESDB(Team)SALESDB,

j ← dbSALESDB(Job)SALESDB,

(t.idSALESDB = j.teamIdSALESDB)SALESDB
∧ (j.dateSALESDB = 8/5⊥)SALESDB

⎞
⎟⎟⎠
SALESDB(

c← dbSAP(Client)SAP,

true⊥

)
SAP

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

select

where filter = (jSALESDB.clientIdSALESDB = cSAP.idSAP)�

select = 〈team = tSALESDB, job = jSALESDB, client = cSAP〉�
At this point, no other rewriting would change the labelled query, so we reached

the normal form of the query expression. If we were localizing the full withLoc

query introduced in Section 3, we would reach the exact same result for the

foreach expression, but would also be able to localize the Coords web-service call

at location GEO, as expected.

6.3 Phase III: Finalizing

The third and final phase of the process consists in transforming the labelled

expression format back to the regular syntax, while ensuring that all operations are

indeed evaluated at the most appropriate location.

The labelled (query) expressions (r) are transformed, via function � r �, defined in

Figures 17 and 18, in such a way that remote execution expressions, of the form

[ e ]�, are explicitly placed when crossing the border of a location, and so that

binder groups in foreach queries are rewritten as full-fledged remote inner queries

(recall the intermediate format description in Section 6.2). We inductively define this

function by case analysis and ensure that all transitions to a different location (other

than ⊥) are enclosed by a remote execution expression, and that a transition from a

location � to ⊥ is ignored, as expressions labelled at ⊥ can be evaluated anywhere.

This general policy is captured by the auxiliary function e ↑�′� , and based on the

invariant that � � �′, established by the rewriting system (Lemma 6.10).

To accommodate the transformation process, we extend the operational semantics

so that all three phases described here are called in sequence. We need to annotate

the evaluation functions with a location 〈〈e〉〉�, �e��, and ensure that query results

are produced using the properly transformed version of the query (see Figure 9).

The initial location of every evaluation is �. The cases where the annotation is

manipulated in any significant way are the cases of remote invocation [ e ]� that

switch the current execution location according to the expression’s annotation:

�[ e ]���′ = �e��
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Fig. 17. Location labelling erasure function.

Fig. 18. Location labelling placing function.

and the case of the exec x : σ = e in e′ expression that uses the current location

annotation to transform the inner expression:

〈〈exec x : σ = e in e′〉〉� = 〈〈e′{v/x}〉〉� where r = 〈〈e〉〉�
∅; Γ 
 r : τ⇒ r′ : σ

r′ �∗ r′′

r′′′ = � r′′ ��
v = �r′′′��

We have presented results that support the soundness of the two first steps

(Lemmas 6.2 and 6.10). Phase III maintains the whole structure of the query, which

does not raise any soundness issue. To ensure the whole process is sound, it would
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Fig. 19. Code for Figure 7, using only top level data.

be interesting to ensure that operations are only executed in sites with the right

capabilities. We leave that as future work.

The application of this transformation process ends with the compilation of the

query and corresponding generation of native query languages for each database

system running in the remote locations. Code located at location � is translated into

a general purpose language (Java, C
 or JavaScript), while others include languages

like SQL, LINQ or JavaScript using MongoDB API and operators. Notice that we are

not introducing any kind of centralized middleware system that interprets a general

query language, serving the results to a client. Instead, we devise a method that allows

true data mashups, with the adaptation and discharging of query fragments from

the client device or system, to the native remote database systems, and providing

glue code as necessary.

Example. When compiling a query we take advantage of the way its results are

being used. As an example, consider two possible usages of the withLoc query from

Figure 7. First, consider that we only want to display the name of the teams that

have any work to do. We thus compile the query using τ = 〈name : String〉∗ as the

target usage type. In this process, we can safely ignore the Client table and the

calls to the Coords service, resulting in the (abbreviated) query:⎡
⎢⎢⎣

groupbyname=x.team.name
details { x←

foreacht.id=j.teamId∧j.date=8/5

{
t← teams,

j ← jobs

}
〈team = e, job = j〉

}

⎤
⎥⎥⎦
SALESDB

Notice that the group-by operation is compiled and localized in the SALESDB

database, since the usage does not refer to group details nor the Client table, which

resides in a different database. Notice also that the addLoc term is projected, as in

the example in Section 6.1, to

addLoc′ = λx.foreach { y ← x } y ⊕ 〈〉

which in practice is doing nothing. During the code generation phase we detect and

remove patterns like these. For the sake of simplicity, the abbreviated query above

is shown using this optimization. This query can then be used to produce the C#

code shown in Figure 19. If we instead compile it with relation to type

τ = 〈 name : string,

details : 〈job : 〈title : string〉,
client : 〈name : string〉,
loc : 〈lat : num, lng : num〉〉∗〉∗
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then we no longer can omit the call to the GEO service. Furthermore, the group-by

operation needs to be performed in memory.

The resulting code is shown in Figure 20. Although neither the Job.ClientId nor

Client.Id fields are present in the usage type, we need to fetch them because they

are used by the in-memory join operation. Similarly, we need to fetch the client’s

address because it is needed for the Coords service. For simplicity reasons we have

omitted the code required to remove these fields from the result.

We leave further query optimization for future work. Looking at the code in

Figure 20, it is obvious that fetching all clients is not a very efficient approach. We

can take advantage of the results returned by the query in the SALESDB database to

restrict the data to be fetched from the SAP database, e.g., by introducing an ‘IN’

condition.

7 Related work

Unlike many DSLs for the development of complete data-centric applications

(Cooper et al., 2007; Fu et al., 2013), we focus on the problem of typeful integration

of data sources, as in Lindley & Cheney (2012), but dealing with the particular

aspect of distributing and optimizing queries, by means of code specialization, given

a particular usage. Our DSL is similar to Cheney et al. (2013), in the sense that

both allow for the composition of staged values (queries, in our case), and for

the separate compilation and execution of queries. Instead of focusing on SQL,

however, our proposal targets a flexible nesting base model (as Buneman et al.

1995) that fits several variants of data repositories, from relational databases, to

NoSQL document-based repositories, to parametrizable web services. Additionally,

we naturally deal with raw nested data (Colby, 1989), by means of our in-place

modification operation.

Our work is related to the composition of higher order queries, and higher order

manipulation of XML data (Benzaken et al., 2003; Robie et al., 2014). We introduce

the uniform and compositional mechanism of in-place modifications that applies to

all kinds of repositories, is suitable to query simplification and can be compiled into

efficient imperative code that manipulates data by reference (e.g., IndexedDB).

Native capabilities of data repositories have been used to generate queries in

heterogeneous environments. In the case of Vassalos & Papakonstantinou (2000),

capabilities are captured using description logics, to solve the problem of answering

queries by combining existing repositories. Our goal is different, as we limit the

capabilities to the language operations, and avoid using the semantics of the schema.

We use capabilities to produce a sound distribution of general purpose operations

across remote sites, and then use dedicated compilation strategies. Vassalos &

Papakonstantinou (2000) define a general query generation strategy, without seeking

the optimization of code and sites visited based on usage. Our approach falls into

the category of light-weight compiler and code specialization procedures, and is not

in the category of semantic-based code generation tools.

Related work includes systems that integrate, behind a single interface, several

data-based systems (e.g., Halevy et al. 2006), acting as a middleware layer. We
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Fig. 20. Generated code for query in Figure 7, using job’s title, the client’s name and

coordinates.
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address a simpler, and yet relevant, scenario that is how to integrate data sources via

a query compiler for applications that typically are already capable of orchestrating

several data sources. This approach lets the developer seamlessly access and combine

data of different natures and sources, without worrying about the efficiency of the

orchestration and distribution of the final query, nor knowing the specific (native)

query languages involved. Query systems like Kleisli (Wong, 2000) already pursue

these goals of abstraction in a direction very similar to ours, providing a high-

level query language for nested collections and optimized distribution of queries

to external data sources. Our work also provides a single query language over the

participating data sources, and deals with the problem of maximizing the distribution

of query subexpressions. However, we shape the optimized query along different

optimization axes such as the capabilities of target locations and usage type, and not

towards execution strategies like lazy and concurrent evaluation. Furthermore, our

principled description of location capabilities allows for the uniform and extensible

treatment of sub-queries and sub-expressions across the whole query. To the extent

of our understanding, in Wong (2000), the use of specific drivers to different database

systems assumes that all target database systems are treated alike, with the same

capabilities. Also, in many of the examples shown, the developer still needs to be

aware of the specific query languages being integrated (SQL).

There are similar aspects between the location modalities in ML5 (Murphy VII

et al., 2008) and the inferred labelling of expressions that we implement. Our work

is mainly focused on an eager algorithm for location inference, shaped by the set of

capabilities exposed on each remote location. It is clear that we can directly encode

the location of data sources in ML5, and that several aspects match directly, as the

“shamrock” modality with our labelling matches with the ⊥ location. However, we

believe that the specialized constraints on language capabilities we introduce would

only be possible in an extended ML5 setting where language operations are tied to

locations by typing axioms.

It is foreseeable that the formal framework provided by general models for

distributed computing, such as the Ambient Calculus (Cardelli et al., 2002) or the

modal logic behind ML5 programming languages, can be extended to prove a

stronger soundness property of our approach at a meta-level, ensuring that code

transformations always produce queries that only use the capabilities available in

the locations where the data collection and manipulation operations are set to be

executed. We leave this study for a subsequent work. Note that in our setting any

unlabelled well-typed query is correct with relation to this invariant, data source

operations are executed remotely and the manipulation of results occurs in-memory

at the � location.

8 Final remarks

Querying data in heterogeneous and distributed environments is arguably a skilful

task, when building all kinds of service and data-centric applications. We believe that

it is crucial to introduce new data manipulation languages for nested collections that

allow the orchestration and abstraction of a number heterogeneous data sources
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remotely, and served by different kinds of database systems, yielding different

capability sets. In this work, we leverage on the abstraction of such capabilities,

and on a type-based compilation and optimization algorithm, to attain such an

objective. Our core goal is the production of specialized code for each specific

data usage and each kind of database engine. We eagerly project and aggregate

operations as close to the data sources as possible, and fall back to in-memory data

processing when needed. Our approach differs from existing middleware systems that

provide heterogeneous and distributed queries: we provide a compile time strategy

of code specialization, orchestrated by the client application, which is not feasible in

a general purpose situation. Our approach seeks the elimination of (useless) code,

and the corresponding (expensive) remote invocations, on each particular use of

a query. It is not feasible for a middleware system, containing predefined queries,

to automatically adapt to any possible use of the query resulting data. We further

seek an associate optimized query execution plan, obtained by discharging as much

work as possible to external systems. Notice that our focus is not on the traditional

(vertical) reordering of query operations, which we find to be orthogonal to our

approach and whose combination can only increase the efficiency of queries even

further. Nevertheless, we find the maximal grouping of partial join operations in

terms of location within a single existing node. Also, the efficient, optimized and

adaptive remote invocation of query parts can be orchestrated orthogonally (Grade

et al., 2013).

We extend and generalize the initial work presented in Seco et al. (2015), by

modularizing the optimization procedure in such a way that the non-trivial task

of distributing and gluing query parts is achievable by a sequence of simple code

transformations. Other extensions to the optimization process such as the ones listed

below, and to the language itself (i.e., new query operations), should fall into the

same architecture seamlessly. Moreover, we added the formal methodology to prove

the soundness of the whole process.

Two immediate extensions that arise from this work are the delegation between

sites and the introduction of a cost model to the optimization procedure. Also, the

application of a more general normalization technique, like the one in Cheney et al.

(2013), to queries can lead to better results in terms of optimizing query execution

time, and to making the localization more agnostic to the particular query structure.

The implementation of site delegation, where parts of queries are exchanged and

combined, results from a richer lattice of locations and capabilities. Our setting can

be uniformly extended to cope with delegation, although some work is needed to

adapt the formal results. Nevertheless, the association of a traditional cost model

to our localization and capability-based algorithm is also interesting. In Taylor

(2010), remote execution of subqueries already incorporates a transmission cost,

which can easily extend and interplay in the binder grouping mechanism that we

have introduced to produce the best combined result.

Finally, recall that our model is the base for a new visual data manipulation

language in the OutSystems platform, one that allows the gradual construction

of queries with immediate feedback to developers. In this scenario, developers are

abstracted from the real usages of their queries, and therefore code specialization is a
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highly desired feature. Future work also includes the definition of the query rewriting

mechanism that simplifies the deep data manipulation operations on nested data.

We foresee an approach that builds and extends existing works on normalization of

queries (Cooper, 2009; Cheney et al., 2013), to be able to deal with more instances

of the localization problem.
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