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Abstract We present, given an odd integer d, a decomposition of the multiset of bar lengths of a bar
partition λ as the union of two multisets, one consisting of the bar lengths in its d̄-core partition c̄d(λ)
and the other consisting of modified bar lengths in its d̄-quotient partition. In particular, we obtain that
the multiset of bar lengths in c̄d(λ) is a sub-multiset of the multiset of bar lengths in λ. Also, we obtain a
relative bar formula for the degrees of spin characters of the Schur extensions of Sn. The proof involves
a recent similar result for partitions, proved by Bessenrodt and the authors.
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1. Introduction

For any positive integer n, we call any partition λ of n into distinct parts a bar partition
of n. It was proved by Schur [7] that the bar partitions of n canonically label the asso-
ciate classes of irreducible projective representations of the symmetric group Sn, or the
associate classes of faithful irreducible characters (spin characters) of a two-fold covering
group Ŝn of Sn.

In [4, Theorem 1], Morris proved a formula (the bar formula) for the degrees of the
spin characters analogous to the celebrated Hook Formula [2, Theorem 2.3.21] for the
irreducible characters of Sn. The bar formula is a reformulation of the original degree
formula proved by Schur in [7, § IX, p. 235]. We state the bar formula below. In the bar
formula the role played by hooks and hook lengths of partitions is replaced by bars and
bar lengths of bar partitions.

If λ = (a1 > · · · > am > 0) is a bar partition of n, then the multiset of bar lengths in
λ is

B(λ) =
⋃

1�i�m

{1, . . . , ai} ∪ {ai + aj | j > i} \ {ai − aj | j > i}.
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Writing πB(λ) for the product of all the bar lengths in λ, we then have the bar formula
for the degree of a spin character ρλ of Ŝn labelled by λ:

ρλ(1) = 2�(n−m)/2� n!
πB(λ)

,

where, for any rational number x, �x� denotes the integral part of x.
For any odd integer d � 3, it is well known that the bar partition λ is uniquely deter-

mined by its d̄-core c̄d(λ) and its d̄-quotient λ(d̄) (see, for example, [6, Proposition 4.2]).
The d̄-core partition c̄d(λ) of λ is obtained by removing from λ all the bars of length
divisible by d, while λ(d̄) encodes the information about these bars.

For any bar partition λ of n and odd integer d � 3, we denote by q̄d(λ) the (unique) bar
partition which has an empty d̄-core and the same d̄-quotient as λ. We refer to q̄d(λ) as
the d̄-quotient partition of λ and have that |λ| = |c̄d(λ)|+ |q̄d(λ)| (see [6, Corollary 4.4]).
This identity is reflected in our main result on the decomposition of the multiset of
bar lengths (Theorem 4.1). It states that the multiset B(λ) of bar lengths in λ is the
union of B(c̄d(λ)) and B̃(q̄d(λ)), where the multiset B̃(q̄d(λ)) is obtained from B(q̄d(λ))
by modifying its elements in an explicitly controlled way, depending on the d̄-core of λ.
As an immediate corollary we obtain that B(c̄d(λ)) is contained in B(λ).

In § 2, we describe the doubling of bar partitions; this construction was first suggested
by Macdonald [3], and then studied by Morris and Yaseen [5]. It allows us to see all
the bar lengths in a bar partition as hook lengths in a larger partition. We present the
construction, as well as interpretations of the bar core and bar quotient in this setting.
In § 3, we introduce a number of subsets of the set of hooks in the doubled partition, and
derive from Macdonald’s construction a number of properties of hook lengths and bar
lengths. In § 4, we then apply the results of [1] to deduce our main result, Theorem 4.1.
We then finally apply the theorem to give a d-version of the bar formula (a relative bar
formula).

2. The Macdonald construction

Let n � 1 be any integer, and let λ = (a1 > · · · > am > 0) be a bar partition of n.
In [3, Chapter III, p. 135], Macdonald presented a construction for the doubling of λ,
which we present here using the example given by the bar partition λ = (7, 5, 3, 2) of
n = 17.

The shifted Young diagram S(λ) of λ is obtained from the usual Young diagram of λ

by moving, for each i � 1, the ith row (i − 1) squares to the right. In our example, this
gives

Equivalently, S(λ) can be seen as the part above the diagonal in the Young diagram
of the doubled partition D(λ) = (a1, . . . am | a1 − 1, . . . , am − 1) of 2n (given in the
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Frobenius notation; see, for example, [3, Chapter I]). In our example, we obtain the
partition D(λ) = (8, 7, 6, 6, 4, 2, 1) of 2n = 34, which has the Young diagram

By filling the boxes of the Young diagram of D(λ) with the corresponding hook lengths,
we obtain that the bar lengths in λ are those hook lengths that appear in the subdiagram
S(λ). In our example, we get

B(λ) = {12, 10, 9, 8, 7, 7, 6, 5, 5, 4, 3, 3, 2, 2, 1, 1, 1}:

1
3
6
9
10
12
14

1
4
7
8
10
12

2
5
6
8
10

1
4
5
7
9

2
3
5
7

1
2
4
6

1
3 1

We refer the reader to [2, § 2.7] or [6, § 1] for the basic facts about β sets for partitions
and their relation to hooks. In particular, if X is a β set for the partition λ, then there
is a canonical correspondence between the hooks z in λ and pairs (a, b) of non-negative
integers, where a ∈ X, b /∈ X and a > b. The length h(z) of the hook z is then a − b.

Now take any odd integer d � 3. We represent a d-normalized β set X for D(λ) (i.e. |X|
is a multiple of d) by placing beads on an abacus with d runners. If d = 3, then in our
example we can take X = {0, 1, 3, 5, 8, 11, 12, 14, 16}, and we obtain

15

12

9

6

3

0

16

13
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7

4

1
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�
�
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For any integer �, we denote by [�]d the d-residue of �, i.e. the least non-negative integer
congruent to � (mod d). We label each node in the Young diagram of D(λ) by a d-residue
as follows: the d-residue labelling the (i, j)-node is [j − i]d. In particular, note that the
diagonal nodes (which correspond to hooks whose lengths are twice the size of the parts
of λ) all have residue 0. Writing H(D(λ)) for the set of hooks in D(λ), we define, for
each 0 � i, j � d − 1, the subset Hi→j(D(λ)) of hooks of D(λ) whose hand node and
foot node have d-residues i and [j + 1]d, respectively. For any hook z ∈ H(D(λ)), we
have that z ∈ Hi→j(D(λ)) if and only if, in the abacus, z corresponds to a bead on
the ith runner and an empty spot on the jth runner. In this case, the length h(z) of z

satisfies h(z) ≡ i − j (mod d) (see [2, § 2.7] for details). For each 0 � i �= j � d − 1,
we write H{i}(D(λ)) for Hi→i(D(λ)) and H{ij}(D(λ)) for Hi→j(D(λ)) ∪ Hj→i(D(λ)). In
particular, ⋃

0�i�d−1

H{i}(D(λ))

is the set of hooks of length divisible by d in D(λ).
Each runner in the abacus for D(λ) can be seen as representing a β set: the ith runner

contains beads representing the elements of {x ∈ X | [x]d = i}; the corresponding β set is
Xi = {k ∈ Z | kd+ i ∈ X}. The d-quotient D(λ)(d) of D(λ) is the d-tuple (X0, . . . , Xd−1)
of these β sets. The fact that we took a normalized β set ensures that the d-quotient
we obtain is the same as the one we would obtain by considering the star d-diagram of
D(λ) [2, Theorem 2.7.37]. We may then reformulate [5, Theorem 4] as follows.

Theorem 2.1. With the above notation, the d-quotient D(λ)(d) of D(λ) has the form

D(λ)(d) = (D(µ0), µ1, . . . , µ(d−1)/2, µ
∗
(d−1)/2, . . . , µ

∗
1),

where µ0 is a bar partition, µ1, . . . , µ(d−1)/2 are partitions and ∗ denotes conjugation of
partitions.

Furthermore, the d̄-quotient of λ is λ(d̄) = (µ0, µ1, . . . , µ(d−1)/2).

In our example, we find

D(λ)(3) = ((2), (4), (1, 1, 1, 1)) = (D((1)), (4), (4)∗) and λ(d̄) = λ(3̄) = ((1), (4)).

Removing all the hooks of length divisible by d in D(λ) (or, equivalently, moving all
the beads in the abacus of D(λ) as far up as possible on their respective runners), we
obtain the d-core D(λ)(d) of D(λ). Then we see (cf. [5, p. 26]) that D(λ)(d) = D(c̄d(λ)),
where c̄d(λ) is the d̄-core of λ (which may also be obtained from λ by removing all the
bars of length divisible by d; the removal of such a bar corresponds to removing a pair
of d-hooks from D(λ), one whose node is in S(λ), and its counterpart in the lower half
of the diagram). In our example, we find D(λ)(3) = (3, 1) = D((2)) = D(c̄d(λ)).

We define the d̄-quotient partition of λ to be the (uniquely defined) bar partition
q̄d(λ) which has empty d̄-core, and d̄-quotient q̄d(λ)(d̄) = λ(d̄). The doubled partition
D(q̄d(λ)) therefore has empty d-core, and d-quotient D(q̄d(λ))(d) = D(λ)(d). This proves
that D(q̄d(λ)) is the d-quotient partition of D(λ), which we write as D(q̄d(λ)) = qd(D(λ)).
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In the d-abacus of D(q̄d(λ)), the partition associated to each runner is the same as for
D(λ), but the corresponding β sets all have the same number of elements (which is the
number of beads on the runners, and this is the same for each runner, since D(q̄d(λ))
has empty d-core). In our example, we can take this number to be 4, and we obtain

18

21

15

12

9

6

3

0

22

19

16

13

10

7

4

1

23

20

17

14

11

8

5

2

�

�
�
�

�

�
�
�

�
�

�
�

We therefore have D(q̄3(λ)) = q3(D(λ)) = (11, 52, 3, 16), and q̄3(λ) = (10, 3, 2).
It is easy to see, using [6, Theorem 4.3], that since λ and q̄d(λ) have the same d̄-quotient,

there is a length-preserving bijection between the sets of bars of length divisible by d in
λ and q̄d(λ), respectively. In our example, both multisets of lengths are {12, 9, 6, 3, 3}.

3. Multisets of bar lengths

We keep the notation as in § 2, and we take any bar partition µ (which we want to
specialize to µ ∈ {λ, c̄d(λ), q̄d(λ)}). We define several subsets of the set H(D(µ)) of hooks
and the multiset H(D(µ)) of hook lengths in D(µ). This is illustrated in the following
diagram:

DP
.. .

. . .

DP P

...

...

P
B

NB

B

The subsets we will consider are defined as follows:

(i) P (D(µ)) is the set of hooks corresponding to the parts of µ (denoted by ‘P’ above),
and P(D(µ)) is the set of their lengths.

(ii) DP (D(µ)) is the set of hooks corresponding to the doubled parts of µ (denoted by
‘DP’ above), and DP(D(µ)) is the set of their lengths.
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(iii) B(D(µ)) is the set of hooks corresponding to bars in µ which are not parts (denoted
by ‘B’ above), and B(D(µ)) is the multiset of their lengths.

(iv) NB(D(µ)) is the set of hooks corresponding to ‘non-bars’ (denoted by ‘NB’ above),
i.e. the counterparts in the lower half of the Young diagram of B(D(µ)), and
NB(D(µ)) is the multiset of their lengths. In particular, by construction, we have
NB(D(µ)) = B(D(µ)).

We thus have the set equality

H(D(µ)) = P (D(µ)) ∪ DP (D(µ)) ∪ B(D(µ)) ∪ NB(D(µ))

and the multiset equality

H(D(µ)) = P(D(µ)) ∪ DP(D(µ)) ∪ B(D(µ)) ∪ NB(D(µ)).

Note that B(D(µ)) is the set of unmixed bars of type 1 and mixed bars (of type 3) in
µ, while P (D(µ)) is the set of unmixed bars of type 2 in µ (see, for example, [6, § 4]). In
particular, we have, for the multiset of bar lengths in µ, that B(µ) = P(D(µ))∪B(D(µ)).

For any 0 � i, j � d − 1, we have defined in § 2 subsets Hi→j(D(µ)), H{i}(D(µ)) and
H{ij}(D(µ)) (if i �= j) of H(D(µ)). Similarly, we define subsets

Pi→j(D(µ)), P{ij}(D(µ)), DPi→j(D(µ)), DP{ij}(D(µ)),

Bi→j(D(µ)), B{ij}(D(µ)), NBi→j(D(µ)), NB{ij}(D(µ)).

As before, for any hook z in a partition, we let h(z) denote its length. For any z ∈
B(D(µ)), we denote by z∗ the counterpart of z in NB(D(µ)) (so that h(z) = h(z∗)).
For any subset K of B(D(µ)), we write K∗ for the subset {z∗, z ∈ K} of NB(D(µ)). In
particular, we have NB(D(µ)) = B(D(µ))∗. For any 1 � i � d − 1, we let i∗ = d − i (so
that, in the d-quotient (D(µ0), µ1, . . . , µd−1) of D(µ), we have, for each 1 � i � d − 1,
µi∗ = µ∗

i ). We also let 0∗ = 0.

Lemma 3.1. For any z ∈ B(D(µ)), if z ∈ Bi→j(D(µ)) (for some 0 � i, j � d − 1),
then z∗ ∈ NBj∗→i∗(D(µ)).

Proof. Suppose z∗ ∈ NBk→�(D(µ)). By definition, z has hand residue i and foot
residue [j + 1]d, while z∗ has hand residue k and foot residue [� + 1]d. In particular,
considering the lengths h(z) and h(z∗) of z and z∗, we have h(z) ≡ i − j (mod d) and
h(z∗) ≡ k − � (mod d). But, since h(z) = h(z∗), we have i − j ≡ k − � (mod d).

Now, since z ∈ B(D(µ)), the arm of z is in a row which corresponds to a part of
µ, say the rth row of the Young diagram of D(µ). Then, by construction of D(µ),
the counterpart z∗ of z has its leg in the rth column of the Young diagram of D(µ).
Also, by construction, this column is one node shorter than the rth row. It is then easy
to see that if the rth row has end residue m, then the rth column has end residue
[d − (m − 1)]d = [(d − m) + 1]d = [m∗ + 1]d (indeed, we know that the residues increase
from left to right in a row, while they decrease from top to bottom in a column, and
that the rth row and rth column intersect on a diagonal node of residue 0). Therefore,
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the foot residue of z∗ is [i∗ + 1]d, so that we have � = i∗. But then, from h(z) = h(z∗),
we obtain i − j ≡ k − i∗ (mod d), whence, since i∗ = d − i, k ≡ −j (mod d), and thus
k = j∗. �

Corollary 3.2. For any 0 � i, j � d − 1, we have NBj∗→i∗(D(µ)) = Bi→j(D(µ))∗

and NBj∗→i∗(D(µ)) = Bi→j(D(µ)).

We now prove a symmetry property on the number of beads in the abacus of D(µ).
We suppose that the d-abacus of D(µ) is minimally normalized, i.e. that the β set for
D(µ) used to build the abacus has a multiple of d elements, and is minimal with respect
to this property. For each 0 � i � d − 1, we write xi for the number of beads on the ith
runner of the (minimally normalized) d-abacus of D(µ).

Lemma 3.3. For any 0 � i, j � d − 1, we have xi + xi∗ = xj + xj∗ .

In the example of § 2, we have x0 = 3, x1 = 2 and x2 = 4, whence x0+x0∗ = x1+x1∗ =
x2 + x2∗ = 6.

Proof. Let a be the largest part of µ and [a]d be its d-residue. Consider the rim R of
the Young diagram of D(µ). Then R is composed of a+1 horizontal segments (of length
1) and a vertical segments.

We extend the rim horizontally to the top right and vertically to the bottom left as
follows. Suppose (k − 1)d < a � kd for some k ∈ N. If a + 1 � kd (i.e. [a]d �= 0), then
extend R to an R̃ that has kd horizontal segments and kd vertical ones. If a + 1 > kd

(i.e. a = kd), then extend R to an R̃ that has (k + 1)d horizontal segments and (k + 1)d
vertical ones. In particular, R̃ always has �d vertical segments and �d horizontal ones,
with �d > a. This implies that, while the horizontal extension of R may be empty (if
a + 1 = kd), the vertical one never is. In fact, the horizontal extension is always exactly
one segment shorter than the vertical one, which is �d− a segments long (�d− a �= 0 and
�d − a − 1 = 0 ⇐⇒ a + 1 = kd).

Label the vertical segment at the end of the first row by its d-residue [a]d. Complete
the labelling of each segment of R̃ by residues modulo d by increasing by 1 for each step
to the top or right, and decreasing by 1 for each step to the bottom or left. In particular,
a row has end residue j if and only if the corresponding vertical segment of R̃ is labelled
by j, while a column has end residue j if and only if the corresponding horizontal segment
of R̃ is labelled by [j − 1]d.

For each 0 � j � d − 1, let Vj (respectively, Hj) be the set of vertical (respectively,
horizontal) segments of R̃ labelled by j. We thus have

|Vj | =

{
xj if (k − 1)d < a < kd,

xj + 1 if a = kd,
0 � j � d − 1. (3.1)

By construction of D(µ) (see also the proof of Lemma 3.1), we see that the horizontal
segment at the bottom of the first column is labelled by [a]∗d. Since the vertical extension
of R has �d − a segments, the bottom one is labelled by [[a]∗d − (�d − a)]d = 0. And,
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since the horizontal extension has �d − a − 1 segments, the last one (if it exists, i.e. if
�d − a − 1 �= 0) is labelled by [a + �d − a − 1]d = d − 1.

Following R̃ from bottom left to top right, the labelling residues increase by one at
each step, going (by the above) from 0 to d − 1, and do so 2� times (since R̃ has 2�d

segments). This shows that, for each 0 � j � d − 1, the total number of segments of R̃

labelled by j is 2�, i.e.
|Vj | + |Hj | = 2�, 0 � j � d − 1. (3.2)

The nodes on the diagonal all have residue 0. Thus, the column of nodes which cor-
responds to the parts of µ has end residue 1 (since it is immediately to the right of the
diagonal). Hence, the corresponding horizontal segment is labelled by 0. We have the
following picture:

0
. . .

. . .
0 1

0

[a]d

[a]d + 1 d − 1

[a]∗d[a]∗d − 1

0

1

Now the portions of R̃ to the right and to the left of this 0 (except the bottom left
segment) are symmetric (by construction of D(µ), and by the above considerations on
the horizontal and vertical extensions). The vertical segments of one are in bijection
with the horizontal segments of the other, and any label j is sent to a label j∗. Adding
the (horizontal) 0 in the middle and the (vertical) 0 at the bottom, this proves that
|Vj | = |Hj∗ | for each 0 � j � d − 1. Together with (3.2), this yields

|Vj | + |Vj∗ | = |Vj | + |Hj | = 2�, 0 � j � d − 1.

Using (3.1), this implies the result. �

Remark 3.4. In the course of the above proof, we have established the following
fact which will be useful later: if a node z in the Young diagram of D(µ) corresponds
to a part of µ of length h(z) ≡ i (mod d) for some 0 � i � d − 1, then z has hand
residue i and foot residue 1 (i.e. z ∈ Pi→0(D(µ))), and the diagonal node z×2 corre-
sponding to the associated doubled part has hand residue i and foot residue [i∗ + 1]d
(i.e. z×2 ∈ DPi→i∗(D(µ))).
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Lemma 3.3 has several important consequences in our context. Let λ be any bar par-
tition and let q̄d(λ) be its d̄-quotient partition. Following [1, Theorem 4.7], we have the
following definition.

Definition 3.5. For each hook z ∈ H(D(q̄d(λ))), the modified hook length h̄(z) of z

is given by h̄(z) = h(z) + (xi − xj)d if z has hand residue i and foot residue [j + 1]d.

We then write H̄(D(q̄d(λ))) = {|h̄(z)| | z ∈ H(D(q̄d(λ)))} (note that the same multiset
is denoted by abs(H̄(D(q̄d(λ)))) in [1]). Subsets of modified hook lengths are defined
similarly for the subsets of hooks we introduced earlier.

Corollary 3.6. For any bar partition λ and any z ∈ B(D(q̄d(λ))), we have h̄(z) =
h̄(z∗). In particular, for any 0 � i, j � d − 1, we have

B̄i→j(D(q̄d(λ))) = NBj∗→i∗(D(q̄d(λ))).

Proof. Suppose z ∈ Bi→j(D(q̄d(λ))) (for some 0 � i, j � d−1). Then, by Lemma 3.1,
z∗ ∈ NBj∗→i∗(D(q̄d(λ))). We thus have

h̄(z) = h(z) + (xi − xj)d and h̄(z∗) = h(z∗) + (xj∗ − xi∗)d.

But h(z) = h(z∗) and, by Lemma 3.3, xi − xj = xj∗ − xi∗ . Hence, h̄(z) = h̄(z∗). Corol-
lary 3.2 concludes the proof. �

Corollary 3.7. For any bar partition λ and any z ∈ P (D(q̄d(λ))), we let z×2 be
the corresponding element in DP (D(q̄d(λ))), satisfying h(z×2) = 2h(z). We then have
h̄(z×2) = 2h̄(z).

Proof. Take any z ∈ P (D(q̄d(λ))) and suppose h(z) ≡ i (mod d) for some 0 � i �
d − 1. Then, by Remark 3.4, we have z ∈ Pi→0(D(q̄d(λ))) and z×2 ∈ DPi→i∗(D(q̄d(λ))).
By Definition 3.5, we therefore get that h̄(z) = h(z) + d(xi − x0) and h̄(z×2) = 2h(z) +
d(xi − xi∗). Now, by Lemma 3.3, we see that xi − xi∗ = 2(xi − x0), so that h̄(z×2) =
2h(z) + d(xi − xi∗) = 2h(z) + 2d(xi − x0) = 2h̄(z). �

Corollary 3.8. For any bar partition λ, the elements of P̄(D(q̄d(λ))) are distinct, and
the elements of DP (D(q̄d(λ))) are distinct.

Proof. Suppose z ∈ Pi→0(D(q̄d(λ))), z′ ∈ Pj→0(D(q̄d(λ))) and |h̄(z)| = |h̄(z′)|. We
want to show that h(z) = h(z′), which then implies z = z′. We see from Definition 3.5
that |h̄(z)| ≡ ±i (mod d) and |h̄(z′)| ≡ ±j (mod d). Thus, we must have j = i or j = i∗.
If i = 0, then j = 0, so that h̄(z) = h(z) and h̄(z′) = h(z′) and we are done. If we have j =
i �= 0, then if h̄(z) = h̄(z′) we obviously have that h(z) = h(z′). If h̄(z) = −h̄(z′), we get
i ≡ −i (mod d), which is impossible. Consider the case in which j = i∗, h(z) ≡ i (mod d)
and h(z′) ≡ i∗ (mod d). Then h̄(z) = −h̄(z′), i.e. h(z)+d(xi−x0) = −h(z′)−d(xi∗ −x0).
Thus, h(z) + h(z′) = d(x0 − xi) + d(x0 − xi∗). But the right-hand side of this is 0, by
Lemma 3.3, which is impossible.

We have now shown that the elements of P̄(D(q̄d(λ))) are distinct. Corollary 3.7 shows
that the elements of DP (D(q̄d(λ))) are distinct. �
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4. Main result

We are now in a position to prove our main result. Recall that, if λ is a bar partition,
then the multiset of bar lengths in λ is B(λ) = B(D(λ)) ∪ P(D(λ)). We will also write
P(λ) for the set P(D(λ)) of parts of λ. Also B̄(q̄d(λ)) is the multiset of absolute values
of the modified hook lengths h̄(z), z ∈ B(q̄d(λ)). Finally, for any multiset A, we denote
by A×2 the multiset given by A×2 = {2a | a ∈ A}.

Theorem 4.1. Take any bar partition λ and any odd integer d � 3, and let T (λ) =
P(c̄d(λ)) ∩ P̄(q̄d(λ)). Then

B(λ) = B(c̄d(λ)) ∪ B̃(q̄d(λ)),

where B̃(q̄d(λ)) = [B̄(q̄d(λ)) \ T (λ)] ∪ T (λ)×2.

Proof. We write

B(λ) =
⋃

0�i�d−1

B{i}(λ) ∪
⋃

0�i<j�d−1

B{ij}(λ),

where we have

B{i}(λ) = Bi→i(λ) = Bi→i(D(λ)) ∪ Pi→i(D(λ))

and

B{ij}(λ) = Bi→j(λ) ∪ Bj→i(λ) = B{ij}(D(λ)) ∪ P{ij}(D(λ)).

Now,
⋃

0�i�d−1 B{i}(λ) is exactly the set of bars of length divisible by d in λ. By con-
struction (see § 2), we thus have⋃

0�i�d−1

B{i}(λ) =
⋃

0�i�d−1

B{i}(q̄d(λ)) =
⋃

0�i�d−1

B̄{i}(q̄d(λ))

and ⋃
0�i�d−1

B{i}(c̄d(λ)) = ∅.

We also want to examine separately the case of parts of length divisible by d in λ.
These are the bars of type 2 (see [6, § 4]) of length divisible by d in λ, and, if we write

λ(d̄) = q̄d(λ)(d̄) = (µ0, µ1, . . . , µ(d−1)/2),

then they correspond bijectively to the parts of µ0 (and are d times as long). Since q̄d(λ)
has the same d̄-quotient as λ, we see that it has the same parts of length divisible by d.

To prove our result, it is now sufficient to consider the bars whose length is not divisible
by d, i.e. which correspond to a bead and an empty spot on distinct runners i and j in
the abacus. We distinguish between three cases, corresponding to the three possible
cardinalities of the set {i, j, i∗, j∗}.
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In each case, we will apply [1, Theorem 4.7], which, in our context, may be formulated
as

H(D(λ)) = H(D(c̄d(λ))) ∪ H̄(D(q̄d(λ))).

Note that [1, Theorem 4.7] can be refined to pairs of runners using the proof of [1,
Theorem 3.2].

Case 1. Take any 0 � i < j � d − 1 such that |{i, j, i∗, j∗}| = 4. In particular,
j �= i∗, so that DP{ij}(D(λ)) = ∅ = DP{i∗j∗}(D(λ)), and 0 �∈ {i, j, i∗, j∗}, so that
P{ij}(D(λ)) = ∅ = P{i∗j∗}(D(λ)) (and similarly for D(c̄d(λ)) and D(q̄d(λ))).

By [1, Theorem 4.7], we have

H{ij}(D(λ)) = H{ij}(D(c̄d(λ))) ∪ H̄{ij}(D(q̄d(λ))).

Now H{ij}(D(λ)) = Hi→j(D(λ)) ∪ Hj→i(D(λ)), and we have

Hi→j(D(λ)) = Bi→j(D(λ)) ∪ NBi→j(D(λ))

and

Hj→i(D(λ)) = Bj→i(D(λ)) ∪ NBj→i(D(λ)).

Also, by Corollary 3.2,

NBi→j(D(λ)) = Bj∗→i∗(D(λ)) and NBj→i(D(λ)) = Bi∗→j∗(D(λ)),

whence we obtain

H{ij}(D(λ)) = B{ij}(D(λ)) ∪ B{i∗j∗}(D(λ)) = B{ij}(λ) ∪ B{i∗j∗}(λ).

Similarly,
H{ij}(D(c̄d(λ))) = B{ij}(c̄d(λ)) ∪ B{i∗j∗}(c̄d(λ)),

and, using Corollary 3.6,

H̄{ij}(D(q̄d(λ))) = B̄{ij}(q̄d(λ)) ∪ B̄{i∗j∗}(q̄d(λ)).

Hence, in this case,

B{ij}(λ) ∪ B{i∗j∗}(λ) = B{ij}(c̄d(λ)) ∪ B{i∗j∗}(c̄d(λ)) ∪ B̄{ij}(q̄d(λ)) ∪ B̄{i∗j∗}(q̄d(λ)).

Case 2. Take any 0 � i < j � d − 1 such that |{i, j, i∗, j∗}| = 3. This means that
i = i∗ = 0 and j �= j∗ (in particular, j �= 0 and j �= i∗), so that Pi→j(D(λ)) = ∅ and
DP{ij}(D(λ)) = ∅ = DP{i∗j∗}(D(λ)) (and similarly for D(c̄d(λ)) and D(q̄d(λ))).

This time, we have

Hi→j(D(λ)) = H0→j(D(λ)) = B0→j(D(λ)) ∪ NB0→j(D(λ))

and

Hj→0(D(λ)) = Pj→0(D(λ)) ∪ Bj→0(D(λ)) ∪ NBj→0(D(λ)).
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Also, by Corollary 3.2, we have

NB0→j(D(λ)) = Bj∗→0(D(λ)) and NBj→0(D(λ)) = B0→j∗(D(λ)),

whence we obtain H{0j}(D(λ)) = P{0j}(D(λ)) ∪ B{0j}(D(λ)) ∪ B{0j∗}(D(λ)).
Now, 0 < j∗ � d − 1, and (0, j∗) satisfies the same condition as (0, j) (and, in fact,

{0, j, 0∗, j∗} = {0, j∗, 0∗, (j∗)∗}). Thus, we also have

H{0j∗}(D(λ)) = P{0j∗}(D(λ)) ∪ B{0j∗}(D(λ)) ∪ B{0j}(D(λ)).

Writing Hλ
{0jj∗} for H{0j}(D(λ)) ∪ H{0j∗}(D(λ)), and using similar notation for parts

and bars, we hence obtain

Hλ
{0jj∗} = Pλ

{0jj∗} ∪ 2Bλ
{0jj∗},

where, for any multiset A, we write 2A for A∪A. Similarly, and with analogous notation,
we have

Hc̄d(λ)
{0jj∗} = P c̄d(λ)

{0jj∗} ∪ 2Bc̄d(λ)
{0jj∗}.

And, using Corollary 3.6, we also obtain

H̄q̄d(λ)
{0jj∗} = P̄ q̄d(λ)

{0jj∗} ∪ 2B̄q̄d(λ)
{0jj∗}.

Finally, by [1, Theorem 4.7], we have

Hλ
{0jj∗} = Hc̄d(λ)

{0jj∗} ∪ H̄q̄d(λ)
{0jj∗}.

Rewriting this equality using the expressions we found above, we obtain

Pλ
{0jj∗} ∪ 2Bλ

{0jj∗} = P c̄d(λ)
{0jj∗} ∪ 2Bc̄d(λ)

{0jj∗} ∪ P̄ q̄d(λ)
{0jj∗} ∪ 2B̄q̄d(λ)

{0jj∗}

= P c̄d(λ)
{0jj∗} ◦ P̄ q̄d(λ)

{0jj∗} ∪ 2
[(

P c̄d(λ)
{0jj∗} ∩ P̄ q̄d(λ)

{0jj∗}

)
∪ Bc̄d(λ)

{0jj∗} ∪ B̄q̄d(λ)
{0jj∗}

]
,

where ◦ denotes symmetric difference.
Now any multiset Q has a unique decomposition of the form Q = R + 2S, where R

and S are sub-multisets, and the elements of R are distinct. The elements of P c̄d(λ)
{0jj∗} are

distinct, since c̄d(λ) is a bar partition, and those of P̄ q̄d(λ)
{0jj∗} are distinct by Corollary 3.8,

whence we find that the elements of P c̄d(λ)
{0jj∗} ◦ P̄ q̄d(λ)

{0jj∗} are distinct. This implies that

Pλ
{0jj∗} = P c̄d(λ)

{0jj∗} ◦ P̄ q̄d(λ)
{0jj∗}

and

Bλ
{0jj∗} = (P c̄d(λ)

{0jj∗} ∩ P̄ q̄d(λ)
{0jj∗}) ∪ Bc̄d(λ)

{0jj∗} ∪ B̄q̄d(λ)
{0jj∗}.

In particular, we obtain, for each 1 � j � 1
2 (d − 1),

B{0jj∗}(λ) = B{0jj∗}(c̄d(λ)) ∪ B̄{0jj∗}

(
q̄d(λ)) \ (P c̄d(λ)

{0jj∗} ∩ P̄ q̄d(λ)
{0jj∗}

)
.
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Case 3. Finally, take any 0 � i < j � d − 1 such that |{i, j, i∗, j∗}| = 2. This means
that i �= 0, and j = i∗. In particular,

P{ij}(D(λ)) = P{i∗j∗}(D(λ)) = P{ii∗}(D(λ)) = ∅,

while all the doubled parts non-divisible by d fit in this case. We have

Hi→i∗(D(λ)) = DPi→i∗(D(λ)) ∪ Bi→i∗(D(λ)) ∪ NBi→i∗(D(λ))

and

Hi∗→i(D(λ)) = DPi∗→i(D(λ)) ∪ Bi∗→i(D(λ)) ∪ NBi∗→i(D(λ)),

whence, by Corollary 3.2, we obtain H{ii∗}(D(λ)) = DP{ii∗}(D(λ)) ∪ 2B{ii∗}(D(λ)).
Similarly,

H{ii∗}(D(c̄d(λ))) = DP{ii∗}(D(c̄d(λ))) ∪ 2B{ii∗}(D(c̄d(λ)))

and, by Corollary 3.6, H̄{ii∗}(D(q̄d(λ))) = DP{ii∗}(D(q̄d(λ))) ∪ 2B̄{ii∗}(D(q̄d(λ))).
Applying [1, Theorem 4.7] and using similar notation to that in case 2, we obtain

DPλ
{ii∗} ∪ 2Bλ

{ii∗} = DP c̄d(λ)
{ii∗} ∪ 2Bc̄d(λ)

{ii∗} ∪ DP q̄d(λ)
{ii∗} ∪ 2B̄q̄d(λ)

{ii∗}

= DP c̄d(λ)
{ii∗} ◦ DP q̄d(λ)

{ii∗} ∪ 2
[(

DP c̄d(λ)
{ii∗} ∩ DP q̄d(λ)

{ii∗}

)
∪ Bc̄d(λ)

{ii∗} ∪ B̄q̄d(λ)
{ii∗}

]
.

Now the elements of DP c̄d(λ)
{ii∗} are distinct, and those of DP q̄d(λ)

{ii∗} are distinct by Corol-
lary 3.8, whence the elements of DP c̄d(λ)

{ii∗} ◦ DP q̄d(λ)
{ii∗} are distinct. This implies that

Bλ
{ii∗} =

(
DP c̄d(λ)

{ii∗} ∩ DP q̄d(λ)
{ii∗}

)
∪ Bc̄d(λ)

{ii∗} ∪ B̄q̄d(λ)
{ii∗} .

Note that (using Corollary 3.7) we have

DP c̄d(λ)
{ii∗} ∩ DP q̄d(λ)

{ii∗} =
[
P c̄d(λ)

{0ii∗} ∩ P̄ q̄d(λ)
{0ii∗}

]×2
:=

{
2h

∣∣∣ h ∈ P c̄d(λ)
{0ii∗} ∩ P̄ q̄d(λ)

{0ii∗}

}
.

Thus, for each 1 � i � 1
2 (d − 1), we have

B{ii∗}(λ) = B{ii∗}(c̄d(λ)) ∪ B̄{ii∗}(q̄d(λ)) ∪
[
P c̄d(λ)

{0ii∗} ∩ P̄ q̄d(λ)
{0ii∗}

]×2
.

Finally, we see that our three cases cover all the bars between any pair of (distinct)
runners, because

⋃
0�i<j�d−1,

|{i,j,i∗,j∗}|=4

{i, j} ∪ {i∗, j∗} ∪
⋃

1�j�(d−1)/2

{0, j} ∪ {0, j∗} ∪
⋃

1�i�(d−1)/2

{i, i∗}

=
⋃

1�i<j�d−1

{i, j}.

When we take the union of all the subsets of bars we computed, we see that all the
parts of c̄d(λ) and q̄d(λ) which are not divisible by d appear exactly once in case 2 and
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their doubles appear once in case 3. Since c̄d(λ) has no part divisible by d, we therefore
obtain, together with the case of bars on a single runner,

B(λ) = [B(c̄d(λ)) ∪ B̄(q̄d(λ))] \ [P(c̄d(λ)) ∩ P̄(q̄d(λ))] ∪ [P(c̄d(λ)) ∩ P̄(q̄d(λ))]×2,

i.e. B(λ) = B(c̄d(λ)) ∪ B̃(q̄d(λ)), as claimed. �

For any bar partition µ, we denote by m(µ) the number of parts of µ.

Corollary 4.2. For any bar partition λ and any odd integer d � 3, the following hold:

(1) B(c̄d(λ)) ⊂ B(λ);

(2) B̄(q̄d(λ)) ⊂ B(λ);

(3) P(λ) = P(c̄d(λ)) ◦ P̄(q̄d(λ));

(4) m(c̄d(λ)) + m(q̄d(λ)) = m(λ) + 2|P(c̄d(λ)) ∩ P̄(q̄d(λ))|;

(5) B(λ) = B(c̄d(λ)) ∪ B̄(q̄d(λ)) if and only if m(λ) = m(c̄d(λ)) + m(q̄d(λ)).

Proof. Part (1) is immediate from Theorem 4.1. To obtain (2), one just has to rewrite
the result as

B(λ) = B̄(q̄d(λ)) ∪ (B(c̄d(λ)) \ [P(c̄d(λ)) ∩ P̄(q̄d(λ))]) ∪ [P(c̄d(λ)) ∩ P̄(q̄d(λ))]×2.

Part (3) is visible in the proof of Theorem 4.1: the parts of length divisible by d

are the same in λ and q̄d(λ) (while c̄d(λ) has none), and those of length not divisible
by d in λ are examined in case 2 of the proof. Looking at the cardinalities of the sets
involved, (4) is a direct consequence of (3). By (4), m(λ) = m(c̄d(λ)) + m(q̄d(λ)) if
and only if P(c̄d(λ)) ∩ P̄(q̄d(λ)) = ∅. This, in turn, is, by Theorem 4.1, equivalent to
B(λ) = B(c̄d(λ)) ∪ B̄(q̄d(λ)) (as A×2 �= A for any non-empty multiset A). �

Remark 4.3. Note that the situation given in (5) above does occur, for instance, in
the example we introduced in § 2.

We now illustrate Theorem 4.1 by an explicit example. As the above remark shows,
the example we introduced in § 2 does not fully illustrate the extent of Theorem 4.1. We
therefore consider instead the bar partition λ = (13, 10, 4) of n = 27, and d = 3. Below
is the shifted diagram of λ, filled in with the corresponding bar lengths:

1245678101112131723
123457891014

1234
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We then have c̄3(λ) = (7, 4, 1), with corresponding shifted diagram:

12457811
1245

1

The d̄-quotient partition of λ is q̄3(λ) = (8, 4, 2, 1). It has the following shifted diagram,
where we indicate alongside the rim the runners to consider (i.e. the hand residue at the
end of rows, and the foot residue decreased by 1 at the end of columns):

2

1021

02

1

0

2

1

2

1235891012
1456

23
1

We can now compute the modified bar lengths given by Definition 3.5. The normalized
β set {0, 1, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 19, 25, 28} for D(λ) gives us x0 = 5, x1 = 8 and
x2 = 2. For 0 � i, j � 2 and z ∈ Bi→j(q̄3(λ)), we have h̄(z) = h(z) + 3(xi − xj), and
B̄i→j(q̄3(λ)) = {|h̄(z)| | z ∈ Bi→j(q̄3(λ))}. This gives the following:

1773419812
1013236

73
10

It is then easy to check that the result announced by Theorem 4.1 does hold. We just
explicitly describe the case of parts (indicated in bold in the above diagrams). We see
that, in accordance with Corollary 4.2, P(λ) = {13, 10, 4} = P(c̄3(λ)) ◦ P̄(q̄3(λ)). And,
for the last four bars in bold in the diagram of λ, we have

{1, 2, 7, 14} = {1, 7} ∪ {2, 14} = [P(c̄3(λ)) ∩ P̄(q̄3(λ))] ∪ [P(c̄3(λ)) ∩ P̄(q̄3(λ))]×2.

In [1, Corollary 4.12], a generalization of a relative hook formula discovered by Malle
and Navarro was presented. We finish this paper by stating the bar analogue of [1,
Corollary 4.12].

If λ is a bar partition of n, we again let ρλ be an irreducible spin character of Ŝn

labelled by λ. We define σ(λ) = |λ|−m(λ), and δ(λ) = �σ(λ)/2� so that the bar formula
reads

ρλ(1) = 2δ(λ) n!
πB(λ)

.
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By Corollary 4.2 (3), we have that

m(λ) = m(c̄d(λ)) + m(q̄d(λ)) − 2δ,

where δ = |P(c̄d(λ))∩P̄(q̄d(λ))|. It follows from this and from |λ| = |q̄d(λ)|+ |c̄d(λ)| that

σ(λ) = σ(c̄d(λ)) + σ(q̄d(λ)) + 2δ.

We thus have
δ(λ) = δ(q̄d(λ)) + δ(c̄d(λ)) + δ + ε, (4.1)

where ε = 0 if σ(λ) is odd or if σ(λ) and σ(c̄d(λ)) are both even, and ε = 1 otherwise.
Theorem 4.1 now implies that

πB(λ) = πB̃(q̄d(λ))πB(c̄d(λ)) = 2δπB̄(q̄d(λ))πB(c̄d(λ)).

Combining this with formula (4.1), we get a relative bar formula.

Corollary 4.4. With the above notation,

ρλ(1) =
|λ|!

|c̄d(λ)|!
2δ(q̄d(λ))+ε

πB̄(q̄d(λ))
ρc̄d(λ)(1).
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