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LINEAR TRANSFORMATIONS PRESERVING THE REAL 
ORTHOGONAL GROUP 

ALBERT WEI 

1. Introduction. Let K be a field and Mn{K) denote the vector space of 
n X n matrices over K. Marcus [4] posed the following general problem: Let W 
be a subspace of Mn(K) and S a subset of W. Describe the set L(S, W) of all 
linear transformations T on W such that T(S) is contained in S. 

Dieudonne [1] took W to be Mn(K) and S to be the set of matrices of 
determinant zero. He proved that if T G L(S, W) is non-singular then it has 
the form 

(1) T(X) = UXV, all X G Mn(K), 

or 

(2) T(X) = UX'V, all X G MH(K), 

where U, V belong to GLn(K) and X' is the transpose of X. Marcus and Moyls 
[6] took W to be Mn(K) where K is an algebraically closed field of characteristic 
zero. They let 5 be equal to the set of matrices of rank 1. Then they showed that 
L(S, W) consists precisely of those linear transformations of the forms (1) or 
(2) with U, V G GLn(K). We note that this result does not assume a priori T 
is non-singular. Neither does the following result of Marcus [3]. He proved 
that if T is a linear map on w-square complex matrices taking the unitary group 
into itself, then it has the form (1) or (2) with U, V being unitary. For a com­
prehensive survey of this problem and preservers of other invariants, see 
Marcus [5]. 

In the same article [5], Marcus conjectured that if T is a linear map on 
Mn(R)j where R denotes the real field, such that T maps the orthogonal group 
0n(R) into itself, then T has the form (1) or (2) with U, V being orthogonal 
matrices. It is the purpose of this paper to show that this conjecture holds 
except for n — 2, 4, or 8 and that in the exceptional cases there exist singular 
maps. To a certain extent, we will determine the structures of those singular 
maps as well. We accomplish this by enlisting the aid of some results of Radon 
[7] and Hurwitz [2]. 

2. Statement of result. We define on Mn{R) the following linear maps: 
For U, V G 0n(R) we let 

M(U, V)(X) = UXV, all X G Mn(R), and 
tp{X) = X', a l l Z G Mn(R). 
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Let Gn denote the group generated by the above two types. If n, m are positive 
integers, we let L(n, m) denote the set of all ^-linear maps T : Mn(R) —» 
Mm(R) such that T{On(R)) is contained in 0m(R). It is clear that Gn is con­
tained in L(n, n). 

We next define what we call pairwise skew symmetric matrices. First, for 
A, B £ Mn(R) we set 

\A,B) = ABf +BA'. 

It is clear { , } is symmetric and bilinear. 

Definition. Let Ai, . . . , A t be (not necessarily distinct) elements of Mn(R). 
They are said to be pairwise skew symmetric (henceforth abbreviated PSS) if 
{AuAj} = {A/, A/} = Ofora lN 9*j,i,j = 1 , . . . , / . 

Suppose A i,. . . ,An £ 0n{R) are PSS. We define a linear map E{A i, . . . ,An) 
on Mn(R) by setting 

E(Al9...,An)(Etj) = ôaAj 

where Etj is the matrix with 1 at the (i, j) position and zero elsewhere. If 
U = (uv) G Mn(R) and V = E(Alt . . . ,An)(U), then 

W = J2 uu2AjA/+ X uuUulAuAj} 
3=1 i<j 

n 

= X Uifl. 
j=l 

Hence Fis a multiple of an orthogonal matrix. In particular if Uis orthogonal, 
then V is orthogonal. Hence E(AU . . • , An) £ L(n, n). We remark that 
E(Aij . . . , An) is a singular map of nullity n2 — n. 

THEOREM, (i) L(n, m) is empty if 1 ^ m < n. 
(ii) L(n, n) = Gn if n ^ 2, 4 or 8. 

(iii) / / n = 2, 4 or 8 and T £ L(n, n), then T ^ Gn or T = T\ o T2 o T3 

w/zer£ 7\, r 3 G C7n and r 2 = E(AU • • • , ^4«) /or some PSS orthogonal matrices 
Au . . . ,An. 

We exhibit some examples of PSS matrices Bu 

2, 4, 8. First we set 
, Bn in 0n(R) for n 

/ 2 = 0 1 
- 1 0 

and let J2fc be the direct sum of k copies of J2. 
(1) n = 2. L e t ^ i = I, B2 = J2. 
(2) » = 4. Let Bx = I,B2 = / 4 , 

1 

Bz = -11 

- 1 
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(3) n = 8. Let Bx = 7, B2 = J2 0 - / 2 © / 4 , 

1 

I - 1 
- l 

l l 
B, = 

1 

- 1 
- 1 

B, = - 1 
- 1 

Bb = 

- 1 

- 1 

- 1 
- 1 

B, = 

- 1 

- 1 
- 1 

38 = 
- 1 

- 1 
- 1 

563 

The entries not shown in these matrices are assumed to be zero. 
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If we set En = E(BU . . . , Bn), then part (iii) of the theorem may be im­
proved on as follows: If n = 2 or 4 and T £ L(n, n) is singular then 
T = Ti o En o T2 where 7\, T2 £ Gn. It is an open question whether or not this 
statement holds for n — 8. The matrices B\, . . . , Bn have combinatoric signifi­
cances as well. If Xi, . . . , xn are indeterminants, then YTi=ixt^i gives rise to 
an ^-letter Hadamard design of Williamson type [8]. 

3. PSS matrices. It is evident from the statement of the theorem that PSS 
matrices play a central role in our analysis. We first list some immediate conse­
quences of the definition. In what follows, A\, . . . , A t are assumed to be 
n-square PSS matrices: 

(i) If A i = / , then A2, . . . , A t are skew symmetric. 
(ii) UAXV, . . . , UAtV-are PSS for all U, V 6 0n(R). 

(iii) A^ ... ,A/ are PSS. 
(iv) If A is a linear combination of A2, . • . , A t, then A, Ax are PSS. 
(v) If Ai = Bt © d where Bx £ Mk{R) and Ct € Mn.k(R) for all i = 

1, . . . , t, then Bi, . . . , Bt are PSS and so are G, . . . , C*. 
(vi) If for some 2 ^ j , A t = 4̂ ;- then A t = A ; = 0. 
The following is a sufficient condition for matrices to be PSS, the proof of 

which is the same as a similar lemma given in [3, Lemma 2]. 

LEMMA 1. / / the matrices Au . . . , A t £ Mn(R) satisfy 

i e(i)At eon(R) 

for all functions e front {! , . . . , /} into {1, — 1}, then they are PSS. Furthermore, 

Z AiAl = Z A/At= I. 
i=i i=i 

We give another easy lemma without proof. 

LEMMA 2. Let A, B 6 Mm(R) be PSS. Suppose A is a diagonal matrix of the 
form 

k 

A = © aJsi 

where at ^ 0, at ^ a;- if i ^ 7, and X)*=i st = m. Partition B into B = {Btj) so 
that Btj is st X Sj. Then Bi} = 0 for all i ^ j , i, j = 1, . . . , k. 

The next lemma states a normal form for PSS matrices. 

LEMMA 3. If Au . . . , A t £ Mm(R) are PSS, then there exist U, V £ Om(R) 
such that 

k 

UAiV = © a(iJ)B(i j) 
1=1 
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where a(ij) € R,B(i,j) 6 0sj(R) U {0},i = 1, . . . , / , j = 1, . . . , k and for 
each], 5 ( 1 , j ) , . . . , B(t,j) are PSS. 

Before proving Lemma 3 we remark tha t if a(i, j)B(i, j) = 0 for some 
(i, j), then we assume a(i, j) = 0 and B(i, j) = 0. Moreover we can assume 
whenever necessary tha t for a fixed (i,j) if B(i,j) 9e 0 then B(i, j) = Isj. 

Proof of Lemma 3. We induct on m. If m = 1, then there is nothing to prove. 
Assume m > 1. If each A t is a multiple of an orthogonal matrix, then again 
there is nothing to prove. Hence we can assume A\ is not. By the polar de­
composition theorem there exist U, V 6 0m{R) such t ha t 

UAxV = 0 a , / , , 

where a* è 0, a< ^ a^ if i ^ j , i, j = 1, . . . , k and & ^ 2. Let 23 < = UAiV, 
i = ! , . . . , £ . 2?i, . . . , Bt are PSS. Using Lemma 2 we get 

5, = e c(i,i) 

where C(i,j) £ Msj(R), i = 1, . . . , / , 7 = 1, . . . , &. Now for each 7, C( l , j ) , 
. . . C(tf j) are PSS and Sj < m since k ^ 2. T h e lemma follows by induction. 

In view of this lemma, we see tha t problems concerning PSS matrices in 
general may be reduced to problems concerning PSS orthogonal matrices. 
We next s ta te a result due to Radon [7] tha t is crucial to our cause. 

Let v(n) = max t where t ranges over the cardinality of all sets of matrices 
Ai, . . . , A tin On{R) which are PSS. Express n uniquely as n = I6p.2q.r where p 
is some non-negative integer, q = 0, 1, 2 or 3, and r is odd. Then v(n) = 8p + 2q. 

The number v(n) is known in the li terature as the Radon-Hurwitz Number . 
For the purpose of this paper we shall only need the following easy consequence. 

LEMMA 4. v(n) ^ n with equality if and only if n = 1, 2, 4 or 8. 

LEMMA 5. Suppose n = 4 or 8 andAu . . . , An £ On(R) are PSS. If A £ On(R) 

is such that Ai, . . . , An_2, A are PSS also, then A is a linear combination of 
4»_i and An. 

Proof, (i) n = 4. Since the property of being PSS is invariant under pre and 
post multiplication by orthogonal matrices, we can assume Ai = I and 
A 2 = J±. Easy computat ions then show tha t we must have 

A = 
0 

c 
d 

— c 
-d 

-d 
c 

A, = 
0 

c % a i 

— di ct 

Ci dt 

dt —ct 

0 
i = 3,4, 

^here c2 + d2 = 1 and ct
2 + dt

2 = 1. Fur thermore we have c3c4 + d^d^ = 0 
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and c^dA — dzc± = zbl . Now post mult iply all matrices by A-/ and bring them 
to the following forms: 

Az = I, AA = ± / 4 , A = 
a b 

-b a 0 
a b 

— b a 

where a = cc^ + dd^ and b = cdz — dcd. I t is clear A = aA% ± bAA. 
(ii) n = 8. We use a technique due to Hurwi tz [2]. I t clearly suffices to prove 

t h a t there exist complex uni tary matrices £/, V such t ha t UA F is a real linear 
combination of UA7V and UA8V. T o this end we set Bj = —iAxAh j = 1, 
. . . , 8 and B = —iAÎA. T h e following equations are easily computable : 

(1) B? =B* = I, 7 = 2, 

(2) 
BjBk + BkBj = 0, j * k,j,k = 2, . . . , 8 

BBj + 5 , 5 - 0, 2 6. 

We note t ha t the above equations are invar iant under uni ta ry similarity 
transformations. Now B2 is uni tary, hence it is unitari ly diagonalizable. 
B2

2 = I means the eigenvalues of B2 are 1 and — 1 . Fur the rmore from (2) we 
get Bs*B2Bz = — B2 which implies B2 and — B2 have the same eigenvalues. 
Hence we can assume B2 = I\ © ( —74). Using (1) and (2) we get t h a t 

B 
0 

c* 
c 
0 

, B} = 
0 Cj 
c* 0 J 3, . . . , 8 

where C and Cj are 4 X 4 uni tary . Now let all matrices undergo similarity 
transformation by I A © C3*. We get t ha t 

B, 
0 U 
U 0 

B = 
0 iD 

, B< = 
0 iDj 

-iD 0 
, X^ J 

- ' D j 0 
j = 4, . . . , 8, 

and the matrices £>4, . . . , D8 and D satisfy equations (1) and (2). Hence we 
can duplicate the above a rgument and get 

D 
0 iH 

, Dt = 
0 iH 

•iH 0 , J^ j -iHj 0 
j = 6, 7, 8; 

and i f 6, # 7 , # s and 77 satisfy (1) and (2). Repeat ing the process again, we get 

0 
H 

0 h 
h 0 

H, = 
0 1 
1 0 

# 8 =b 

I t is clear i f is a real linear combination of H7 and H8, whence B is t ha t of 
Bi and B8. 

4. Proof of t h e o r e m . Suppose T £ Lin, m). We let Ftj denote the image of 
Eij under T. We need the following lemma: 
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LEMMA 6. If 1 ^ s, t, k, h ^ n and s^k, t^h, then the following equations hold: 
(i) {F,„Fkt) = {Fih,Fk„}, 

(ii) {/?„', Fk/\ = \F,h', Fkh'}, 
(iii) {F8„ FsA} = {Fkt,Fkh}, 
(iv) {7?./, F,»'} = \Fkt', Fkh'\. 

Proof. There exist a permutation a in the symmetric group of degree n such 
that v(s) = t and a(k) = A. Choose a,b £ R such that ab 9e 0 and a2 + fr2 = 1. 
Then the matrices, 

4 = a(/%, + Fkh),B = b(Fsh - Fkt), F„irh r * s, r * k and 1 ^ r ^ », 

are PSS by Lemma 1. Similarly the matrices, 

C = a(Fst - Fkh),D = b(Fsh + Fkt), FMrh r * s, r * k, and 1 ^ r ^ n, 

are PSS. Expanding the equations {A, B) = 0 and {C, D) = 0 and adding, we 
get {Fst, Fsh} = {Fkhj Fkt}} which is (iii). (i), (ii) and (iv) are proved similarly. 

We mention that ii s, t, k, h are as in Lemma 6 and if one of the matrices, 
Fst, Fkt, Fsh, Fkhf is zero then the conclusions of the lemma imply the four 
matrices are PSS. 

We proceed to the proof of the theorem. First observe that it is sufficient to 
show that up to pre and post composition with T by elements of Gm and Gn 

respectively, if 1 g m < n we arrive at a contradiction and if m = n we get T 
is the identity map on Mn(R), idMn(iB), or T = E(A\, . . . , An) for some PSS 
orthogonal matrices A i, . . . , An with the latter occurring only for n = 2, 4, or 8. 

We induct on n. The case n = 1 is trivial. Hence we assume n > 1 and divide 
the rest of the proof into three parts. 

Part I. If 1 ^ m < n, then L(n, m) = 0. 
Part II. If m = n and there exist (i, j), 1 ^ i, j ^ n, such that Ftj is not 

a scalar multiple of an orthogonal matrix, then T = idMn(R). 
Part III. If m = n and Ftj is a scalar multiple of an orthogonal matrix for 

each (i, j), i, j = 1, . . . , n, then n = 2, 4, or 8 and T = £(^4i, . . . , ^4n) for 
some PSS orthogonal matrices A\, . . . , An. 

Proof of Part I. The matrices Fn, . . . , 7%,̂  are PSS by Lemma 1. Lemma 3 
implies we can assume 

k 

Fti = 0 a(i,j)B(i,j) i = 1, . . . , n 
i=\ 

where B(i, j) £ 0Sj(R) U {0}, £ î - i ^ = m and if a(i, j)B(i, j) = 0 then 
a(^> j ) = 0 a n d ^(^', i ) — 0- Furthermore for each fixed j , j = 1, . . . , k, we 
have B(l, j), . . . , B(n, j) are PSS. We claim that at least one of the Fu is 
the zero matrix. To see this, let t denote the total number of non-zero a(i, j), 
i = 1, . . . , n, j = 1, . . . , k. Then 

k k 

t ^ ]C V(SJ) = IL SJ = m < n 
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where the first inequali ty follows from the definition of v and the second 
inequality follows from Lemma 4. Now if each Fu has a t least one non-zero 
direct summand we would have t ^ n. Hence our claim is valid. We can assume 
Fn = 0. 

If X e On-i(R), then T(0 + X) = T(l + X) £ Om(R). Hence T induces 
a map T £ L(n — 1, m). By induction, m = n — 1 and we can assume 
^ = idjifn_1(B) or f = £(^4i , . . . , An-i) for some PSS orthogonal matr ices 
Au • • . A - i . 

(i) If T = idMn-i(«)»tnen from Lemmas 1 and 6 and the fact that Fu = 0 
we get {Fln, Fu} = 0 for i = 1, . . . , n. Since Fa- = E,_i,_i, i = 2, . . . , w, 
we have / ^ = 0. Similarly Fn l = 0. Now let the matrix A £ 0n(2?) be defined 
by 

w - l 

yl = Eni + £in + 2J En-
i=2 

Then r(^4) = 0 + In-2 d On-i(R) which is a contradiction. 
(ii) If T = E(Ai, . . . , An-i), then by definition F2i = A *_i, i = 2, . . . , n, 

and / ^ = 0 for i = 3, . . . , nandj = 2, . . . , n. We set ^4n = Fu + ^21- Then 

An = rl£12 + £21+ è E J . 
\ *=3 / 

Hence ^4n G On-i(R). By Lemmas 1 and 6, ^4i, . . . , ^4w_i, ^12, ^21 are PSS. 
Hence Ai, . . . , An are PSS. Bu t this contradicts the fact t ha t v(n — 1) < n. 
This completes the proof of Pa r t I. 

Proof of Part I I . We first show t h a t we can assume Fn = En. Since a t 
least one of the Ftj is not a scalar multiple of an orthogonal matr ix we can 
assume Fn is not. Using the polar decomposition theorem, we can assume 

^11 = 0 a J s 

where J2*i=isi = n, at è 0 and at ^ (ij if i ^ j . We observe t ha t k ^ 2 and 
0 < st < n for all i = 1, . . . , & . Fur thermore we note tha t 0 ^ at S 1 and 
we can assume «i ^ 1. By Lemma 2, we now have 

Ftj= © B(ij,t) 

where 2?(z, j , t) is st X st, i, j = 2, . . . , n and / = 1, . . . , k. Now if X is 
n — 1 X « — 1 orthogonal then 7̂  maps 0 © X into Yx © . . . © Yk where Yt 

is st X st. From T we obtain a map f : Mn-i(R) —> Af51(7?) such tha t f ( Z ) = 
Fi. An easy exercise shows t ha t (1 — ai2)~l/2T Ç L(w — 1, Si). We have by 
induction n — 1 = sx. Hence Fn = ajn_i © a2 where 0 ^ ax < 1 and 
0 ^ a2 ^ 1, and Fu = B{ © bt where 5 , G Mn^(R) and & i f i ? , i = 2 
». Since F1U . . . , Fnn are PSS, we have t ha t a2, 62, • . . , bn are PSS. Since 
*>(!) = 1, a t most one of them is non-zero. If a2 = 0, then al 5* 0. A similar 
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argument as before shows s2 = n — 1 which means n = 2, Fn = a,\ © 0 and 
-F22 = 61© b2. Now &i, 6i are PSS and a\ T6 0 means &i = 0 which in turn 
implies a,\ = 1, a contradiction. Hence a2 5̂  0 and 62, . • . , bn are all zero. This 
means a2 = 1. Now Fn has the form ailw_i © 1. If a,\ — 0 then we are done. 
Hence assume 0 < a1 < 1. There exist an 5, 2 ^ 5 ^ «, such that F5S 7e 0. 
FS5 has the form B + 0. Precomposing T with a map interchanging the (s, 5) 
and (1,1) entries allows us to assume Fn = B © 0. As before bring our new 
Fn to the form 

* 
Fn = © cjsi 

where c* ^ Cjiî i 9e j and ct ^ 0. We know zero must occur among the eigen­
values of Fu. Hence we can assume c2 = 0. Applying previous arguments 
again, we get s2 = n — 1. Hence Fn = -En. 

This means T maps matrices of the form 0 © X into 0 © Y where X, Y 
are in Mn-i(R). Hence T induces a map f f L(n — 1, n — 1). By induction 
we can assume J1 = idArn_l(Z2) or T = E(Ai, . . . , An-\) for some PSS « - 1 X 
n — 1 orthogonal ^4i, . . . , ̂ 4n_i. 

We show that the latter case may be reduced to the former. If T = 
E(A\, . . . , An-i), we can assume ^4i = In-\. Hence F22 = 0 © 7n_i. Lemma 2 
forces Ftj to have the form 6Ï;- © Ow_i, 2,7 = 1, 3, . . . n. This means T induces 
a map in L{n — 1, 1). Using our induction hypothesis again we get that n = 2 
which implies T = i d ^ ^ ) . 

We now have T is the identity map on Mn-i(R) which means Ftj = E{j 

for i, j = 2, . . . , w. Now F12 and i^i must have the form 

|0 On_2| * 

By Lemma 6, they satisfy the equations {FX2, ^11} = {F2i, F22} and {F12, F22\ = 
{F21, F11}. Furthermore Fi2 and F2i are PSS. We use these facts to conclude 
that Fi2 and F2i must satisfy one of the following four possibilities: 

(1) F12 = £12, F21 = E2i 

(2) F\2 — —E\2, F2\ = —E2i 
(3) F12 = E2i, F2\ = £12 

(4) F12 = — £ 2 1 , F2i = —Ei2. 

If (3) or (4) occurs, then we replace T by T o tp and get the cases (1) or (2). 
Hence we only need to consider (1) and (2). 

We first take care of the case n = 2. If (1) occurs then T = idM2(i2) and we 
are done. If (2) occurs, we let U be the matrix —1 © 1. Then M(U, U) o T = 

idjif2(i2)-

We now assume n ^ 3. It is clear Fu and Fn must satisfy one of the pos­
sibilities (1)—(4) with suitably changed subscripts. This yields the following 
eight cases: 
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1. F\2 = £12, F 21 = F2I , F13 = £ l 3 , -^31 = ^31 

2. F\<L = —Eu, F21 = —£21, Fiz = —Eu, Fz\ = —En 

3 . F12 = En, F21 = £ 2 1 , F13 = —F13, ^31 = —-£31 

4 . F i 2 = £12, F 21 = £ 2 1 , £13 = £ 3 1 , £31 = £13 

5 . £12 = £12, £21 = £ 2 1 , £13 — —Ezi, Fzi = — £13 

6. F12 = —Eu, F21 = —E21, Fu = En, F$i = En 
7. F\2 = —En, F21 = —E21, F\z = £31, £31 = £13 
8. £12 = —E\2, F21 = —E21, Fu — ~En, Fn = —£13. 

Let A denote the matr ix 

0 In-i 

0 a b 
0 -b a 
1 0 0 

where ab 9* 0 and a2 + b2 = 1. Then A G 0n(R). Hence T(A) G 0n{R). This 
fact eliminates the cases 3 -8 . 

I t is clear t ha t if we apply similar a rguments to Fij and Fn for 4 ^ 7 g n 
we would get the following two cases: 

1. F H = £ H , F n = Etl, i = 2, . . . , n 
2. Fu = -Eu, Fa = —Etu i = 2, . . . , n. 

If case 1 holds then T = idMn(R) and we are done. If case 2 holds, we let 
U = — 1 0 7n_i. Then M(U, U) o T = idM, l( i2). This completes the proof of 
P a r t I I . 

Proof of Part III. We now have Ftj = atjT'ij} i,j = l,...,n, where atj G R, 
0 g |«ol ^ 1 and 7 \ , G C\(i?) U {0}. We assume tha t if Fi5 = 0 then atj = 0 
and Ta = 0. At least one of the matrices Tn, . . . , Tnn is non-zero. We can 
assume tha t Tit 3^ 0, i = 1, . . . , k, and F^- = 0, j = k + 1, . . . , n. From 
this we get t ha t Ttj = 0 for i, j = k + 1, . . . , n. Several applications of 
Lemmas 1 and 6 show the matrices 

(3) Tn, . . . , 7 ^ ; 

are PSS. Fur thermore , it is not the case t ha t there exist 5 and /, k + 1 ^ 5 , 
/ g w, such tha t 7 \ s = F ^ = 0. Since we know each of Tn, . . . , Tkk is non­
zero, we have tha t there are a t least n non-zero matrices in (3). Lemma 4 
now implies n = 2, 4 or 8 and t ha t we can assume 

(4) TkM = . . . = Tkn = 0 

and Tjk 5^ 0 for all j = & + 1, . . . , n. 
Suppose for some (i,j), \atj\ = 1. Then we can assume F u = I. This means 

Ftj = 0 for all i, j = 2, . . . , n. We further know from (4) t ha t FYj = 0 for all 
j = 2, . . . , n. Let a- be a permuta t ion such t ha t a(t) = 1 for some /, 1 ^ t ^ n. 
If P(a) is the corresponding permuta t ion matr ix then T(P(a)) = F a . Hence 
Ftl e On(R). From (3) we know the matrices F1U . . . , Fnl are PSS. Hence 
we have T o tp = E(Fn, . . . , F n i ) . 
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We now consider the case 0 ^ \atj\ < 1 for a l H , j = 1, . . . , n. We show 
t h a t we can reduce this to the case Fu = I. To this end we split the argument 
into (i) n = 2 and (ii) n = 4, 8. 

(i) If n = 2, then T22 5^ 0. Hence we can assume Fu = a n 7 and F22 = 
a^Ji where 0 < au, a22 < 1. Using Lemmas 1 and 6 and an easy computat ion, 
we get t ha t both F12 and F21 are non-zero linear combinations of / and J 2 . 
We compute further. Wri te 

^ 1 2 = ai 
— di Ci 

a n d F21 = ^21 
02 

—d2 

^2 

02 

where a i 2 ^ 0, a21 9^ 0 and ct
2 + o\2 = 1. Using {F12, F21} = 0, we get t ha t 

(5) OiC2 + did2 = 0. 

Using {FUl Fn] = {F21, ^22} and {F12, ^22} = {F21, ^11}, we get 

(6) Cl = <222^21 
^2 and 

&22&12 , 
C2 = d\. 

d\\d2l a\\d\2 

Combining (5) and (6) yields d\ = 0 or d2 = 0. We can assume a\ = 0 which 
implies C\ = ± 1 , £2 = 0 and d2 = ± 1 . Hence F12 = a127 and ^21 = «21/2-
Equat ions (6) then imply anau = a 22(121- This along with the fact t ha t 
an2 + a22

2 = aw2 + a2i2 allow us to conclude a i2
2 = a222. Now let U G Û2(R) 

be of the form 

U = a n ai2 
* 

Then ToM(I, U)(En) = L 
(ii) We now do the case n = 4, 8. Again we may assume F u = a n / and 

F22 = CL22J71' The matrices Tn, • . . , I**, 7^+u, . . . , Tnk are PSS. We also have 
jTi2, r 2 i , r 3 3 , . . . , r ^ , r A + u , . . . , Tnk are PSS. Hence by Lemma 5 we have 
tha t r i 2 and T2i are linear combinations of / and Jn. Fur thermore the numbers 
a n , ai2, a2i, a22 are all non-zero. We are now in a similar si tuation as t ha t of 
the case n = 2. Since I and Jn are just direct sums of copies of I2 and J2, the 
same argument used in n = 2 applies here also. Hence we have F12 = a i 2 / , 
F21 — a<i\Jn

 a n d a i2
2 = a222. Similarly Fu = a,\J. and au

2 = at
2 for all i = 

1, . . . , k. Now let U 6 Ow(i?) be of the form 

U = a n au 0 0 

Then recalling the fact tha t YTi=\aa2 = 1 a n d a^- = 0, k + 1 ^ j ^ «, we 
conclude T o M(I, U)(En) = / . This completes the proof of the theorem. 
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