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LINEAR TRANSFORMATIONS PRESERVING THE REAL
ORTHOGONAL GROUP

ALBERT WEI

1. Introduction. Let K be a field and M,(X) denote the vector space of

n X n matrices over K. Marcus [4] posed the following general problem: Let W

be a subspace of M, (K) and S a subset of W. Describe the set L(S, W) of all
linear transformations 7" on W such that 7°(S) is contained in S.

Dieudonne [1] took W to be M,(K) and S to be the set of matrices of

determinant zero. He proved that if 7 € L(S, W) is non-singular then it has

the form
1) T(X) =UXV, all X € M,(K),
or

(2) T(X) = UX'V, all X € M.(K),

where U, V belong to GL,(K) and X' is the transpose of X. Marcus and Moyls
(6] took W to be M,(K) where K is an algebraically closed field of characteristic
zero. They let S be equal to the set of matrices of rank 1. Then they showed that
L(S, W) consists precisely of those linear transformations of the forms (1) or
(2) with U, V € GL,(K). We note that this result does not assume a priori T
is non-singular. Neither does the following result of Marcus [3]. He proved
that if 7 is a linear map on n-square complex matrices taking the unitary group
into itself, then it has the form (1) or (2) with U, V being unitary. For a com-
prehensive survey of this problem and preservers of other invariants, see
Marcus [5].

In the same article [5], Marcus conjectured that if 7" is a linear map on
M,(R), where R denotes the real field, such that 7" maps the orthogonal group
0,(R) into itself, then 7" has the form (1) or (2) with U, V being orthogonal
matrices. It is the purpose of this paper to show that this conjecture holds
except for n = 2, 4, or 8 and that in the exceptional cases there exist singular
maps. To a certain extent, we will determine the structures of those singular
maps as well. We accomplish this by enlisting the aid of some results of Radon
[7] and Hurwitz [2].

2. Statement of result. We define on M,(R) the following linear maps:
For U, V € 0,(R) we let

MU, V)(X) = UXV, all X € M.(R), and
tp(X) = X', all X € M,(R).
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Let G, denote the group generated by the above two types. If n, m are positive
integers, we let L(n, m) denote the set of all R-linear maps T : M,(R) —
M,,(R) such that T(0,(R)) is contained in O, (R). It is clear that G, is con-
tained in L(n, n).

We next define what we call pairwise skew symmetric matrices. First, for
4, B € M,(R) we set

{4, B} = AB' + BA'.

It is clear { , } is symmetric and bilinear.

Definition. Let 44, ..., A, be (not necessarily distinct) elements of M, (R).
They are said to be pairwise skew symmetric (henceforth abbreviated PSS) if
{Aiy Aj} = {A{’, Ajl} = OfOr all ) #], 1,]‘ = 1, . .,t.

Suppose 44, . .., 4, € 0,(R) are PSS. We define a linear map E(44,...,4,)
on M,(R) by setting
E(Al, o 7An)(Eij) = 6¢1Aj

where E; is the matrix with 1 at the (¢, j) position and zero elsewhere. If
U= (uy) € My(R)and V = E(44,...,4,)(U), then

n
VV’ = Z]_ ulj2AjA/ + Z uuul,{Ai,A,}
= <
= uljzl.

=1
Hence V/is a multiple of an orthogonal matrix. In particular if U is orthogonal,
then V is orthogonal. Hence E(4,, ..., 4,) € L(n, n). We remark that
E(A4,,...,A,) is a singular map of nullity n* — n.

THEOREM. (i) L(n, m) is empty if 1 £ m < n.
(i) L(n,n) = G, if n % 2, 4 or 8.
(i) If n =2,40r 8and T € L(n, n), then T ¢ G, or T = T10T20 T3

where Ty, T3 € G, and Ty = E(A4,y, ..., A,) for some PSS orthogonal matrices
Ay, ..., A,
We exhibit some examples of PSS matrices By, ..., B, in 0,(R) for n =
2, 4, 8. First we set
01
n=|_0

and let Jy be the direct sum of k& copies of J,.
(1) n = 2. LetBl = I, Bz = Jz.
2)n =4.Let B, =1, B, = J,,

B3= —1 y _B4=.
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The entries not shown in these matrices are assumed to be zero.
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If we set E, = E(By, ..., B,), then part (iii) of the theorem may be im-
proved on as follows: If n =2 or 4 and T € L(n, n) is singular then
T =T,0E,oTywhere Ty, Ty € G,. Itisan open question whether or not this
statement holds for » = 8. The matrices By, . . . , B, have combinatoric signifi-
cances as well. If xy, ..., x, are indeterminants, then > i_;x;B; gives rise to
an n-letter Hadamard design of Williamson type [8].

3. PSS matrices. It is evident from the statement of the theorem that PSS
matrices play a central role in our analysis. We first list some immediate conse-

quences of the definition. In what follows, 4,, ..., 4, are assumed to be
n-square PSS matrices:

(1) If A, = I, then A4,, ..., A, are skew symmetric.

(i) UA.V, ..., UA,V are PSS for all U, V € 0,(R).

(iit) 44/, ..., A/ are PSS.

(iv) If 4 is a linear combination of 4., ..., 4,, then 4, A, are PSS.

(v) If 4, =B, ® C; where B, € M;(R) and C, € M,_,(R) for all ¢« =
1,...,¢t then By, ..., B,are PSS and so are Cy, ..., C,.

(vi) If forsome 7 # j, A; = A;then 4, = 4; = 0.
The following is a sufficient condition for matrices to be PSS, the proof of
which is the same as a similar lemma given in [3, Lemma 2].

LeEmMmA 1. If the matrices Ay, ..., A, € M,(R) satisfy

t

2. €A, € Ou(R)

i=1

for all functions e from {1, ..., t} into {1, —1}, then they are PSS. Furthermore,

We give another easy lemma without proof.

LemMmA 2. Let A, B € M, (R) be PSS. Suppose A is a diagonal matrix of the
form

k
A= @ adg
i=1

where a; 2 0, a; # a;if 1 # j, and Y i—y s, = m. Partition B into B = (B,;) so
that Byyis s; X s;. Then By, = 0 forall1 % j,1,7 =1, ..., k.

The next lemma states a normal form for PSS matrices.

LemMmA 3. If Ay, ..., A, € M,(R) are PSS, then there exist U, V € O,(R)
such that

k
UA,V = @la(z',j)B(i 7)
j=
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where a(i, j) € R, B(1,7) € O;(R)\J {0}, ¢ =1,...,4,7=1,...,kand for
each j, B(1, j), . .., B(t, j) are PSS.

Before proving Lemma 3 we remark that if a(s, j)B (4, j) = 0 for some
(1, 7), then we assume a(z, j) = 0 and B(7, j) = 0. Moreover we can assume
whenever necessary that for a fixed (¢, j) if B(¢, j) # 0 then B(7,j) = I,,.

Proof of Lemma 3. We induct on m. If m = 1, then there is nothing to prove.
Assume m > 1. If each A4, is a multiple of an orthogonal matrix, then again
there is nothing to prove. Hence we can assume 4; is not. By the polar de-
composition theorem there exist U, V € 0, (R) such that

k
UA\V = @ a.d
=1

where a; 2 0,a; # a;if1#4,1,j=1,...,kand k = 2. Let B, = U4,V,
1=1,...,¢t By, ..., B,are PSS. Using Lemma 2 we get

k
By= @ C(,7)
=1

where C(4,j) € M;(R),2=1,...,t,7=1,...,k Now for each j, C(1, j),
... C(t j) are PSS and s; < m since # = 2. The lemma follows by induction.

In view of this lemma, we see that problems concerning PSS matrices in
general may be reduced to problems concerning PSS orthogonal matrices.
We next state a result due to Radon [7] that is crucial to our cause.

Let v(n) = max ¢ where t ranges over the cardinality of all sets of matrices
Ay, ..., Ain O,(R) which are PSS. Express n uniquely as n = 167.2%r where p
is some non-negative integer,q = 0,1, 2 or 3, and r is odd. Then v(n) = 8p + 2

The number v(n) is known in the literature as the Radon-Hurwitz Number.
For the purpose of this paper we shall only need the following easy consequence.

LEMMA 4. v(n) = n with equality if and only if n = 1, 2,4 or 8.

LEMMA 5. Supposen = 4or8and Ay,...,A, € O,(R) are PSS. If A € 0,(R)
is such that Ay, ..., A,—s, A are PSS also, then A is a linear combination of
An—l and An

Proof. (i) n = 4. Since the property of being PSS is invariant under pre and
post multiplication by orthogonal matrices, we can assume A4; = I and
A, = J4. Easy computations then show that we must have

[4 d Ci d1
_ 0 d —C _ 0 di —Cy .
A=1_c _g 0 A= —c; —d; 0 ;=34

—d c —di Cyq

where ¢2 4+ d? = 1 and ¢;2 + d;> = 1. Furthermore we have cycs + d3ds = 0
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and ¢ydy — dscy = #1. Now post multiply all matrices by 43" and bring them
to the following forms:

a b

A3=I,A4=:i:J4,A=i b
- a

°|

where ¢ = cc3 + dds and b = ¢d; — dcs. It isclear 4 = ad; &+ bA..

(ii) = = 8. We use a technique due to Hurwitz [2]. It clearly suffices to prove
that there exist complex unitary matrices U, V such that UA V is a real linear
combination of UA;V and UAsV. To this end we set B; = —id/4; j = 1,
..., 8and B = —i4/A. The following equations are easily computable:

(1) Bp=B=1, j=2...,8

(2) BjBk-|—BkBj=0, ]#k,],k =2,...,8
BB, +B,B=0, j=2...,6.

We note that the above equations are invariant under unitary similarity
transformations. Now B, is unitary, hence it is unitarily diagonalizable.
Bs? = I means the eigenvalues of B; are 1 and —1. Furthermore from (2) we
get By*ByB; = — B, which implies By and — B, have the same eigenvalues.
Hence we can assume By, = I, @ (—1,). Using (1) and (2) we get that

0 C
c* 0

0 C

B = C* 0

’ B]':

. i=23...,8

where C and C; are 4 X 4 unitary. Now let all matrices undergo similarity
transformation by I, @ Cy*. We get that

0 I, 10 D B 0 1D
Bs=1p, o" B—\—iD 0|’ B]’”l—z'pi,. ol'
j=4,...,8,
and the matrices Dy, ..., Dg and D satisfy equations (1) and (2). Hence we
can duplicate the above argument and get
0 1H 0 1H, .
D = . i = . ! = 6 S;
—in ol P Zim, 0" J=067.8;

and Hg, Hq, Hs and H satisfy (1) and (2). Repeating the process again, we get

0 &
h 0

0 1
1 0

0

H = ¢
—1 0

, H7=‘ } Hs=:}:’

It is clear H is a real linear combination of H; and Hs, whence B is that of
B7 and Bg.

4. Proof of theorem. Suppose 7" ¢ L(n, m). We let F;; denote the image of
E;; under 7. We need the following lemma:
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LEMMA 6. If 1 <s,¢, k, h Snands#k, t 5% h,thenthe following equations hold:
) {Fszy Foid = {Fa, Fkh}y

(ii) {Fstlr sz'} = {Fsh’y Fkh,}y

(iii) {Fsp, Faa} = {Fey, Fua},

(iv) {Fs/, Fo'} = {F/, Fu'}.

Proof. There exist a permutation ¢ in the symmetric group of degree » such
that o(s) = tand o (k) = h. Choose a, b € R such thatab # 0and a? + b2 = 1.
Then the matrices,

A =a(Fst+Fkh)vB =b(Fsh_ Fkt)yFra(r)yr?ésyr#kandl éf ény
are PSS by Lemma 1. Similarly the matrices,
C=a(Fs— Fu),D =b(Fg+ Fr\), Froryy7 #Z 5,7 #k,and1 <7 < n,

are PSS. Expanding the equations {4, B} = 0 and {C, D} = 0 and adding, we
get {Fyy, Fou} = {Fy, Fi}, which is (iii). (i), (i) and (iv) are proved similarly.

We mention that if s, ¢, &, & are as in Lemma 6 and if one of the matrices,
Fgi, Fvy Fa, Fi, is zero then the conclusions of the lemma imply the four
matrices are PSS.

We proceed to the proof of the theorem. First observe that it is sufficient to
show that up to pre and post composition with 7" by elements of G, and G,
respectively, if 1 < m < n we arrive at a contradiction and if m = n we get T
is the identity map on M,(R), idy,z), or T = E(A,., ..., 4,) for some PSS
orthogonal matrices 44, . . . , 4, with the latter occurring only for n = 2, 4, or 8.

We induct on #. The case n = 1 is trivial. Hence we assume » > 1 and divide
the rest of the proof into three parts.

Part I. If 1 £ m < n, then L(n, m) = 0.

Part II. If m = n and there exist (¢, j), 1 <4, j < n, such that Fy; is not
a scalar multiple of an orthogonal matrix, then 7" = id,,(z.

Part III. If m = »n and F; is a scalar multiple of an orthogonal matrix for

each (¢,7),7,j=1,...,n,thenn =2,4,or8and T" = E(44, ..., 4,) for
some PSS orthogonal matrices 44, ..., 4,.
Proof of Part 1. The matrices Fyy, . .., F,, are PSS by Lemma 1. Lemma 3
implies we can assume
k
FH= @d(i,])B(i,]) 1:':1;-"1"
=1
where B(i, j) € O,,(R) U {0}, Xh_1s; = m and if a(z, j)B(Z, j) = 0 then
a(i, j) = 0 and B(s, j) = 0. Furthermore for each fixed j, 7 = 1, ..., k, we
have B(1, j), ..., B(n, j) are PSS. We claim that at least one of the F, is
the zero matrix. To see this, let ¢ denote the total number of non-zero a(z, j),
i=1,...,n,7=1,...,k Then

k

k
t.S_Zv(s,-)§Zs,=m<n
j=1 =1

https://doi.org/10.4153/CJM-1975-067-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1975-067-6

568 ALBERT WEI

where the first inequality follows from the definition of » and the second
inequality follows from Lemma 4. Now if each F;; has at least one non-zero
direct summand we would have ¢t = n. Hence our claim is valid. We can assume
Fu = O

If X€0,:(R), then T(0+ X) =T(1+ X) € 0,(R). Hence T induces
amap T € L(n — 1, m). By induction, m = n — 1 and we can assume

T = idy,_ym or I’ = E(4y, ..., An_y) for some PSS orthogonal matrices
Ay ..o A
() If T' = ids,_ ) then from Lemmas 1 and 6 and the fact that Fi; = 0
we get {F,, Fi;} =0fori=1,...,n Since F;; = E; 11,0 =2, ..., n,
we have F,, = 0. Similarly F,; = 0. Now let the matrix 4 € 0,(R) be defined
by
n—1

A = Enl +E1n + 22 Eii-
=

Then T'(4) = 0+ I,_» ¢ 0,_1(R) which is a contradiction.
(i) If T = E(A4,, ..., A, 1), then by definition Fo; = A, 1,1 = 2,...,n,
and F;; =0fori=3,...,nandj = 2,...,n Weset A, = Fi2 + Fa. Then

A, = T(Em + Eu + z:s Eu) .
=

Hence 4, € 0,.:.(R). By Lemmas 1 and 6, 44, ..., A,_1, F1s, F2 are PSS.
Hence 4., ..., 4, are PSS. But this contradicts the fact that »(n — 1) < n.
This completes the proof of Part I.

Proof of Part 11. We first show that we can assume Fi; = E;;. Since at
least one of the F;; is not a scalar multiple of an orthogonal matrix we can
assume Fi; is not. Using the polar decomposition theorem, we can assume

k

F11 = @ ailsi
1=1

where Y% _1s;, = n, a; 2 0 and a; # a; if 1 # j. We observe that £ = 2 and
0<si;<mnforalli=1,...,k Furthermore we note that 0 < «; £ 1 and
we can assume a; # 1. By Lemma 2, we now have
k
Fy= ® B(,74,1)
=1
where B(7, j, t) is s, X s, 2, j=2,...,nand t =1, ..., k. Now if X is

n — 1 X n — 1 orthogonal then T maps 0 @ X into V;, @ ... @ ¥V, where Y,
iss; X s, From T we obtainamap 7 : M,_,(R) — M,,(R) such that T(X) =
Y1. An easy exercise shows that (1 — a,?)~"2T ¢ L(n — 1, s;). We have by
induction n — 1 =s5;,. Hence Fy, = a,l,_; ® a, where 0 <a, <1 and
0a:=1l,and Fyy = B, ® by, where B, € M, ;(R)andb; € R,i =2, ...,
n. Since Fii, ..., F,, are PSS, we have that a,, b, ..., b, are PSS. Since
»(1) = 1, at most one of them is non-zero. If a; = 0, then a, £ 0. A similar
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argument as before shows s; = n — 1 which means n = 2, F;; = a; @ 0 and
Fys = by ® bs. Now ay, b, are PSS and @, ¢ 0 means b; = 0 which in turn
implies a; = 1, a contradiction. Hence as # 0 and b, . . . , b, are all zero. This
means a; = 1. Now Fi; has the form a,I,_; ® 1. If a, = 0 then we are done.
Hence assume 0 < a; < 1. There exist an s, 2 £ s £ #n, such that F,; # 0.
Fqs has the form B + 0. Precomposing 7" with a map interchanging the (s, s)
and (1, 1) entries allows us to assume Fi; = B @ 0. As before bring our new
Fi; to the form

k

Fiu= @ ¢,
=1

where ¢; # ¢;if ¢ # jand ¢; = 0. We know zero must occur among the eigen-
values of Fi;. Hence we can assume ¢, = 0. Applying previous arguments
again, we get s = n — 1. Hence Fy; = Eq.

This means 7" maps matrices of the form 0 @ X into 0 @ Y where X, ¥V
are in M,,vl(R).AHence T induces a map 7 € L(n — 1, n — 1). By induction

we can assume 1 = id,,_,(r) OF T = E(A4y,...,A,) forsome PSSn — 1 X
n — 1 orthogonal 4,, ..., 4,1.

We show that the latter case may be reduced to the former. If T =
E(A,, ...,A,1), wecan assume 4, = I,_;. Hence Fys = 0 ® I,_,. Lemma 2
forces F;; to have the form b,; ® O,_1,7,7 = 1, 3, ... n. This means 7" induces

amapin L(z — 1, 1). Using our induction hypothesis again we get thatn = 2
which implies 7° = id 4, g
We now have 7' is the identity map on M,_;(R) which means F,; = E,

fori,7 =2,...,n Now Fy; and Fy; must have the form
*0
0 O,_of

By Lemma 6, they satisfy the equations { Fia, F11} = {Fa1, Fa2} and { Fyy, Fye} =
{F21, F11}. Furthermore Fis and F,; are PSS. We use these facts to conclude
that Fi, and F»; must satisfy one of the following four possibilities:

(1) F12 = E12, F21 = E21
(2) F12 = _E12, F21 = —E21
(3) F12 = E21, F21 = E12
(4) F12 = _Ezl, le = _E12-

If (3) or (4) occurs, then we replace T by T o tp and get the cases (1) or (2).
Hence we only need to consider (1) and (2).

We first take care of the case n = 2. If (1) occurs then T = id,(z and we
are done. If (2) occurs, we let U be the matrix —1 @ 1. Then M (U, U) o T =
idM'z(R)-

We now assume n = 3. It is clear Fi3 and F3 must satisfy one of the pos-
sibilities (1)—(4) with suitably changed subscripts. This yields the following
eight cases:
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Fyp = E12, Fay = sz, Fi3 = E13, F3 = Eg
Fyy = "“Ew, Fy = —E21, Fi3 = “‘Ela, Fy = —Ey
Fyp = Ew, Fy = sz, Fi3 = —E13, F3 = —Ey
= En, Fyy = E21, Fi3 = Eg1, F31 = Ey
Fpp = E12, Fyy = E21, Fi3 = —Ey, F3 = — En
Fp = —“El'z, Fy = ‘*Ezl, Fis = Eys, F3 = Eg
Fis = —E,, Fyy = —Ey, Fi3 = Es, F3 = Eqs
8. F12 = "Elz, F21 = —E21, F13 = "‘E:u, F31 = —Els-

NS o -
=
»

Let 4 denote the matrix

0 a b
O _b a @ In—3
1 0 O

where ab # 0 and a2 4+ b2 = 1. Then 4 € O,(R). Hence T'(4) € O0,(R). This
fact eliminates the cases 3-8.

It is clear that if we apply similar arguments to Fy; and Fj; for4 < j < n
we would get the following two cases:

1. F11=E11, Fu =E,1,i=2,...,n

2. F“ = —E“, F“ = —E“,’i = 2, A (B
If case 1 holds then 7" = id,, (s and we are done. If case 2 holds, we let
U= —1® I,.;. Then M(U, U) o T = id,m- This completes the proof of

Part I1I.

Proof of Part II1. We now have Fy; = a;1T4,1,7 = 1,...,n,whereay; € R,
0 =Z|ayl = 1land Ty; € 0,(R) U {0}. We assume that if F;; = 0 thena,;; =0
and 7';; = 0. At least one of the matrices 71, ..., 7T, is non-zero. We can
assume that 7';; #0,7=1, ...,k and 7;, =0, =k + 1, ..., n. From
this we get that 7°;; = 0 for 4, j = k + 1, ..., n. Several applications of
Lemmas 1 and 6 show the matrices
(3) Tu, .oy T Thgry oo oy Thns TIH—lkv vy Ty
are PSS. Furthermore, it is not the case that there exist s and ¢, &k + 1 < s,
t < n, such that T, = T, = 0. Since we know each of T, ..., T%: is non-

zero, we have that there are at least #n non-zero matrices in (3). Lemma 4
now implies n = 2, 4 or 8 and that we can assume

4) Tus1=...=Twp=0
and T #O0forallj =k +1,...,n

Suppose for some (7, j), |a;;] = 1. Then we can assume Fy; = I. This means
Fy=0foralli,j=2,...,n We further know from (4) that F,; = 0 for all
j =2,...,n Letobea permutation such that o(t) = 1forsomet, 1 <t < ».
If P(o) is the corresponding permutation matrix then 7'(P(s)) = F,;. Hence
Fy € 0,(R). From (3) we know the matrices Fyy, ..., F,; are PSS. Hence

we have T otp = E(Fy, ..., Fa).

https://doi.org/10.4153/CJM-1975-067-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1975-067-6

LINEAR TRANSFORMATIONS 571

We now consider the case 0 = |a;y| < 1forall4,j=1,..., n. We show
that we can reduce this to the case Fi; = I. To this end we split the argument
into (i) » = 2 and (ii) » = 4, 8.

(i) If » = 2, then T3 %2 0. Hence we can assume Fi; = a;] and Fyy =
@922 where 0 < ay1, aes < 1. Using Lemmas 1 and 6 and an easy computation,
we get that both Fis and Fyy are non-zero linear combinations of I and Js.
We compute further. Write

¢ dy ¢y do
—di —ds ¢y
where a12 # 0, a2; # 0 and ¢,2 4+ d;2 = 1. Using {F1s, Fa1} = 0, we get that
(5) cic2 + dide = 0.

Using {F1s, Fi1} = {Fa, Fao} and {F1s, Fop} = {Fy1, F11}, we get

Fi3 = ay and Fay = ag

6) ¢1= G201 . and ¢ = 22022

11012 1121
Combining (5) and (6) yields d; = 0 or d; = 0. We can assume d; = 0 which
implies ¢; = =1, ¢s = 0 and d» = 1. Hence Fi2 = a1z and Fa = asds.
Equations (6) then imply @@z = @s¢s. This along with the fact that
an? + ase? = a2’ + aq? allow us to conclude @122 = a2 Now let U € 02(R)
be of the form

11 Q12
*

U =

Then T’o M1, U)(Ey) = 1.

(i) We now do the case n = 4, 8. Again we may assume Fi; = «¢yJ and
Foy = agJ,. The matrices Ty, . . .y Tory Thvir, . . ., T are PSS. We also have
Tie, To1, T3y o ooy Thky Thvix, - - - » L are PSS, Hence by Lemma 5 we have
that 71 and 7'y are linear combinations of I and J,. Furthermore the numbers
@11, @12, @21, Gg2 are all non-zero. We are now in a similar situation as that of
the case n = 2. Since [ and J, are just direct sums of copies of I, and Js, the
same argument used in #n = 2 applies here also. Hence we have Fi» = a2/,
Faoy = a1/, and a12® = a9 Similarly Fi; = ay;] and a;,2 = a;;? for all ¢ =

1,...,k Nowlet U € 0,(R) be of the form
a ...oa 0o ... 0
U: 11 li

Then recalling the fact that > j_ja;2 =1 and a;; =0,k +1 =7 < n, we
conclude 7o M(I, U)(Ew) = I. This completes the proof of the theorem.

REFERENCES

1. J. Dieudonné, Sur une généralisation du groupe orthogonal & quatre variables, Arch. Math. 1
(1949), 282-287.

https://doi.org/10.4153/CJM-1975-067-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1975-067-6

572 ALBERT WEI

2. A. Hurwitz, Uber die Komposition der quadratischer Formen, Math. Ann. 88 (1923), 1-25.

3. M. Marcus, All linear operators leaving the unitary group invariant, Duke Math. J. 26 (1959),
155-163.

Linear operations on matrices, Amer. Math. Monthly 69 (1962), 837-847.

Linear transformations on matrices, J. Res. Nat. Bur. Standards Sect. B 75 (1971),
107-189.

6. M. Marcus and B. Moyls, Transformations on tensor product spaces, Pacific J. Math. 9
(1959), 1215-1221.

7. J. Radon, Lineare Scharen orthogonaler Matrizen, Abh. Math. Sem. Univ. Hamburg I
(1923), 1-14.

8. J. Wallis, Hadamard designs, Bull. Austral. Math. Soc. 2 (1970), 45-55.

4
5.

University of Toronto,
Toronto, Ontario

https://doi.org/10.4153/CJM-1975-067-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1975-067-6

