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Rheotaxis and migration of cells in a flow field have been investigated intensively owing
to their importance in biology, physiology and engineering. In this study, first, we report
our experiments showing that the microalgae Chlamydomonas can orient against the
channel flow and migrate to the channel centre. Second, by performing boundary element
simulations, we demonstrate that the mechanism of the observed rheotaxis and migration
has a physical origin. Last, using a simple analytical model, we reveal the novel physical
mechanisms of rheotaxis and migration, specifically the interplay between cyclic body
deformation and cyclic swimming velocity in the channel flow. The discovered mechanism
can be as important as phototaxis and gravitaxis, and likely plays a role in the movement
of other natural microswimmers and artificial microrobots with non-reciprocal body
deformation.

Key words: micro-organism dynamics, swimming/flying

1. Introduction

The behaviours of cells in a flow field have been investigated intensively owing to their
importance in biology, physiology and engineering. Rheotaxis is the ability, shared by
many aquatic species, to orient against the surrounding flow. Rheotaxis of spermatozoa
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was first reported more than half a century ago (Bretherton & Rothschild 1961), and the
underlying mechanism is understood to be the interplay among fluid shear, steric surface
interactions and the chirality of the flagellar beat (Miki & Clapham 2013; Kantsler et al.
2014; Omori & Ishikawa 2016). Similar wall-mediated rheotaxis has been reported for
bacteria (Hill et al. 2007; Ishikawa et al. 2014; Mathijssen et al. 2019), autophoretic Janus
rods (Brosseau et al. 2019), synthetic bimetallic micromotors (Ren et al. 2017) and model
squirmers (Ishimoto 2017; Qi et al. 2020). Zott & Stark (2012) showed that rheotaxis could
be induced by direct collisions with the walls or in a narrow channel. In the absence of
a wall boundary, chirality-induced rheotaxis of bacteria can be observed in shear flow
(Marcos et al. 2012; Jing et al. 2020). The interplay between flagellar beat and background
shear flow has also been reported. Hope et al. (2016) used the microalgae Chlamydomonas
and found resonant alignment of trajectories under oscillatory shear flows. O’Malley &
Bees (2012) investigated the effect of flagellar beat on gravitaxis and gyrotaxis. However,
rheotaxis mediated by unsteady swimming has not been explored to date. Tarama (2017)
introduced a general mathematical model of an active deformable particle and investigated
the swimming motion in Poiseuille flow. Although he found many interesting trajectories,
the swimmer did not show rheotaxis. In this study, we show that the interplay between
cyclic body deformation and cyclic swimming velocity in the channel flow can induce
rheotaxis.

Another important behaviour of cells in channel flow is migration. The migration of
blood cells in a vessel was first reported more than half a century ago (Goldsmith 1968) and
the mechanism has been understood as a deformation-induced lift force (Nix et al. 2014).
The deformability of red blood cells is larger than that of white blood cells and platelets.
Hence, red blood cells tend to migrate to the vessel centre while other cells migrate near
the vessel wall (Goldsmith & Spain 1984). Migration of particles in channel flow can also
be promoted by inertial effects (Schonberg & Hinch 1989; Tanaka et al. 2012; Hood, Lee
& Roper 2015), a viscosity gradient (Datt & Elfring 2019), non-Newtonian properties of
fluids (Villone et al. 2016; Yuan et al. 2018), chirality (Marcos et al. 2009) and active
amoeboid motion (Wu et al. 2015, 2016). The migration of swimming microorganisms
in channel flow has been investigated also at the population level. Rusconi, Guasto &
Stocker (2014) experimentally showed that motile bacteria are depleted from the channel
centre owing to trapping in high-shear regions near the walls. The high-shear trapping
has been explained by the competition between the cell alignment with the flow and the
stochasticity in the swimming orientation by using a discrete model (Rusconi et al. 2014)
and continuum models (Bearon & Hazel 2015; Vennamneni, Nambiar & Subramanian
2020). Barry et al. (2015), however, observed a strong accumulation of cells around the
channel centre using Chlamydomonas. Vennamneni et al. (2020) explained the mechanism
of centreline accumulation by introducing the stochastic effect, the swimmer aspect
ratio and the background Poiseuille flow. In the analysis of Vennamneni et al. (2020),
however, the unsteady swimming motion was not considered and the cells did not show
rheotaxis, which is different from the present study. Hence, the migration of unsteady
microswimmers is still largely a mystery.

In this study, we report a novel physical mechanism of rheotaxis and migration, which
appears when an unsteady swimmer with body deformation and variable swimming
velocity is exposed to channel flow. First, using the microalgae Chlamydomonas, we
experimentally show that cells with non-reciprocal body deformation can orient against the
channel flow and migrate to the channel centre. Second, by performing boundary element
simulations, we demonstrate that the mechanism of observed rheotaxis and migration has
a physical origin. This is important, because Chlamydomonas can migrate to the channel
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Figure 1. Schematic diagram of the microchannel, in which a suspension of C. reinhardtii flows in a straight
test section. The x-axis is taken along the flow direction, in which the origin is located at the junction.

centre by other taxis, such as gyrotaxis (Kessler 1985) or phototaxis (Garcia, Rafai & Peyla
2013; Jibuti et al. 2014). We show how the mechanism proposed here is different from other
mechanisms. Third, using a simple analytical model, we show that rheotaxis and migration
can be explained by the interplay between cyclic body deformation and cyclic swimming
velocity in channel flow. Finally, we discuss the biological importance of the discovered
mechanism by comparing it with phototaxis and gravitaxis, and discuss the possibility of
other unsteady microswimmers showing rheotaxis and migration.

2. Experiments using Chlamydomonas

2.1. Materials and methods
Chlamydomonas reinhardtii (strain 137c, wild type) was used as a model microorganism
in this study. C. reinhardtii, a unicellular microalgae, has been used in both biological and
physical studies (Goldstein 2015). It has a prolate spheroidal cell body of approximately
10 μm, with an aspect ratio of 1.2, and two anterior flagella of approximately 10 μm. By
generating effective and recovery strokes of the flagella at a frequency of 50 Hz, it can
swim with a velocity of 70 μm s−1. Cells were cultivated in a sterile TAP medium with
gentle aeration, as in our previous study (Kage et al. 2020). Cells in the mid-log phase
were harvested for experiments.

To analyse the effect of cell motility, we also performed experiments using non-motile
cells. For preparing the non-motile cells, suspensions were diluted with fresh TAP medium
to a density of 1 × 105 cells ml−1 and cells were mildly fixed with glutaraldehyde (final
concentration ∼ 0.1 %), as in Kage et al. (2020). Before the experiments, we checked the
cell motility using optical microscopy.

The microchannel used in this study is shown in figure 1. It had two inlets and one
outlet, and the x-axis was taken from the junction of the two inlet channels. The straight
test section had a length of 20 mm, with a 50 μm × 50 μm cross-section. To create the
offset of the initial cell position at x = 0, a dilute suspension of cells was injected from
one inlet, while only culture fluid was injected from the other inlet. The microchannel was
constructed by polydimethylsiloxane using a soft lithographic technique, as in our former
study (Chuang et al. 2018).

The experimental set-up consisted mainly of an inverted microscope (IX71; Olympus,
Tokyo, Japan) with an objective lens (magnification, ×10 or ×60; Olympus) and a
high-speed camera (Phantom v7.1; Vision Research, Wayne, NJ, USA). The test section
was illuminated by a halogen lamp with a colour filter (PB690/040, Asahi Spectra, Tokyo,
Japan) passing only 650 ± 20 nm, which did not generate a phototactic response from C.
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reinhardtii (Nonaka et al. 2016). A syringe pump (Fusion 700; Chemyx Inc., Stafford, TX,
USA) was used to achieve a constant flowrate. The flowrate of the two inlets was set to be
equal and that of the converged channel was set to be 4.8 μl h−1.

2.2. Experimental results
Figure 2(a) shows the trajectory of C. reinhardtii in the test section, which had a wavy
trajectory with an amplitude of approximately 10 μm and wavelength of approximately
700 μm. The cell basically oriented against the background flow and tried to swim
upstream. However, the background flow was too strong for the cell to swim upstream and
the trajectory was directed toward a downstream side. We experimentally observed that the
amplitude of wavy trajectories became smaller as cells moved downstream. As a result, the
cells eventually accumulated around the channel centre, as observed by Barry et al. (2015).
For the readers’ convenience, the trajectory and orientation of a cell in the channel is shown
schematically in figure 2(b). Because gravity acts in the z-direction and the microscope
illumination also comes from the z-direction, we can exclude any effect of gravitaxis and
phototaxis on behaviours along the horizontal x–y plane. Hence, the observed centreline
accumulation might be induced by hydrodynamics, which will be further investigated in
the following sections.

Given that observing a very long trajectory can be difficult using a microscope, we
measured the amplitude of the wavy trajectories at different positions in the test section,
as shown in figure 2(c). The amplitude was significantly reduced as the cells flowed
downstream. We found statistical significance of p < 0.01 by using the Mann–Whitney
U test with Bonferroni correction. The results clearly illustrated the migration of C.
reinhardtii to the channel centre. To clarify the effect of cell motility on migration, we
performed another experiment using non-motile cells, in which the cells were lightly
fixed with glutaraldehyde. The results using the non-motile cells are shown in figure 2(d);
notably, the non-motile cells showed no migration, thus indicating that cell motility was
essential to induce migration.

C. reinhardtii in the test section also exhibited rheotaxis, as shown in figure 3. The
cell changed its orientation along the wavy trajectory, as shown in figure 3(a), which is
similar to figure 2(b). The rheotactic behaviour is confirmed in supplementary movie 1. In
the movie, we also see unsteady swimming of C. reinhardtii, in which the cell oscillated
back and forth owing to the effective and recovery strokes. To clarify the effect of cell
motility on rheotaxis, we again performed another experiment using non-motile cells. The
results using the non-motile cells are shown in figure 3(b). We see that the trajectory of
a non-motile cell drew a straight path and the cell rotated like a passive rigid particle.
These results indicated that cell motility was essential to induce rheotaxis. We defined
the orientation angle θ relative to the flow direction, as shown in figure 2(c), where θ =
0 indicates the flow direction and θ = π indicates the upstream direction. We see from
figure 2(d) that most of the cells at x = 10 mm oriented against the flow, which clearly
demonstrated rheotaxis of C. reinhardtii in channel flow.

According to Polin et al. (2009), the time scale for C. reinhardtii to change its swimming
direction is approximately 11.2 s. In the present study, it took approximately 40 s for C.
reinhardtii to pass through the test section of 20 mm. Thus, we expected a few orientation
changes of C. reinhardtii in the test section. We see that the results of figure 2(c) did not
converge to 0 amplitude even at 20 mm, which may have be induced by the stochastic
effect. This result also indicated that cells in the present study tended to orient against the
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Figure 2. Migration of C. reinhardtii to the channel centre. (a) A sample trajectory of C. reinhardtii in
the channel (scale bar = 50 μm). White and yellow arrows indicate the directions of flow and trajectory,
respectively. (b) Schematic diagram of the trajectory and orientation of the cell in the channel. (c) Amplitude
of the trajectories of motile cells at different x positions. Here, n is the number of measurements. (∗∗p < 0.01;
Mann–Whitney U test with Bonferroni correction). (d) The amplitude of the trajectories of non-motile cells at
different x positions. (∗p < 0.05; n.s.: non-significant).

flow even with the stochastic effect. This was probably because the time scale of rheotaxis
(a couple of seconds) was much shorter than that of orientation change (11.2 s), and cells
could direct against the flow during the straight swimming between orientation changes.
In the orientation measurement, cells stayed in the field of view for approximately 0.4 s.
Hence, we rarely observed the orientation change during the measurement.

3. Simulation using the boundary element method

Next, to clarify whether the observed rheotaxis and migration can be induced by physical
forces or not, we performed a numerical simulation of swimming C. reinhardtii using
the boundary element method (BEM). This step is important to exclude the unknown
biological responses of cells, such as flagellar beat modification in response to the
surrounding flow.

3.1. Basic equations and numerical methods
The basic equations and numerical methods employed in the BEM were similar to those
used in our previous studies (Ito, Omori & Ishikawa 2019; Kage et al. 2020). Thus, we
explain them only briefly here.
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(b)(a)
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3π/2

π/2

π

25 μm

Figure 3. Orientation of C. reinhardtii showing rheotaxis. (a) Sequential images of a sample motile cell in the
channel. White arrow indicates the flow direction, yellow arrow indicates the direction of trajectory and black
arrows indicate the orientations of cells (see also supplementary movie 1 available at https://doi.org/10.1017/
jfm.2021.921). (b) Sequential images of a sample non-motile cell in the channel. (c) Definition of the orientation
angle θ . Here, θ = π indicates the direction against the flow. (d) Probability density of the orientation angle of
cells at x = 10 mm (n = 300, N = 25, where n is the number of measurements and N is the number of cells).

Let us assume that a model of Chlamydomonas reinhardtii is suspended freely in an
incompressible Newtonian liquid with viscosity μ and density ρ. Because the experiments
were performed in a horizontal channel flow, the effect of gravity can be neglected. Hence,
the density of the cell model was assumed to be equivalent to the surrounding fluid. Owing
to the small size of C. reinhardtii, the inertia effect of fluid motions can be neglected. The
flow field is thus governed by the Stokes equation, which can be expressed as a boundary
integral equation. We also applied slender body theory (Tornberg & Shelley 2004) to
flagellar motions, because the radius of the flagellum was sufficiently small compared
with its length.

The velocity at point x can be expressed as

u(x) = u∞(x) − 1
8πμ

∫
body

J(x, y) · q(y) dA(y) + SBT(x), (3.1)

where u∞ is the background velocity, q is the traction force and A indicates the cell
surface. The integral is taken over the cell body. SBT indicates the contribution of flagella
calculated using slender body theory. Here, J is the Green function, defined as

J = I

r
+ rr

r3 , (3.2)
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where I is the identity matrix, r = x − y and r = |r|. The contribution of flagella can be
calculated as

SBT(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− 1
8πμ

𝞚(x) · f (x) − 1
8πμ

∫
fla

[J(x, y) · f (y)

−K(x, y) · f (x)] dl(y) when x ∈ flagella,

− 1
8πμ

∫
fla

[J(x, y) + W (x, y)] · f (y) dl(y) otherwise,

(3.3)

where f is the viscous force per unit length acting on the flagella. The integral is taken
along the flagella length of L. Here, 𝞚 is the local operator given by

𝞚(x) = − ln (ε2e)(I + t(x)t(x)) + 2(I − t(x)t(x)), (3.4)

where ε is the ratio between the radius and length of a flagellum, and t is the unit tangential
vector of the flagellum. Additionally, K is the integral operator given by

K(x) = (I + t(x)t(x))/|s(x) − s(y)|, (3.5)

where s ∈ [0, L] is the arclength of the flagellum. Finally, W is given by

W = (εL)2

2

[
I

r3 − 3
rr
r3

]
. (3.6)

Force-free and torque-free conditions of C. reinhardtii are given as

F =
∫

body
q dA +

∫
fla

f dl = 0, (3.7)

T =
∫

body
q ∧ (x − xc) dA +

∫
fla

f ∧ (x − xc) dl = 0, (3.8)

where xc is the geometric centre of the cell body.
To express the time-dependent flagellar beat, waveforms were extracted from

experimental recordings (Kage et al. 2020). In a two-dimensional image from an
experimental movie, the material points of the centreline of the flagellum were tracked
manually and interpolated in time and space using a cubic spline. Figure 4(a) shows the
flagellar beat forms used in this study. Once the waveform during one period has been
measured, we can calculate the flagellar velocity ufla with respect to the body frame.
This prescribed flagellar velocity is given as the boundary condition of flagellar motion.
Considering the no-slip condition, the velocity at the flagellar material point can be
expressed as

u(x) = U + Ω ∧ (x − xc) + ufla, (3.9)

where U and Ω are the translational and rotational velocities of the cell, respectively. We
then solve the following resistance problem with respect to unknown variables q, f , U, Ω
(Ishikawa et al. 2006),

⎡
⎢⎢⎢⎣

A −B

——————–
C 0

⎤
⎥⎥⎥⎦

⎧⎪⎨
⎪⎩

q

f
———–

U, Ω

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

0

ufla − u∞
—————-

F , T

⎫⎪⎬
⎪⎭ . (3.10)
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Figure 4. Simulation results obtained by the boundary element method (BEM). (a) Model C. reinhardtii. The
cell body has length b and aspect ratio 1.2. The flagella of length b generate the effective stroke (6–10) and
recovery stroke (1–5). (b) Definition of the initial orientation angle φini and the initial offset from the centreline
yini. (c,d) Trajectories and orientation of cell models with various φini (yini/b = −0.5). (e, f ) Trajectories and
orientation of cell models with various yini (φini/π = 1.25).

The cell body was assumed to be a prolate spheroid with an aspect ratio of 1.2, as shown
in figure 4(a). The body length b and flagella length L were set as 10 μm. The flagellar
radius was set as 100 nm, such that the ratio of the radius to the length of the flagellum was
ε = 10−3. The cell surface was discretized by 1280 triangular elements and each flagellum
was discretized by 100 line elements. The boundary integral equations were solved using
the BEM, and the final simultaneous linear equations (3.10) were solved using a lower and
upper factorization technique. The beat frequency was set to 50 Hz, corresponding to a
beat period of T = 0.02 s, to mimic an actual cell. The time-marching process was carried
out using a second-order Runge–Kutta method.

3.2. Simulation results
The cell model was placed in a parabolic flow, with an initial offset of yini from the
centreline and with an initial angle of φini relative to the x-axis, as shown in figure 4(b).
The change in x and y positions over time with various φini is shown in figure 4(c)
(yini/b = −0.5). In all cases, the cell eventually converged to the centreline, i.e. y = 0.
This migration tendency was equivalent to what we observed in the experiments. The
change in orientation over time is shown in figure 4(d). In all cases, the cell eventually
oriented against the flow, which was again consistent with our experimental observation.
Although the cell basically oriented against the background flow and tried to swim
upstream, the background flow was too strong for the cell to swim upstream. The trajectory
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Figure 5. Simulation results of non-motile cell models. (a) Rigid flagella shapes of non-motile cell models.
(b,c) Trajectories and orientation of non-motile cells with the two kinds of flagella shapes (yini/b = −0.5,
φini/π = 0.25).

φ/π

2.0

1.5

1.0

0.5

0
–1.0 1.00

y/b
Figure 6. Vector field of the orientation φ and the y position of the cell model. Each vector is obtained by
averaging over one period of flagellar beat. The actual trajectory with φini/π = 1.125 and yini/b = −0.5 is
plotted as a black curve. Sample pathlines of the vector field are plotted as green curves for reference.

was thus directed toward a downstream side, in the same manner with the experiment (cf.
figure 2a).

The effect of yini is shown in figures 4(e) and 4( f ) (φini/π = 1.125). In the range
y ≤ ±1.5b = ±15 μm, the cells again converged to the centreline as observed in the
experiment. In all cases, the cell eventually oriented against the flow, which was again
consistent with the experimental observation. These results illustrated that rheotaxis and
migration were not influenced by the initial conditions.

To clarify the effect of cell motility, we also simulated the behaviours of non-motile
cells in the channel. Flagella of non-motile cells were assumed to be rigid and their angles
relative to the cell body were invariant with time. We here examined two kinds of flagella
shapes, as shown in figure 5(a). The change in y position over time with the two kinds of
flagella shapes is shown in figure 5(b) (yini/b = −0.5, φini/π = 0.25). In both cases, the
cell drew a straight path and did not converge to the centreline. The change in orientation
over time is shown in figure 5(c). The cell changed the orientation with periodic rotational
velocity and did not show rheotaxis. These results clearly indicated that cell motility was
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essential for the migration and rheotaxis. The results may also be derived mathematically
under Stokes flow conditions, given that drift and alignment do not appear for a body shape
with plane symmetry (Kim & Karrila 1992; Ishimoto 2020).

Figure 6 shows the vector field of the orientation φ and the y position of the cell. The
actual trajectory with φini/π = 1.125 and yini/b = −0.5 is plotted as a black curve. We
see that the vector field rotated in the counterclockwise direction, which meant that the
cell swam across the channel centre and showed an overshoot. The arrows converged to
the centre of the figure and there was a stable point at φ = π and y = 0, in good agreement
with the experiment. These results illustrated that the experimentally observed rheotaxis
and migration could be reproduced by physical forces, without introducing any biological
responses of cells.

4. Analysis using a simple analytical model

Lastly, using a simple analytical model, we show that rheotaxis and migration can be
explained by the interplay between cyclic swimming velocity and cyclic body deformation
in the channel flow. For simplicity, let us assume that a model cell has a cyclic velocity
U(t) and cyclic deformation with a Bretherton constant B(t) given by

U(t) = Us + Uc sin(2πt/T), (4.1)

B(t) = Bs + Bc sin(2πt/T + λ), (4.2)

where λ is the phase difference. The Bretherton constant is a dimensionless hydrodynamic
measure of non-sphericity; i.e. B = 0 for a sphere, B > 0 for a prolate object and B < 0
for an oblate object (Kim & Karrila 1992). The position r and orientation e of the cell are
given by the following:

dr
dt

= Ue + u∞, (4.3)

de
dt

= Ω∞ ∧ e + B(E∞ · e − E∞ : ee e), (4.4)

where u∞, Ω∞ and E∞ are the velocity vector, vorticity vector and rate of the strain tensor
of the background parabolic flow, respectively. The effect of wall boundary is omitted for
simplicity.

4.1. Behaviours of the simple model swimmer
To determine the minimal requirements to induce rheotaxis and migration, we first
consider a constant velocity swimmer (Us /= 0 and Uc = 0) with cyclic deformation
(Bc /= 0). As an example, we show the time change of the y-position under the condition
UsT/L = Bc = 1 and Uc = Bs = 0 in figure 7(a). Although the y-position oscillated
considerably over time, its time-averaged value did not drift up to t/T = 1000. We did
not observe migration nor rheotaxis in this case. We used many other parameter sets for a
constant velocity swimmer; however, none of them showed migration nor rheotaxis.

We also consider a steady-shape swimmer (Bc = 0) with a cyclic velocity (Uc /= 0). As
an example, we show the time change of the y-position under the condition of UcT/L = 1
and Us = Bs = Bc = 0 in figure 7(b). The y-position again oscillated considerably over
time; however, its time-averaged value did not drift up to t/T = 1000. Migration and
rheotaxis were not observed in this case either. We performed many other parameter sets
for a steady-shape swimmer; however, none of them showed migration nor rheotaxis.
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Figure 7. Results of the simple analytical model for a constant velocity swimmer and a steady-shape swimmer.
Time change of the y-position for (a) the constant velocity swimmer with UsT/L = Bc = 1 and Uc = Bs = 0,
and (b) the steady-shape swimmer with UcT/L = 1 and Us = Bs = Bc = 0. The colour band indicates the
maximum and minimum values owing to the cyclic motion.

Mimicking C. reinhardtii by the simple analytical model is a challenging task. The shape
of C. reinhardtii containing two flagella is far from a spheroid and the shape changes with
time owing to the flagellar beat. In the simple analytical model, however, all of the shape
effects are concentrated on the Bretherton constant B. The shape effects appear only on
the rotational velocity through B, as given by (4.4). Thus, in mimicking C. reinhardtii by
the simple analytical model, we evaluated the Bretherton constant of C. reinhardtii. The
Bretherton constant can be computationally evaluated from the rotational velocity of the C.
reinhardtii model with a given flagella shape. We placed the C. reinhardtii model in planer
elongational flow with a tilt angle and the value of B was calculated from (4.4) using the
rotational velocity. The time change of B is shown in figure 8 together with the swimming
velocity U. We observed large oscillation of B and U during one period. The time variation
was caused by the effective and recovery strokes of the cell. The time-averaged value of
B was approximately 0.32, which was equivalent to a prolate spheroid with aspect ratio
of approximately 1.4. We regarded B = 0.32 to represent C. reinhardtii in the following.
The peak-to-peak phase difference was �t/T ≈ 0.41, which corresponded to λ = 2π(1 −
�t/T) ≈ 1.2π.

We then analysed the motion of a prolate spheroidal swimmer with steady shape
with Bs = 0.32 and Bc = 0. Figure 9 shows the time change of the y-position of a
steady swimmer (UsT/L = 1 and Uc = 0) and an unsteady swimmer (UsT/L = 0.5 and
UcT/L = 1). We again observed that the time-averaged value of y did not drift up to
t/T = 1000. We also did not observe rheotaxis in this case. Hence, the unsteady velocity
alone was not sufficient to induce the migration nor rheotaxis. We note that the motion of
a prolate spheroidal swimmer in Poiseuille flow was also investigated analytically and
experimentally by Junot et al. (2019). However, the swimmers did not migrate to the
channel centre, which is consistent with our study.

In contrast, both rheotaxis and migration were evident when the velocity and
deformation were cyclic (Uc /= 0 and Bc /= 0). Figure 10 shows the time change of
the y-position and orientation of a cyclic swimmer with UsT/L = 0.5, UcT/L = 1,
Bs = 0.32 and Bc = 0.3. This setting was similar to the C. reinhardtii model shown in
figure 8. In figure 10, the swimmer was initially placed at y/b = 0.25 with orientation
φ = 0.25π. When t/T ≤ 500, the swimmer tumbled owing to the background vorticity
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Figure 8. Time change of the swimming velocity U and the Bretherton constant B of the C. reinhardtii model
shown in the left. The time-averaged value of B is approximately 0.32. The peak-to-peak phase difference is
indicated by �t/T(≈ 0.41), which corresponds to λ ≈ 1.2π.
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Figure 9. Results of the simple analytical model for a prolate spheroidal swimmer with the steady shape of
Bs = 0.32 and Bc = 0. Time change of the y-position for (a) the constant velocity swimmer with UsT/L = 1
and Uc = 0, and (b) the unsteady velocity swimmer with UsT/L = 0.5 and UcT/L = 1. The colour band
indicates the maximum and minimum values owing to the cyclic motion.

and the orientation oscillated with the amplitude of π. Meanwhile, the swimmer gradually
migrated to the centreline, and eventually showed migration and rheotaxis. These results
clearly illustrated that both cyclic velocity and cyclic body deformation were essential to
induce migration and rheotaxis. Notably, swimmers did not show rheotaxis and migration
in simple shear flow owing to the symmetry of the problem. Therefore, three ingredients, a
cyclic swimming velocity, cyclic body deformation and a parabolic velocity profile, were
necessary to induce rheotaxis and migration.

4.2. Phase diagram of the swimming behaviours
To generalize the mechanism of rheotaxis and migration, we further simplify the problem
settings. Figures 11(a) and 11(b) show the change in the y position of an oscillator
over time (UcT/L = Bc = 1 and Us = Bs = 0), as well as that of an unsteady swimmer
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Figure 10. Results of the simple analytical model for a swimmer with cyclic body deformation and cyclic
velocity (UsT/L = 0.5, UcT/L = 1, Bs = 0.32 and Bc = 0.3). The swimmer is placed initially at y/b = 0.25
with orientation φ = 0.25π. (a) Time change of the y-position and (b) time change of the orientation. The
colour band indicates the maximum and minimum values owing to the cyclic motion.

(UcT/L = Bc = 1, UsT/L = 0.5 and Bs = 0) in the low- and high-shear-rate regimes.
The phase difference λ was set as 1.2π, which mimicked λ ≈ 1.2π of C. reinhardtii (cf.
figure 8). By performing many trial simulations with different parabolic velocity profiles,
we found that the migration tendency was strongly dependent on the dimension-free shear
rate at the initial position T γ̇ini of the object. When T γ̇ini was large, the swimmer tended
to migrate away from the centreline, where the shear rate was higher. Thus, the swimmer
continuously migrated away from the centreline. When T γ̇ini was small, however, the
swimmer tended to migrate towards the centreline, where the shear rate was lower.
Thus, the swimmer continuously migrated towards the centreline. By considering such
tendencies, the dimension-free shear rate T γ̇ini was taken as the vertical axis in figure 11
instead of y. We note that γ̇ ∝ y in parabolic flow; thus, the vertical axis can still be
regarded as the y-axis, with γ̇ = 0 as the centreline of the channel.

Both the oscillator and the unsteady swimmer migrated to the centreline in the
low-shear-rate regime (figure 11a). The unsteady swimmer migrated much more rapidly
than the oscillator. These results illustrated that the steady velocity Us was not necessary
for migration, but dramatically accelerated migration. Both the oscillator and swimmer
in this case also showed rheotaxis, i.e. they eventually oriented against the flow. In
the high-shear-rate regime (figure 11b), the unsteady swimmer can still migrate to the
centreline, while the oscillator migrates away from it. Hence, the steady velocity Us
qualitatively affected migration in the high-shear regime.

A phase diagram of the migration direction of the oscillator in γ̇ini − λ space is shown
in figure 11(c). At each data point, four kinds of initial orientations (φini = 0, π/2, π
and 3π/2) were examined. The score N was calculated as N = Nw − Nc, where Nw is
the number of initial conditions showing migration away from the centreline and Nc
is that showing migration to the centreline. By definition, we have −4 ≤ N ≤ 4 and
Nw + Nc = 4. A positive N indicated migration away from the centreline, whereas a
negative N indicated migration to the centreline.

When T γ̇ini < 4, i.e. in the low-shear-rate regime, the migration tendency qualitatively
changed with the phase difference λ. The oscillator did not migrate when the phase
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Figure 11. Results of the simple analytical model for an oscillator and an unsteady swimmer. (a,b) Time
change of the y-position of the oscillator (UcT/L = Bc = 1 and Us = Bs = 0) and the unsteady swimmer
(UcT/L = Bc = 1, UsT/L = 0.5 and Bs = 0). The y-position is replaced by the shear rate γ̇ , where y is
proportional to γ̇ in parabolic flow, and γ̇ = 0 indicates the centreline. Here, T γ̇ini is set as 1 or 5 and λ is
1.2π. The colour band indicates the maximum and minimum values owing to the cyclic motion. (c) Phase
diagram of the migration direction of the oscillator in γ̇ini − λ space. Positive N indicates migration away
from the centreline, whereas negative N indicates migration to the centreline. The conditions for A and B are
indicated by white circles, and those of the experiment and BEM simulation are indicated by a black circle.

difference was λ = 0 and π. In the 0 < λ < π/2 regime, the oscillator migrated to the
centreline with a final orientation of φf = 0, i.e. was directed downstream. In the π < λ <

3π/2 regime, the oscillator again migrated to the centreline, but with a final orientation of
φf = π, i.e. was directed upstream. In the other regimes, including the high-shear-rate one,
the oscillator tended to migrate away from the centreline. Thus, migration and rheotaxis
were simultaneously observed only in the regime T γ̇ini < 4 and π < λ < 3π/2. Actually,
C. reinhardtii has λ ≈ 1.2π; our experiment and the BEM simulations were performed
with T γ̇ini < 1.25. These conditions were within the regime of migration and rheotaxis,
thus confirming consistency.

5. Conclusions

In this study, we clarified the novel physical mechanism of rheotaxis and migration
in channel flow, which appears when an unsteady swimmer shows a phase difference
between body deformation and swimming velocity. In the case of an oscillator, the
rheotaxis and migration appear when T γ̇ini ≤ 4 (cf. figure 11c). Because the period of C.
reinhardtii is T = 0.02 s, the condition corresponds to γ̇ini ≤ 200 s−1. This condition is
not considerably affected by the initial orientations of cells (cf. figure 11c). Moreover, the
swimming velocity enhances the rheotaxis and migration, as shown in figure 11(a,b). Thus,
the parameter range to show rheotaxis and migration should be expanded by introducing
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the swimming velocity. The shear rate of 200 s−1 can be found in many practical settings,
such as in a bioreactor and blood flow in a vessel.

The relaxation time of the rheotaxis and migration, in the case of C. reinhardtii, can be
estimated as t/T ≈ 100 (cf. Figure 4). By inserting T = 0.02 s, the relaxation time can be
estimated as 2 s. This time scale tends to be shorter than that of gravitaxis, as the typical
rotational velocity of gravitaxis is approximately 0.1 rad s−1 (Kage et al. 2020). The time
scale of phototaxis is approximately 2 s (Garcia et al. 2013; Jibuti et al. 2014), which is of
the same order. Therefore, the present rheotaxis and migration would be superimposed on
the conventional gravitaxis and phototaxis with a similar magnitude. Especially when the
channel is horizontal and the illumination is homogeneous, the present mechanism should
be the main driver of rheotaxis and migration.

The proposed mechanism is expected to apply to other microswimmer types. For
example, mixotrophic species of haptophytes Prymnesium parvum have two flagella
moving with a ciliary beat (Dölger et al. 2017). As a result, it changes its swimming
velocity and body shape in a cyclic manner. An active amoeboid swimmer (Wu et al.
2015, 2016) and Golestanian’s three-bead swimmer model (Golestanian & Ajdari 2008)
also show cyclic changes in swimming velocity and body shape. Thus, these swimmers
should exhibit migration and rheotaxis in channel flow.

In nature, such unsteady cells can capture the main stream of the background flow
and move downstream faster than steady cells. The present migration mechanism is in
accordance with the shear rate gradient and may play a role in more complex flow fields,
such as turbulence. We note that migration may arise from a combination of deterministic
and stochastic mechanisms in the generic case, and that an effort needs to be made to assess
their relative magnitudes in the future. The present migration mechanism also suggests that
cells with similar beat patterns can join together via the migration mechanism, which may
be biologically advantageous for mating. The migration tendency can also be used for cell
sorting and separation in engineering applications. The knowledge obtained in this study
improves our understanding of the behaviours of unsteady microswimmers in nature and
engineering.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2021.921.
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