
K. Shiohama and H. Xu
Nagoya Math. J.
Vol. 150 (1998), 105-134

A GENERAL RIGIDITY THEOREM FOR
COMPLETE SUBMANIFOLDS

KATSUHIRO SHIOHAMA AND HONGWEI XU

Abstract. Making use of 1-forms and geometric inequalities we prove the
rigidity property of complete submanifolds Mn with parallel mean curvature
normal in a complete and simply connected Riemannian (n-\-p) -manifold Nn+P

with positive sectional curvature. For given integers n, p and for a nonnegative
constant H we find a positive number τ(n,p) 6 (0,1) with the property that if
the sectional curvature of TV is pinched in [τ(n,p), 1], and if the squared norm
of the second fundamental form is in a certain interval, then Nn+P is isometric
to the standard unit (n + p)-sphere. As a consequence, such an M is congruent
to one of the five models as seen in our Main Theorem.

§0. Introduction

An important problem in differential geometry is the study of relations
between the geometric structure and the geometric invariants of Rieman-
nian submanifolds. After the pioneering work of Simons [S] the following
result, known as the rigidity theorem for submanifolds containing minimal
cases, was proved first by Lawson [LI], Chern-do Carmo-Kobayashi [CDK]
and later Li and Li [LL] and finally by the second author [XI], as stated

THEOREM 0.1. For given constant H > 0 and positive integers n (>
2), p there exists a positive number C(n,p, H) with the following property:
If Mn is a closed submanifold in the standard unit (n + p)-sphere Sn + P(l)
with parallel mean curvature normal field having norm H, and if S is the
squared norm of the second fundamental form satisfying

S<C{n,p,H),

then M is congruent to one of the following:
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106 K. SHIOHAMA AND H. XU

(2) the isoparametric hypersurface Sn~1(-^=) x S ^ ^ — ) in S n + 1 ( l ) ,

(3) one of the Clifford minimal hypersurfaces S f c (w|) x Sn~k(JΏ^) in

S " + 1 ( l ) , for fc = l , . . . , n - l ,

(4) the Clifford torus Sx(ri) x S1(r2) in S3(r) with constant mean cur-

vature Ho, where r1} r2 = [2(1 + H2) ± 2HO(1 + H2)1/2}'1/2, r =

(1 + # 2 - H2)-1'2, and 0<H0<H,

(5) £/ie Veronese surface in S4( , !

 2 ) .

iίere λ and C{n,p,H) are given by

λ = 2 ( ^ 1

{ α(n, ϋ"), /or p = 1, or p = 2 and H φ 0

min{α(n, i ί), -(2n + 5n# 2 )},
3

/or p > 3, or p = 2 and i ί = 0,

Note that the special case where p = 1 and H φ 0 was proved indepen-

dently by Alencar and do Carmo in [AdC]. Also note that Theorem 0.1 was

obtained under the assumption that the ambient space is the round sphere.

The existence of parallel mean curvature normal field imposes very nice

properties to submanifolds, whatever the ambient spaces are. In fact the

second author proved in [X2] the rigidity for compact minimal submanifolds

in pinched Riemannian manifolds, as stated

THEOREM 0.2. ([X2]) For given positive integers n> 2, p there exists

a number δ{n,p) with 0 < δ(n,p) < 1 with the following properties: If Mn

is an oriented closed minimal submanifold in a complete simply connected

manifold Nn+P whose sectional curvature KN satisfies δ(n,p) < K^ < 1

and if

n
-c)<S<n-- sgn(p - 1) - 7(n,p)(l - c),
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where c := inf K^, then N is isometric to S n + P ( l ) . Moreover M is congru-

ent to one of the following:

(1) S"(l),

(2) the Clifford minimal hypersurfaces Sk(^)*Sn-k(^f^) in Sn + I(l) ;

for k = 1, , n — 1,

(3) the Veronese surface in S 4(l).

Here β(n,p), j(n,p) and δ(n,p) are given as

β(n,p) := ^\pn(n - l)(52n - 50)]1/2,

Ί(n,p) := n + | ( p - l)(n - I)1'2 + ^\pn(n - l)(52n - 50)]1/2,

δ{n,p) :== 1 - n(3 - sgn(p - l)){3n + 2(p - l)(n

The purpose of this paper is to relax the special closed submanifolds

in the above results to complete submanifolds with parallel mean curvature

normal fields, and the ambient space to general Riemannian manifold Nn+P.

Thus we obtain the generalization of Theorems 0.1 and 0.2.

MAIN THEOREM. For given positive integers n (> 2), p and a non-

negative constant H there exists a number τ(n,p) such that 0 < τ{n,p) < 1

with the following properties: If Mn is an oriented complete submanifold

with parallel mean curvature normal field with its norm H in a complete and

simply connected (n + p)-dimensional Riemannian manifold with τ(n,p) <

< 1, and if

nH2 + i4i(n,p)(l - c) + A2(n,p)[(l + H2)H]1'2{1 -

< S < C(n,p,H) - 5i(n,p)(l - c) - B2(n,p)[(l + H2)H)ι'2(l -

where c := inf KM, then N is isometric to S n + P ( l ) . Moreover,

1. If supM S < α(n, H), then M is congruent to either Sn(—τ==f) or the

Veronese surface in S4( pr—rm)-

2. If M is compact, then M is congruent to one of the following:
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(2) the isoparametric hypersurface Sn~1( . * χ2) x Sx( /^χ2) in S n + 1 (l),

(3) one of the Clifford minimal hypersurfaces Sk(y^) x

), for k = l , . - , n - l ,

(4) the Clifford torus S1(ri) x S1(r2) in S3(r) with constant mean cur-
vature Ho, where r1} r2 = [2(1 + H2) ± 2HO(1 + H2)1'2]-1'2, r =
(1 + H2 - Hi)-1'2, and 0<H0<H,

(5) the Veronese surface in S4 (

ϋΓere C(n,p, H), a(rtjH) and λ are defined as in Theorem 0.1.

The constants τ(n,p), Ai(n,p), A2(n,p), B\(n,p) and B2(n,p) are pre-
cisely given in the proof (see §3). In the case where M is not oriented, we
can obtain similar results by using the Riemannian double cover. Our proof
method is quite different from the previous ones developed in Theorems 0.1
and 0.2. In contrast to the proofs of Theorems 0.1 and 0.2, our proof does
not require the generalized maximum principle and the generalized Simons
inequality, but the use of two distinct differential 1-forms and integral in-
equalities for the semi-norms of the second fundamental form of M. The
crucial point of our proof is to verify that c = 1. The closed minimal case
in our Main Theorem has already been established in Theorem 0.2, and
hence H φ 0 is assumed throughout $2 and §5. In due course of the proof
of our Main Theorem we obtain geometric inequalities (see Theorems 2.4,
2.8, etc.) by which the rigidity results for compact cases are obtained (see
Theorems 3.1, 3.3 and 3.4). In complete case we show by computations that
the Ricci curvature is bounded below by a positive constant, and hence it
reduces to compact case.

The paper is organized as follows. Local formulas and propositions are
prepared in §1. In §2 we present two geometric inequalities for the semi-
norms of the second fundamental form. In §3 we investigate the rigidity of
closed submanifolds with parallel mean curvature normal field in a pinched
manifold. In §4 we discuss complete submanifold with parallel mean curva-
ture normal field and complete the proof of our Main Theorem.

The second author would like to express his thanks to Professor P. Li
for his valuable suggestions.
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RIGIDITY FOR COMPLETE SUBMANIFOLDS 109

§1. Preliminaries

Throughout this paper let Mn be an n-dimensional connected and
complete Riemannian manifold isometrically immersed into an (n + p)-
dimensional Riemannian manifold Nn+P. The following convention of in-
dices are used throughout.

1 < A, B, C, < n + p, 1 < i, j , k, < n, n + 1 < α, /?, 7, < n + p.

Choose an orthonormal frame field {e^} in a neighborhood of a point p G M
such that the ê 's span the tangent space TpM to M at p. Let {ωA} be
the dual frame fields of {e^} and {UJAB} the connection 1-forms of N.
Restricting these forms to M, we have

Let α(x), b(x) for x G ΛΓ be the minimum and maximum of Kjy at that
point and c, d the infimum and supremum of α, b: N —>> R over TV. The
curvature tensors of TV, M are denoted by KABCD > Rijkh and the normal
curvature tensor of M by Raβkl respectively. Let R be the scalar curvature
of M. The second fundamental form of M is denoted by h and the mean
curvature normal field by ξ. Set H := ||£||, the mean curvature of M and
5 the squared norm of h. We then have

(1.1) h--

(1.2) ξ -

(Λ Λ\ 7? ,, -
\L'°) -Γίijkl ~

(Λ A) Ft at i -

The scalar curvature R of M is given by

(1.5) R = 2^ K^ + n2fP - 5.

DEFINITION 1.1. We say that M admits parallel mean curvature nor-
mal field iff ξ is parallel in the normal bundle over M.
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We assume that M admits a parallel mean curvature normal field and that

H φ 0. Choose en+ι such that it is parallel to ξ and tr i f n +i := tr(/i^ f l ) =

nH. Then, setting Ha the (n x n)-matrix with (i, j) component hfj, we

observe that tr ίfy = 0 for all β > n + 2. The squared norm S of the second

fundamental form is divided into two parts as follows.

SH:=tτH*+l9 Sj:= ] Γ trflg.

The following proposition is immediate from the definition, and the proof

is omitted here.

PROPOSITION 1.2. If M admits parallel mean curvature normal field

ξ, then either H Ξ O or H is non-zero constant and H^

Denoting the covariant derivatives of hfj by hf k and hf-kl respectively, we

have

s s β

^ S * + Σ h%kω" + Σ ΛS

We then have

ί1-6) h?jk ~ h?kj = -

and the Ricci formula

(1.7) Λ£w - Λ? ίfc - ^ h%RsM + ^ h<*sRsjkl

S S β

Let Kaijki be the covariant derivative of Kaijk as the section of T~L(M) ®

T*(M)®T*(M)(8)T*(M) and KABCD E the covariant derivative of KABCD

as the curvature tensor of N. Restricted to M we have

(I'ty X-/ Kaijkl^l = dKaijk +
I
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— Kaijkι -

and

(1.9)

β β m

DEFINITION 1.3. M is called a submanifold with parallel second fun-
damental form iff hf k = 0 for all i, j , fc and α. TV is by definition a locally
symmetric space iff KABCD E = 0 for all A, JB, C, £), J5.

The Laplacian Δ/ig of the second fundamental form h is defined by Δhf- :=
Σ/c ̂ ?jkk' ̂ e s e ^ ̂ khfj '•— ̂ f77c -^or a n ( n x n)-i^atrix A = (βij) we denote
by N(A) the squared norm of A, i.e., N(A) := tr(A*A) = Σi,jaϊj' T h e n

iV(A) = NiTΛ^T) holds for every orthogonal (n x n)-matrix T.

PROPOSITION 1.4. (see [CDK], [LL]) For symmetric matrices

' ' ' 5 A-n+p tet &oίβ = = tr^Ao;/l^5J; OQ ! = Oαα =

Γ/ien

- AβAa) sgn(p -
aβ

where sgn( ) is the standard sign function. Moreover, equality holds if and
only if at most two matrices Aa and Aβ are non-zero and they can be
transformed simultaneously by an orthogonal matrix into scalar multiples of
Aa and Aβ respectively where

/ 0 1 0
1 0 0
0 0 0

o \
0

0 Aβ =

/ 1 0 0
0 - 1 0
0 0 0

o \
0

0

\ 0 0 0 ••• 0 / \ 0 0 0 ••• 0 /

The following Proposition is seen in [G]. The proof is omitted here.

PROPOSITION 1.5. Let N be an (n +p)-dimensional Riemannian man-
ifold. If a < KN < b is satisfied at a point, then the following estimates
hold at that point.

(1) \KACBC\<\{b-a),forAφB,
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(2) \KABCD\ < §(& — o), for all distinct indices A, B, C, D.

PROPOSITION 1.6. Let αi, , an and 6χ, , bn be real numbers satis-

fying Σi ai — Σz bi = 0 ; Σi &i — & and Σi bl = b- Then

CbiO^ I \ \Tl — Δj\TlyΓί — 1JJ ft O,

where equality holds if and only if either ab = 0, or at least n — 1 pairs of

numbers of (α^, 6̂ ) fs are the same.

Proof. We only need to check the case where n > 3 and a = b = 1.

Consider the function

α iOl Γ I T*-I • . T* ' ϊ l i . . . 7/ I \ rί% rίl

z

subject to the constraint conditions

The Lagrange multiplier is employed for the proof by setting

F(xi, -,xn,yi, ,yn,λ,μ,i/,σ)

If (#i, , xn, yi, , yn) is a critical point of / with the critical value

under the constraint conditions (1.11), we then have

(1.12)

(1.13)

From (1.11) and the above relations,

(1-14) ι/ = "^ ' x = ll*

Combining (1.12) and (1.14),
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Now we compute the maximum of the function

To

under the constraint conditions

(1.16)

From (1.16) we get

(1-17) ZiZj — Zn .

Making use of (1.16), (1.17) and the Schwarz inequality,

- l x 2

) Σ

2n(n-3) 4 2n(n - 3) 2 n

n

Note that

where equality holds if and only if
n

Therefore we have

(1.18) g(Zl, •••,zn)<(n- 2)2[n(n - I ) ] " 1 , .

where equality holds if and only if at least n — 1 numbers of

Prom (1.15) and (1.18)

j's are equal.

(1.19) < max{|M0 |, |m o | } < (n - 2)[n(n -
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where Mo and rao are the maximum and minimum of / under the con-

straint condition (1.11) respectively. The above computation implies that

the equalities in (1.19) hold if and only if at least n — 1 pairs of the (a^, j/j)'s

are equal. Π

COROLLARY 1.7. Ifa±, , an are n real numbers with ]Γ^ α̂  = 0, then

(1.20) \£af\ < (n - 2)[n(n -

(Λ 01 \
( L 2 1 )

Moreover the following (1), (2) and (3) are equivalent.

(1) Γfte equality in (1.20) ZioWs.

(2) ΓΛe equality in (1.21) holds.

(3) J4£ /ea5^ n — 1 numbers of the aι 's are equal.

§2. Geometric inequalities for the second fundamental form

Throughout this section let Mn be an oriented closed submanifold of

dimension n in an (n + p)-dimensional manifold Nn+P with parallel mean

curvature normal field. The squared norm of the second fundamental form

is divided into SH and S/, which we shall call the semi-norms of the sec-

ond fundamental form. The geometric inequalities for the semi-norms are

provided in this section. In Theorems 2.4 and 2.8 we need not assume the

completeness of N.

Prom (1.6), (1.7) and Proposition 1.2,

k k,m

Substituting (1.3) into the above, we get

Kn+Ujkk)
m,k

m,k,a
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RIGIDITY FOR COMPLETE SUBMANIFOLDS 115

Therefore

(2.i) ι*sH = Σwά1)2+Σ ^ + l Δ ^ + 1 = A + B + a

Here we set

S:= Σ
i,j,k,

c := ΣK
J ] tv(Hn+1Hβ)

2-
βφn+l

Several lemmas will be needed for the proof of our geometric inequalities.
We first find the lower bound for A in terms of i7, SH and S.

LEMMA 2.1.

A > (SH ~ nH2) VλnH2 -S- <n"2^ H(SH - nH2)1'2}.

Proof. Let {ê } be an orthonormal frame at a point on M such that
the matrix ifn+i takes the diagonal form and such that h^1 = λ^+ 1δ^ for
all i, j . Set

for i = 1, , n.

Then
(2.2) B 1 ==0, B2 = SH-nH2,

and
(2.3) £ 3 - 3ff5H - 2nH3 - /3.

From (2.2), (2.3) and Corollary 1.7, we get

βφn+l
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> nH[3HSH - 2nH* - ^ ^ ^ 2 ] - S% -

> (SH - nH2) \2nH2 - y * ( n ~ 2 ) HB\12} + nH2SH - S2

H - B2ST

L y/n(n - 1) J

- ( 5 H - nH2) hnH2 -S- <n~^ H{SH - nH2)1'2}.
L yjn(n — 1) -I

This proves Lemma 2.1. D

The lower bound of 5 in terms of α, if and SH is obtained as follows.

LEMMA 2.2.

B >na(SH-nH2).

Proof. It follows that

= \

i,k z,fc

= na{SH -nH2).

This proves Lemma 2.2. Q

The integral of C is estimated as

LEMMA 2.3.

/ CdM> - - ί n ( n - l ) ( 2 6 n + 16p - 41) / (b-a)2dM.

Proof. First of all we note that
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We define a diίferentiable 1-form ω as follows.

We then get

Thus,

Since the mean curvature normal field of M is parallel,

(2.4) £ / $ Ί = 0, for all j.

From (1.6), (2.4) and Proposition 1.5,

~ Kn+lkik)Kn+ljij

(2-5)
i j

>--n(n-l)\b-a)2.

On the other hand, Σi^k(h™^ + \Kn+iijk)
2 > 0 implies that

(hijk ) + Σ, hijk Kn+lijk

1 " 1
- ~7 2 ^ Kn+lijk ~ nl^'
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Also from (1.4),

Kβn+lmi

> ( p l ) n ( n

Here we note that h^^hf^ + hijti^j1 ιs symmetric with respect to i and
m, while Kβn+ιmi is anti-symmetric with respect to i and m. Therefore

= 0.

Thus we have

(2.7) C > -—n(n - l)(26n + 16p - 41)(6 - α)2 - divω.

By using Green's divergence theorem we get

CdM> - i - n ( n - l ) ( 2 6 n + 16p - 41)
'2

D

We are now in position to establish the following geometric inequality by
setting the constant

D(n,p) := —n(n - l)(26n + 16p - 41).

THEOREM 2.4. Lei α(x) and b(x) for a point x £ Nn+V be the mini-
mum and maximum of the sectional curvature of N at the point respectively.
Then

(2.8) / {(SH ~ nH2) \na + 2nH2 -S- ^ " 2 ) H(SH - nH
JM L \Jn(n - 1)

-D{n,p){b-a)2}dM < 0.
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Proof. It follows from Lemmas 2.1, 2.2 and (2.1) that

(2.9) -ΔSH > (SH ~ nH2) \na + 2nH2 - S

n(n-2)

ln{n - 1)
+ C.

Integrating both sides of (2.9) and applying Lemma 2.3, we conclude the

proof. D

If p > 1, then (1.3), (1.6) and (1.7) imply that for all β φ n + 1,

k,m

ACjΛϊfc + hβ

mkK
a,m,k

Therefore we have

1 Λ c Λ~^ ίuβ \2 , V^
O / v V ijks ' / j

(2.10) ij,kβφn+\ i

where we set

W:=- Σ N(HaHβ-HβHa)-

(2.11) X := nH Σ tr(Hn+1H
2

β) - Σ [tr(Hn+1Hβ)}2,
βφn+l βφn+1

(2.12) Y:= Σ
i,j,k,m,βφn-{-l

h?khijKaβjk,ij

ij,k,a,βφn+l

(2.13) Z:= Σ Kkf- ΣΣ
i,j,kβφn+\

tv(Hn+1Hβ)
2-

βφn+1 βφn+l
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From Proposition 1.4 we find a lower bound for the first term of right hand
side of (2.10) as

(2.14) W > - ( l + ^sgn(p-2))( ] Γ trH2)"\
βφn+l

To estimate the lower bounds for the other terms on the right hand side of
(2.10) we need the following Lemmas.

LEMMA 2.5.

X > [2nH2 - (n - 2)n1'2{n - l ) ~ 1 / 2 i ϊ ( t r ^ + 1 - nH
2)1'2

βφn+l

Proof. We rewrite (2.11) as

2}X = nH Σ tv[(Hn+ι-HI)H2

β}

(2.15)

βφn+\ βφn+l

where / is the unit (n x n)-matrix. Fix a vector ββ and let {ê } be a local
orthonormal frame such that the matrix Hβ takes the diagonal form and
such that

h% = 0, for i φ j .

Then we get

nH tv[(Hn+1 - Hί)H}] - [tr(Hn+1 - HI)Hβ}
2

Using the Schwarz inequality and Proposition 1.6, we see from (2.16)

nHtv[(Hn+1 - HI)HJ] - [tr(Hn+1 - HI)Hβ}
2

> - ( n - 2)

n _ 2)n 1/ 2(n - \)~ι/2H{tτH2

n+1 - nH2)1'2 tr H2

β

{txH2

n+ι-nH2)tτH2

β.
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This together with (2.15) implies the desired inequality. Π

LEMMA 2.6.

Y>na

Proof. For a fixed index β we choose an orthonormai frame {ê } such
that the matrix Hβ takes the diagonal form. We then conclude the proof

by

Σ

>naΛτHl-\(n-l)ι'2{b-a)

D

LEMMA 2.7.

/ ZdM> - — (p-l)n(n-l)(26n-9) / (b-afdM.

Proof. A differentiable 1-form ^ is defined as follows
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We then have

(2.17) -

= Σ (*&*/**+hΦRβφ) -div θ-
i,j,k,βφn+l

Σij,kKk + \Kβi3k? > 0 we have

Σ [(<*)*+ *£•*

^ ~4 Σ
(2.18)

^ ~ Σ ^ i * ~ 2^ ~4 Σ ^

>~(p- l)n(n - l)(8n - 7)(6 - α)2.

Since M admits parallel mean curvature normal field, we have

(2.19) Σ C = 0 ' f o r a l l ?'

From (1.6), (2.19) and Proposition 1.5 we get

(2.20) Σ *4 tf/** = - Σ
i,βφn+l

>

From (1.4) and Proposition 1.2,

tv{Hn+ιHβγ-
βφn+\ βφn+\

= \ Σ W^+^Λg^^wfc-l Σ
j

- α) 2 .
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Combining (2.13), (2.17), (2.18), (2.20) and the above inequality, we get

(2.21) Z > - ^ ( p - l)n(n - l)(26n - 9)(6 - a)2 - div<9

and hence,

/ ZdM> - — ( p - l ) n ( n - l ) ( 2 6 n - 9 ) [ (b-a)2dM.

D

We now set

£(n,p) := | ( P - 2)(n - I) 1 / 2 , F(n,p) := ^ ( p - l)n(n - l)(26n - 9).

THEOREM 2.8. Ifpφl, then

I \Sι[na + 2 n # 2 - 5 - - sgn(p - 2)5/

-(n - 2)n1/2(n - 1)-^2H(SH - nH2)1'2

-E(n,p)(b - a)} - F(n,p)(b - a)2\dM < 0.

Proof. We see from (2.10), (2.14), Lemmas 2.5 and 2.6,

-ASi > Sr[na + 2nH2 -S-- sgn(p - 2)Sj

- (n - 2)n1/2(n - ly^H^Sa - nH2)1'2

-2-(jp-2){n-l)ιl2{b-a)] + Z.

By the Green formula and Lemma 2.7,

/ {Si[na + 2niϊ2 - 5 - - sgn(p - 2)5/

(2.22) - („ - 2)nx/2(n _ I)~ΦH(SH - nH 2 ) 1 / 2

- E(n,p)(6 - a)} - F(n,p)(b - a)2\ dM < 0.

D
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§3. Rigidity theorems for compact submanifolds

The compact case for Main Theorem is discussed here. By setting

1 /—,—

1
7 l (n) := n + —=y/n(n - l)(26n - 25),

6 2

we first prove the following.

THEOREM 3.1. Let p = 1. There exists a number δι(ή) with 0 <

^i(n) < 1 such that if the sectional curvature of Nn+1 and the squared

norm of the second fundamental form of M satisfy

δι(ή) < KN < 1, nH2 + βι(n)(l - c) < S < α(n, H) - 7i(n)(l - c),

where c := inf KN, then N is isometric to S n + 1 ( l ) . Moreover M is congru-

ent to either Sn( . λ

 2 ) or the isoparametric hypersurface Sn λ( , λ

 2 ) x

S1( i Λ

 2 ) . Here λ and a(n,H) are defined in Theorem 0.1.

Proof. Since c < α(x) < b(x) < 1, (2.8) implies that

(3.1) / ((5 - n/ί2) fnc + 2nH2 -S- " ^ ~ 2 ) g (S - n F 2 ) 1 / 2 !

- β ( n , p ) ( l - c ) 2 } < 0 .

Setting 6i(n) := 1 - 2n(n - l)[(n2 - 2n + 2)(/3χ(n) + 7i(n))]~\ we have

1 - c < 1 - 6χ(n) = 2n(n - l)[(n2 - 2n + 2)(/?i(n) + T i H ) ] " 1

< min[α(n,H) — nH2][βι(n) +7i(n)]~1

<[a(n,H)-nH2]\β1(n) + 'n(n)]-1.

Thus we get

nH2 + βι(n)(l - c) < a(n, H) - 7i(n)(l - c).

From assumption

(3.2) nH2 + /?i(n)(l - c) < S < α(n, iί) - 7i(n)(l - c),
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we see that the first term on the left hand side of (3.3) is not less than

βi(n){l -c)[n + 2nH2 - a(n, H)

- n(n~2^ H(a{n, H) - nH2)1'2 + a(n, H)-S + nc-n]
yn(n — 1)

= βι(n)(l — c)[a(n, H) — S + n(c — 1)]

> βι(n)(l — c)[7i(n)(l — c) — n(l — c)]

= D ( n , p ) ( l - c ) 2 .

Thus we have

(3.3) (S - nH2) \nc + 2nH2 -S- ~ ^ HIS - nh

From (3.1) and (3.3) we observe that the left hand side of (3.3) is identically

zero. This together with (2.8) and c < a < b < 1 implies a = c and b = 1.

Since equalities hold on (2.5) and (2.6), we have

Tt(r) — Λ\2(h — n\2 — — nίn — l^ίl — r\2

This implies that 1 — c = 0. Therefore all the equalities hold in (2.5), (2.6),

(3.1) and (3.3). Since the left hand side of (3.3) is identically zero and c = 1,

we see that N is isometric to S n + 1 ( l ) , and

S = nH2 or S = a(n,H).

The above relations imply that S < C(n^p^H). From Theorem 0.1 we see

that M is the small sphere Sn(—τ==^) or the isoparametric hypersurface

The following lemma is needed for the discussion of the case of higher

codimensions.

LEMMA 3.2. Let Mn be a closed and oriented submanifold in Nn+P. If

S<nd+ — -H2 - n ( n 2 ) Jn2H± + 4(n - \)H2d - aUd - c),
2 ( n l ) /2( 1) V
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then either d = c or

ί (SH - nH2) dM <a2 ί (b- a) dM.
JM JM

Here αi, a2 are positive constants with a2 = D(n,p)(aι — n)~ι and d =
b as defined in §1.

Proof. Let

α(», H, d) := nd + ^-^H2 - ^ | ^H± + 4(n - l)H*d.

From assumption, the left hand side of (3.4) is not less than

nd + 2nH2 - α(n, H, d) - ^ l j ί ( α ( n , H, d) - nH2)

y/n(n - 1)

+ a{n,H,d) - S - aχ(d - c) = a(n,H,d) - S - aχ{d - c) > 0.

Then we see
(3.4) nd - ai(d - c) + 2nH2 -S- U}n ~ 2 ) g ( 5 - ni ϊ 2 ) 1 / 2 > 0.

v^(^ -1)
From Theorem 2.4,

2)[nc + 2nH2 ^ Ϊ L* - nH2)[nc + 2nH2 -S-/ {(S* nH)[nc + 2nH S ^==Ϊ
(3.5) JM y/n(n -

-D(n,p)(d - c){b - a)} dM < 0.

From (3.4),

nc + 2nH2 -S- ^ 2 ) g ( g - ni ί 2 ) 1 / 2 > ^ ^ ( n , ? ) ^ - c),
yn(n — 1)

where c*2 = D(n,p)(αχ — n ) " 1 . Substituting the above inequality into (3.5)
gives

/ {(SH - nH2)[aϊιD(n,p)(d - c)} - D(n,p){d - c){b - a)} dM < 0
JM

Therefore we have either d = c or

(SH - nH2) dM <a2 [ (b- a) dM.
JMM

D
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We continue the proof of our Main Theorem.
If p = 2, then (2.8) and (2.22) imply that

/ \(S - nH2) \na + 2nH2 - S
JM L L

(3.6) _ (n _ 2)n1/2(n - l)~1/2H(Sπ - nH2Ϋ/2}

- (D(n,p) + F(n,p))(b - a)2\ dM < 0.

This implies

(3.7) ί \(S- nH2) \na + 2nH2 - S
JM l L

- (n - 2)nχ/2(n - 1)~1I2H(S - nH2)1'2] - G(n)(b - a)2\dM < 0,

where we set

By using the similar method as developed in the proof of Theorem 3.1, we
obtain the following

THEOREM 3.3. Let p = 2. There exists a number 62 (n) with 0 <
^2(n) < 1 such that if 62(71) < Kpj < 1 and if

nH2 + β2(n)(l -c)<S < α(n, H) - 72(n)(l - c),

where c := infTvi^^, ί/ien JV71"1"2 25 isometric to S n + 2 (1) . Moreover M is
congruent to one of the following:

(2) the isoparametric hypersurface S n ~ 1 ( - 7 = f ) x S1(Λ-^Ί) in S n + 1 ( l) .

(3) the Clifford torus S1(ri) x S 1 ^ ) in S3(r) with constant mean cur-
vature Ho, where rlf r2 = [2(1 + H2) ± 2H0(l + H2)1/2]'1'2, r =
(l + H2- H2)-1'2, and 0<H0<H.

Here the constants are given by

:==

1
7 2 (n) :=n+ —=y/n(n- l)(26n-9),

62(n) :=1- 2n(n - l)[(n2 - 2n + 2)(/32(n) + 72(n))]"1.
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We now discuss the case where p > 3.

THEOREM 3.4. Letp > 3. There exists a number δs(n,p) G (0,1) such

that if δs(n^p) < KN < 1, and if

nH2 + β3(n,p)(l - c) + /34(

< S < C(n,p, H) - 7 3 (n,p)(l - c) - 74(n,p)[(l + H2)H}ι'2(l -

then N is isometric to S n + P (l) and M is congruent to one of the following:

(2) the isoparametric hypersurface Sn~1(-7=i=^) x S 1 ( - 7 = = ) in S n(l).
v 1 A v 1~|A

(3) the Clifford torus S1(ri) x S1(r2) in S3(r) with constant mean cur-

vature Ho, where ru r2 - [2(1 + H2) ± 2iίo(l + H2)1'2}-1'2, r =

(1 + H2 - Hi)-1'2, and 0<H0<H.

(4) the Veronese surface in S 4 ( - y = = ) .

Here the constants β%, β±, 73, 74 and δ-^ are given later in the remark.

Proof. We argue the proof by deriving a contradiction. Suppose that

cφ\. We then have from (2.22)

(3.8) / \Sj \na + -nH2 -^S-(n- 2)nι'2{n -

- c ) 2 | 0.

In fact, since S = 5// + 5/ > nϋί2 + 5/ we observe

-nH2 - -S < 2nH2 - S - -

This together with 0 < b — a < 1 — c implies that the left hand side of (3.8)

is not greater than the left hand side of (2.22) which is nonpositive.

Note that the assumption implies

S < C(n,p,H) - 73(n,p)(l - c) < a(n,H) - αi(n,p)(l ~ c).
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This shows that the assumption of Lemma 3.2 is fulfilled, where d = 1. By
the Schwarz inequality and Lemma 3.2,

/
J

(3.9) < H max 5/ vol(M)1/2 \ [ (SH - nH2)]

M
1/2

Here the second inequality is obtained as follows. By Lemma 3.2,

/ (SH ~ nH2) dM < a2(l - c) vol(M).
JM

This together with Sτ < S-nH2 < C(n,p,H)-nH2 < |n( l + iί2) implies

H max 5/ vol(M)1/2 \ ί (SH - nH2) dλf]Φ

< -na2{n,V)
ι'2H{l + H2){1 - c)1'2 vol(M).

o

Combining (3.8) and (3.9), we have

(3.10) / isλnc+lnH2- ^S - E(n,p)(l - c)}

- E^p, H)(l - c)1/2 - F(n,P)(l - c)2} dM < 0,

where we set

Ei(n,p,H)

z'2 - 2)(n - ly^D^p^iax^p) - n)-ιl\\ + H2)H.

Since C(n,p,H) < \(2n + 5nH2) Άnάηz(n,p) > | [
and 74(n,p)[(l + H2)H]ιl2 = lE^n^H)1!2, w e obtain

S < \{2n + bnH2) -\{n + E(n,p) + F(n,p)^2)(l - c)
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/
M

Substituting the above into (3.10), we get

(3.11)

and this together with Lemma 3.2 yields

(3.12) ί (S- nH2) dM < [(α2(n,p) + F{n,p)ι'2){l - c)

JM

+ Ei(n,p, H)ι'2(l - c)1/4] vol(M).

From assumption follows

S-nH2> ft(n,p)(l - c)

This and (3.12) imply that

= [a2(n,p) + F{n,pfl2]{\ - c) + E1(n,p, H)x'\\ - c)ι'\

Therefore we see that all the inequalities in (2.18), (2.20), (2.22), (3.8)

and (3.12) are actually equalities. From (2.22), (3.8) and (3.12) we get

1 — c = b — a. Because c < a < b < 1, we have a = c, b = 1. It follows from

(2.18) and (2.20) that

0 = = C Σ *& = -\{p - l)n(n - 1)2(1 - c) 2 .

This implies 1 — c = 0, contradicting to what is supposed at the beginning

of the proof. Since N is assumed to be complete and simply connected, TV

is isometric to S n + P ( l ) . Moreover from (3.5) and (3.10),

= nH2

or = C(n,p,H).

From Theorem 0.1 we see that M is one of the (1), (2), (3) and (4). This

proves Theorem 3.4. Π

Remark 3.5. To make sure of the assumption in Theorem 3.4 we set

-min{16(/?3 + 73 + -

256 _ !

14641 ^ ^ '
•74)] }

for n = 2

for n > 3.

https://doi.org/10.1017/S0027763000025083 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000025083


RIGIDITY FOR COMPLETE SUBMANIFOLDS 131

Then the following inequality makes sense.

nH2 + ft(n,p)(l - c) + /?4(n,p)[(l + H^H}1'2^ -

< C(n,p,H) - 7s(n,p)(l - c) - 7 4(n,p)[(l

Here α i , α2, /?3, /?4, 73 and 74 are constants precisely given as follows.

αi(n,p) = n H τ=[n(n - l)(26n + 16p -
6\/2

α2(n,p) - ~V[n(n - l)(26n + 16p -
6v 2

7 3(n,p) = max{αi(n,;p), - ( n + J?(n,p)

ι7{n - 2) 4(n - l)~ 1(26n + 16p - 41

74(n,p) = 3- 7 / 4[512n 7(n - 2) 4(n - l)~ 1(26n + 16p -

The constants in Main Theorem are given as follows.

<5i(n), for p = 1 and H φ 0

<S2(n), f o r p - 2 and if φθ

^3(n?p)? for p > 3 and H φ 0,

/3(n,p), for H = 0

/?i(n), for p = 1 and H φ 0

/32(^), for p = 2 and H φ 0

/33(n,p), for p > 3 and if ^ 0,

7(n,p), for i ϊ = 0

7i(n), for p = 1 and H φ 0

72(n), for p = 2 and H φ 0

73(n>p)> for p > 3 and H φ 0,

\-f β*(n>P)i for n > 3, p > 3 and i ί ^ 0
\ 0, otherwise,

o / \ _ ί 74(n?P)5 for n > 3, p > 3 and H φ 0
[0, otherwise.

Combining Theorems 0.2, 3.1, 3.3 and 3.4, we conclude the proof of Main

Theorem for compact case.
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§4. The complete case

The generalized maximum principle due to Omori [O] and Yau [Y2] is

the useful tool to generalize rigidity theorems such as the Chern-do Carmo-

Kobayashi theorem to complete cases where compactness is not assumed

(see [H], [P]). However it does not apply to our case because the divergence

of the two 1-forms in (2.7) and (2.21) require pointwise estimates. We shall

employ the following useful Lemma 4.1 for the discussion of the rigidity of

complete submanifolds with parallel mean curvature normal fields where

compactness is not assumed. We emphasize that all the results obtained

here include the minimal case.

LEMMA 4.1. (see [X-4]) Let Mn be an n-dimensional submanifold in

an (n+p)-dimensional Riemannian manifold Nn+P with KN > c. Here c is

a constant satisfying c + H2 > 0. If S < α(n, iί, c), then the Ricci curvature

satisfies

R i c M > U L l I L + 2nH2 - S - n ( n 2 ) H(S - nH2

n L y/n(n - 1)

Moreover, ifsupM(S — a(n,H,c)) < 0, then M is compact, where

Thus from the rigidity theorems in previous section and Lemma 4.1, we

obtain the following

THEOREM 4.2. For given positive integers n > 2, p and a nonnegative

constant H there exists a number τ(n,p) with 0 < τ(n,p) < 1 such that

if Mn is an oriented complete submanifold in a complete simply connected

Riemannian (n + p)-manifold Nn+P with τ(nyp) < KN < 1, and if

nH2 + Λi(n,p)(l - c) + A2(n,p)[(l + H2)Hγ'2{l -

< S < C(n,p, H) - B!(n,p)(l - c) - B2(n,p)[(l + H^H]1'2^ - c)ι'\

then N is isometric to Sn + ί >(l). Moreover if

sup S < a(n,H),
M

then M is congruent to either Sn(-τ==^) or the Veronese surface in
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We conclude the proof of Main Theorem by the combination of Theo-
rems 3.1, 3.3, 3.4 and 4.2.

In due course of the proof of Main Theorem the completeness and
simple connectedness of JV is used only to guarantee that N is isometric
to the round sphere. We can derive K^ = 1 without these assumptions.
Thus we obtain the following Theorem 4.3 by using the orient able double
covering.

THEOREM 4.3. For given positive integers n > 2, p and a nonnegative
constant H there exists a number τ(n,p) with 0 < τ(n,p) < 1 such that if
Mn is a complete submanifold with parallel mean curvature normal field in
a Riemannian (n + p)-manifold Nn+P with r(n,p) < K^ < 1, and if

nH2 + Λi(n,p)(l - c) + A2(n,p)[(l + H

<S< C(n,p,H) - 5i(n,p)(l - c) - B2(n,p)[(l + H2)H]XI2{1 - c)ιl\

then Kjsr = 1. Moreover,

(1) if supM S < a(n,H), then S = nH2 and M is totally umbilic, or

(2) if M is compact, then S = nH2 and M is totally umbilic, or S =
C{n,p,H).
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