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A fourth-order seven-point cubature on regular hexagons

Daniel Lee and Hui-Chun Tien

Abstract
We investigate the central moments of (regular) hexagons and derive accordingly a discrete
approximation to definite integrals on hexagons. The seven-point cubature rule makes use
of interior and neighbor center nodes, and is of fourth order by construction. The result is
expected to be useful in two-dimensional (open-field) applications of integral equations or image
processing.

1. Introduction

Hexagonal grids are of interest in some research studies [6, 8].
Hexagonal subregions are adopted in numerical simulation in the study of the origin of

U waves in human heart electrophysiology (electrocardiograms (ECGs)) [6]. A slice of the
left ventricular myocardium is mapped with a set of hexagonal grid (cells) and proper
electrophysiological action potential (AP) is assigned to each cell. Since the timing of the
APs follows a simulated excitation sequence, there are potential differences between cells’ APs
and dipole source vectors are generated. Then the ECG can be calculated as the sum of the
weighted contributions of the dipole source vectors. However, this is a purely algebraic approach
to obtaining ECG phenomena. With the inclusion of a reaction–diffusion system, numerical
simulation of cardiac electrophysiology is conducted [8] in a reversed C-type domain which is
approximated by hexagonal finite volumes. We consider in this work numerical cubature on
regular hexagons and develop a fourth-order seven-point rule. The result can be applied to
integral relations in approximated two-dimensional (irregular) domains, especially to problems
of type of open field. Our main result, estimating the integral on a regular hexagon by using
both interior and neighbor cell centers with the simple setup of having prescribed hexagonal
nodes (or knots), seems previously unknown [1–5, 7, 9].

As for the remaining sections, we introduce general configurations of (regular) hexagons and
our main result in § 2, resolve moments of a hexagon in § 3, and determine the weights of a
fourth-order cubature rule in § 4. Conclusions are drawn in the final section. The Appendix
includes some barycentric type trigonometric identities.

2. The configurations and main result

In two-dimensional applications of domains consisting of, or approximated by, (subsets of)
Cartesian type regular hexagons, we denote the radius of a typical hexagon by r, the height
by h (= (

√
3/2)r), and the center-to-center distance by d (= 2h). The area of a hexagon is

|Ω| = (3
√

3/2)r2 = 2
√

3h2. At a hexagon Ω in general configuration, we consider the center,
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Figure 2.1. Lattice of hexagons in natural order by columns.

Figure 2.2. Hexagonal finite-volume neighborhood.

P0 = (x0, y0), and the vertices and neighbor (center) nodes,

Vk = (x0, y0) + r(cos θk, sin θk), θk = ϕ+
kπ

3
, 1 6 k 6 6,

(xk, yk) = Pk = (x0, y0) + d(cos ξk, sin ξk), ξk = ψ +
kπ

3
, 1 6 k 6 6.

(2.1)

We assume V7 = V1 and P7 = P1 for convenience. Here the phase ϕ is the start angle of local
vertices, while ψ = ϕ + π/6 is the start angle of neighbor (center) nodes. We regard ϕ as
the configuration parameter. Two particular instances are called type I (ϕ = 0) and type II
(ϕ = −π/6) for convenience. Hexagon centers in lattices of these types are indexed as for an
orthogonal Cartesian mesh as shown in Table 2.1. Indexing rules are visualized in Figures 2.1
and 2.2.

Table 2.1. Lattices of type I and II hexagons.

Phase angle Type I, ϕ = 0 Type II, ϕ = −π/6

Center point ieven iodd jeven jodd

cx(i, j) (1.5i− 0.5)r 2ih (2i− 1)h

cy(i, j) 2jh (2j − 1)h (1.5j − 0.5)r
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Only regular hexagons are considered in this work. A hexagon is at standard position if it
is centered at the origin, that is, (x0, y0) = (0, 0). The following property is obvious.

Property 2.1 (Domain symmetry). Assumed at standard position,
(i) a hexagon is invariant under the reflection with respect to its center;
(ii) a type I or II hexagon is symmetric with respect to both the x- and y-axes.

For a hexagon in general phase, we consider the partition (Figure 2.2)

Ω =
⋃

16l66

Ωl ≡
⋃

16l66

4P0VlVl+1, (2.2)

in which a typical component Ωl is represented as a positively oriented (closed) triangle
P0VlVl+1. The relations

cos(2ξ − θj) = cos

(
2ξ − ϕ− jπ

3

)
= cos

(
(2ξ − ϕ) +

(6− j)π
3

)
,

sin(2ξ − θj) = sin

(
2ξ − ϕ− jπ

3

)
= sin

(
(2ξ − ϕ) +

(6− j)π
3

)
,

(2.3)

translate into the following property.

Property 2.2 (Reflectional symmetry between two hexagons). The reflection with respect
to the line y = x tan ξ in the xy-plane results in interchanging two hexagons at standard
position and the associated two ordered lists,

{ϕ, Vj , Pj ,Ωj , j = 1, 2, . . . , 6} and {(2ξ − ϕ), Vσ(j), Pτ(j),Ωτ(j), j = 1, 2, . . . , 6}.

Here the order-two permutations σ(j) := 6− j%6 and τ(j) := 1 + ((5− j%6)− 1)%6 are, in
detail,

σ =

(
1 2 3 4 5 6
5 4 3 2 1 6

)
and τ =

(
1 2 3 4 5 6
4 3 2 1 6 5

)
.

We note that the two subsets of indices, {1, 3, 5} and {2, 4, 6}, are each invariant under the
permutation σ, and interchanged under τ . To be precise,

σ(1, 3, 5) = (5, 3, 1), σ(2, 4, 6) = (4, 2, 6), τ(1, 3, 5) = (4, 2, 6), τ(2, 4, 6) = (3, 1, 5).

Some reflections resulting in particular symmetries are shown in Table 2.2, with notation
interpreted in an obvious manner up to equation (2.3).

Concerning self-symmetry, we note the following property.

Table 2.2. Examples of reflections between two regular hexagons at standard position.

Planar reflection Axis: y = x tan ξ Mapping relation

With respect to y = x ξ =
π

4
(x

(π/2−ϕ)
j , y

(π/2−ϕ)
j ) = (y

(ϕ)

σ(j), x
(ϕ)

σ(j))

With respect to y = −x ξ =
3π

4
(x

(3π/2−ϕ)
j , y

(3π/2−ϕ)
j ) = (−y(ϕ)

σ(j),−x
(ϕ)

σ(j))

With respect to y = 0 ξ = 0 (x
(−ϕ)
j , y

(−ϕ)
j ) = (x

(ϕ)

σ(j),−y
(ϕ)

σ(j))

With respect to x = 0 ξ =
π

2
(x

(π−ϕ)
j , y

(π−ϕ)
j ) = (−x(ϕ)

σ(j), y
(ϕ)

σ(j))

https://doi.org/10.1112/S146115701600005X Published online by Cambridge University Press

https://doi.org/10.1112/S146115701600005X
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Property 2.3 (Dihedral reflections on a regular hexagon). Among planar reflections with
respect to lines y = x tan ξ, ξ = ϕ + π/3 + kπ/6, the choices k = 1, 3, 5 yield on the same
hexagon at standard position the three median reflections, and k = 0, 2, 4 the three (long-)
diagonal reflections.

We state our main result.

Theorem 2.4 (Hex-seven-point cubature rule for a regular hexagon in arbitrary phase).
The expression

1

|Ω|

∫∫
Ω

f(x, y) dx dy =
31

36
f(P0) +

5

36

1

6

6∑
i=1

f(Pi) +O(h4) (2.4)

is valid for f ∈ C6.

3. Integrals in a hexagon

To investigate the discretization of a definite integral in a hexagon with phase angle ϕ, we
assume P0 = (0, 0) and consider the average central moment (integral)

Mϕ
m,n :=

1

|Ω|

∫∫
Ω

xmyn dx dy =

√
3

6h2

6∑
l=1

∫∫
Ωl

xmyn dx dy, 0 6 m,n ∈ Z. (3.1)

Lemma 3.1. The moments (Mϕ
m,n) vanish in all phases, if m+ n is odd.

Proof. Just by the domain symmetry (Property 2.1),∫∫
Ωl+3

xmyn dx dy = (−1)m+n

∫∫
Ωl

xmyn dx dy, l = 1, 2, 3.

More numerical values and qualitative properties of the moments are derived in the sequel.

3.1. Moments by secant integrals

Lemma 3.2. Assume that both m and n are odd. The moments Mϕ
m,n in equation (3.1)

vanish, either with a type I or II hexagon, or with a general phase angle and m+ n < 6.

Proof. With ϕ = 0 or −π/6, the first part of the assertion is implied by the domain
symmetry. In the general case, a moment can be expressed (using polar coordinates and
‖P0Pθ‖ = h sec θ in Figure 3.1) as

Mϕ
m,n =

√
3

6h2

6∑
l=1

∫π/6
−π/6

∫h sec θ

0

cosm
(
θ + ψ +

lπ

3

)
sinn

(
θ + ψ +

lπ

3

)
ρm+n+1 dρ dθ

=

√
3hm+n

6(m+ n+ 2)

∫π/6
−π/6

secm+n+2 θ Sϕm,n

(
θ +

π

6

)
dθ, (3.2)

in which, with ξ = θ + π/6,

Sϕm,n(ξ) :=

6∑
l=1

cosm
(
ξ + ϕ+

lπ

3

)
sinn

(
ξ + ϕ+

lπ

3

)
. (3.3)

The fact that Sϕ1,1(ξ) = Sϕ3,1(ξ) = Sϕ1,3(ξ) = 0 for all ϕ and ξ, as shown in the Appendix,
completes the proof.
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Figure 3.1. Local coordinates at component triangles of a regular hexagon.

We note that if m+ n is odd, then Sϕm,n = 0, as it should be and is easily seen.

Lemma 3.3. With fixed nonnegative integers m and n, if Sϕm,n(ξ) is independent of ϕ and
ξ, then Sn,m = Sm,n as a constant.

Proof. It is straightforward to see that

Sπ/2−ϕm,n (ξ) =

6∑
l=1

cosm
(
ξ +

π

2
− ϕ+

lπ

3

)
sinn

(
ξ +

π

2
− ϕ+

lπ

3

)

=

6∑
l=1

sinm
(
ϕ− ξ +

(6− l)π
3

)
cosn

(
ϕ− ξ +

(6− l)π
3

)
= Sϕn,m(−ξ).

Hence the result.

More moments can be determined by using∫
seck θ dθ =

k − 2

k − 1

∫
seck−2 θ dθ +

1

k − 1
tan θ seck−2 θ, 1 < k ∈ N,∫π/6

−π/6
seck θ dθ =

2√
3
,

20

9
√

3
,

112

45
√

3
, for k = 2, 4, 6, respectively.

(3.4)

Equations (3.2)–(3.4) together give explicit (recursive) expressions for low-degree moments.
These are collected in Table 3.1.

4. Hexagonal integral stencil

To prove the main result (Theorem 2.4), we establish the relation

6∑
j=0

wjf(Pj) ≈
1

|Ω|

∫∫
Ω

f(x, y) dx dy, (4.1)
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by obtaining the weights {wj}6j=0 using low-degree shifted monomials in the form f(x, y) =
(x − x0)m(y − y0)n. Without loss of generality, we assume the reduction x0 = y0 = 0 in
equation (2.1), and observe on monomials f = xmyn that f

Pj+3
= (−1)m+nf

Pj
, j = 1, 2, 3. For

convenience, the interpolation conditions to determine the weights are collected in Table 4.1
with the right-hand-side (RHS) values taken from Table 3.1.

We give a brief discussion.
(1) The first integrand (m = n = 0, f = 1) yields

∑6
0 wj = 1, or w0 = −

∑6
1 wj . All other

((m,n) 6= (0, 0)) conditions involve only {wj}61 since P0 = (0, 0).
(2) The cases of linear monomials, f ∈ {x, y}, imply

[
x1 x3 x5

y1 y3 y5

]
·

w1 − w4

w3 − w6

w5 − w2

 =

[
0
0

]
,

or, by using P5 = −P1 − P3,

[
x1 x3

y1 y3

]
·
[
w1 − w4 − (w5 − w2)
w3 − w6 − (w5 − w2)

]
=

[
0
0

]
.

That {P0, P1, P3} are not colinear yields a (unique) trivial solution such that

w1 − w4 = w5 − w2 = w3 − w6 = δw is a constant. (4.2)

(3) In the four cubic cases, f ∈ {x3, y3, x2y, xy2}, we obtain

M3 ·

w1 − w4

w3 − w6

w5 − w2

 ≡

x3

1 x3
3 x3

5

y3
1 y3

3 y3
5

x2
1y1 x2

3y3 x2
5y5

x1y
2
1 x3y

2
3 x5y

2
5

 ·
w1 − w4

w3 − w6

w5 − w2

 =


0
0
0
0

 .

The elementary column operation on M3, adding the first two columns to the third,

Table 3.1. Average central moments of a phase-ϕ regular hexagon.

m n Sϕm,n Mϕ
m,n Remark

Even Odd 0 0
Odd Even 0 0
Odd Odd 0 0 Type I, II, or m+ n < 6

0 2 3 5
18
h2 (= 5

24
r2)

2 0 3 5
18
h2 (= 5

24
r2)

0 4 9
4

7
45
h4 (= 7

60
r4)

4 0 9
4

7
45
h4 (= 7

60
r4)

2 2 3
4

7
135

h4 (= 7
180

r4)
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yields (by Lemma A.1)

x3
1 x3

3

3d3

4
sin 3ϕ

y3
1 y3

3

3d3

4
cos 3ϕ

x2
1y1 x2

3y3 −3d3

4
cos 3ϕ

x1y
2
1 x3y

2
3 −3d3

4
sin 3ϕ


·

w1 − w4 − (w5 − w2)
w3 − w6 − (w5 − w2)

w5 − w2

 =


0
0
0
0

 ,

which, together with

(w1 − w4 − (w5 − w2), w3 − w6 − (w5 − w2), w5 − w2) = (0, 0, δw)

Table 4.1. Interpolation conditions (equation (4.1)) on monomials for seven-point cubature on a
regular hexagon. Stated expressions depend only on x0 = y0 = 0 and the domain symmetry. In
particular, Pj+3 = −Pj , j = 1, 2, 3.

m,n f(x, y) LHS =

6∑
j=0

wjfPj
RHS = Mϕ

m,n =
1

|Ω|

∫∫
Ω

f dx dy

0, 0 1

6∑
0

wj 1

1, 0 x
∑

j=1,3,5

(wj − wj+3)xj 0

0, 1 y
∑

j=1,3,5

(wj − wj+3)yj 0

2, 0 x2
∑

j=1,3,5

(wj + wj+3)x2
j

5r2

24

(
=

5d2

72

)

0, 2 y2
∑

j=1,3,5

(wj + wj+3)y2
j

5r2

24

(
=

5d2

72

)
1, 1 xy

∑
j=1,3,5

(wj + wj+3)xjyj 0

3, 0 x3
∑

j=1,3,5

(wj − wj+3)x3
j 0

0, 3 y3
∑

j=1,3,5

(wj − wj+3)y3
j 0

2, 1 x2y
∑

j=1,3,5

(wj − wj+3)x2
jyj 0

1, 2 xy2
∑

j=1,3,5

(wj − wj+3)xjy
2
j 0

m+ n odd xmyn
∑

j=1,3,5

(wj − wj+3)xmj y
n
j 0
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(by equation (4.2)), implies δw = 0. Otherwise we would obtain sin 3ϕ = 0 but also
cos 3ϕ = 0, a contradiction. The stencil is therefore symmetric such that

wj = wj+3, j = 1, 2, 3.

(4) The cases u ∈ {x2, y2, xy} yield

Msym · wsym ≡

 x2
1 x2

3 x2
5

y2
1 y2

3 y2
5

2x1y1 2x3y3 2x5y5

 ·
w1 + w4

w3 + w6

w5 + w2

 =
5d2

72

1
1
0

 .
It can be shown that

M−1
sym =

2

3d2



1

2
− cos 2ϕ

1

2
+ cos 2ϕ −sin 2ϕ

1

2
− cos

(
2ϕ− 2π

3

)
1

2
+ cos

(
2ϕ− 2π

3

)
−sin

(
2ϕ− 2π

3

)
1

2
− cos

(
2ϕ+

2π

3

)
1

2
+ cos

(
2ϕ+

2π

3

)
−sin

(
2ϕ+

2π

3

)


.

Therefore w1 + w4

w3 + w6

w5 + w2

 = M−1
sym ·

5d2

72

1
1
0

 =
10

216

1
1
1

 .
Finally,

w1 = w4 = w3 = w6 = w5 = w2 = 5
216 , w0 = 31

36 . (4.3)

The cubature rule (equations (4.1) and (4.3)) so determined is exact on all odd-degree
monomials by the symmetry in both the integral stencil and the domain. The stencil is of
at least fourth order by construction. That it is indeed of fourth order is justified as follows:
(i) the weights are exact on degree-five monomials (Table 3.1); (ii) on the three degree-four
even monomials {x4, y4, x2y2}, deviations in the discrete approximation (equations (4.1) and
(4.3)) from the theoretic values (Table 3.1) are, respectively,

7
45h

4 − 5
216S4,0d

4 (= −61
90 h

4), −61
90 h

4, 7
135h

4 − 5
216S2,2d

4 (= −61
270 h

4).

Thus completes the proof of Theorem 2.4.

5. Conclusions

Irregular domains approximated by nets of regular hexagons are found advantageous in the
study of biological wave phenomena in recent research. In this work, central moments on
regular hexagons are resolved and a fourth-order seven-point cubature is developed for regular
hexagons, using interior and neighbor center nodes. The hexagonal seven-point cubature is
basic to further applications of integrals on hexagons or approximated domains.

Appendix. Some low-degree barycentric identities

The technical details supporting §§ 3.1 and 4 are presented here. Let ψ = ϕ + π/6, d = 1.0,
and

P0 = (0, 0), Pj = (xj , yj) = (cos ξj , sin ξj), ξj = ψ +
jπ

3
, j = 1, 3, 5.
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Lemma A.1. For a regular hexagon centered at the origin with an arbitrary phase angle ϕ,
the following identities hold.

x1 + x3 + x5 = y1 + y3 + y5 = 0. (A.1)

x2
1 + x2

3 + x2
5 = y2

1 + y2
3 + y2

5 = 3
2 . (A.2)

x1y1 + x3y3 + x5y5 = 0. (A.3)

x3
1 + x3

3 + x3
5 = −x1y

2
1 − x3y

2
3 − x5y

2
5 = − 3

4 cos 3ψ = 3
4 sin 3ϕ. (A.4)

y3
1 + y3

3 + y3
5 = −x2

1y1 − x2
3y3 − x2

5y5 = 3
4 sin 3ψ = 3

4 cos 3ϕ. (A.5)

x4
1 + x4

3 + x4
5 = y4

1 + y4
3 + y4

5 = 9
8 . (A.6)

x2
1y

2
1 + x2

3y
2
3 + x2

5y
2
5 = 3

8 . (A.7)

x3
1y1 + x3

3y3 + x3
5y5 = x1y

3
1 + x3y

3
3 + x5y

3
5 = 0. (A.8)

Proof. The linear case follows by the geometric argument that

P1 + P3 + P5 = 3P0 = (0, 0).

Various real arguments exist for the cubic identities; for a simple complex one, just note

z ≡ (x1 + iy1)3 + (x3 + iy3)3 + (x5 + iy5)3

= ei3ξ1 + ei3ξ3 + ei3ξ5 = 3ei3ψeπi = −3(cos 3ψ + i sin 3ψ),

and

−3 cos 3ψ = < z = x3
1 + x3

3 + x3
5 − 3(x1y

2
1 + x3y

2
3 + x5y

2
5),

−3 sin 3ψ = = z = −y3
1 − y3

3 − y3
5 + 3(x2

1y1 + x2
3y3 + x2

5y5),

in addition to

(x3
1 + x3

3 + x3
5) + (x1y

2
1 + x3y

2
3 + x5y

2
5) = x1(x2

1 + y2
1) + x3(x2

3 + y2
3) + x5(x2

5 + y2
5) = 0,

(y3
1 + y3

3 + y3
5) + (y1x

2
1 + y3x

2
3 + y5x

2
5) = y1(x2

1 + y2
1) + y3(x2

3 + y2
3) + y5(x2

5 + y2
5) = 0.

We proceed differently for the other cases, which all depend on the linear result.
With α = ξ + ϕ in equation (3.3), we note for equations (A.2) and (A.3),

Sϕ2,0(ξ)

Sϕ0,2(ξ)

=

6∑
j=1

cos2

sin2

(
α+

jπ

3

)
=

1

2

6∑
j=1

(
1± cos

(
2α+

2jπ

3

))
= 3,

Sϕ1,1(ξ) =

6∑
j=1

cos

(
α+

jπ

3

)
sin

(
α+

jπ

3

)
=

1

2

6∑
j=1

sin

(
2α+

2jπ

3

)
= 0;

for equation (A.6),

Sϕ4,0(ξ)

Sϕ0,4(ξ)

=

6∑
j=1

cos4

sin4

(
α+

jπ

3

)
=

6∑
j=1

(
1± cos(2α+ (2jπ)/3)

2

)2

=
1

4

6∑
j=1

(
1± 2 cos

(
2α+

2jπ

3

)
+

1 + cos(4α+ (4jπ)/3)

2

)
=

6

4
+

6

8
=

9

4
;
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and for equation (A.8),

Sϕ3,1(ξ)Sϕ1,3(ξ) =

6∑
j=1

cos3

sin3

(
α+

jπ

3

)
sin
cos

(
α+

jπ

3

)

=
1

4

6∑
j=1

(
1± cos

(
2α+

2jπ

3

))
sin

(
2α+

2jπ

3

)

=
1

4

6∑
j=1

sin

(
2α+

2jπ

3

)
± 1

8

6∑
j=1

sin

(
4α+

4jπ

3

)
= 0.

Finally, the fact that

6 =

6∑
j=1

(
cos2

(
α+

jπ

3

)
+ sin2

(
α+

jπ

3

))2

= Sϕ4,0(ξ) + 2Sϕ2,2(ξ) + Sϕ0,4(ξ),

yields Sϕ2,2(ξ) = 3
4 for equation (A.7). This concludes the proof.

Remark A.2.
(1) Actually, S0,2 = S2,0, S0,4 = S4,0, S1,3 = S3,1, by Lemma 3.3.
(2) Except for equations (A.3) and (A.7), one half of the barycentric identities are implied

by the other half, using the symmetry argument (the first example in Table 2.2) that

{(x1, x3, x5), (y1, y3, y5)} are congruent to {(y5, y3, y1), (x5, x3, x1)}.

Note also for equations (A.4) and (A.5) that

cos

(
3

(
π

2
− ψ

))
= − sin 3ψ and sin

(
3

(
π

2
− ψ

))
= −cos 3ψ.

Alternatively, the equivalence within the pair of cubic identities comes from the second
example in Table 2.2.

(3) All the claimed identities are valid with the indices {1, 3, 5} replaced by {2, 4, 6}, except
for negating the constants on the RHSs of the cubic cases. This corresponds to replacing
ϕ by ϕ− π/3 (rotational symmetry, not explicitly mentioned).

Acknowledgements. The authors are grateful to Tunghai University and Providence
University for the continued laboratory support.

References

1. J. Berntsen and T. O. Espelid, ‘Algorithm 706, DCUTRI: an algorithm for adaptive cubature over a
collection of triangles’, ACM TOMS 18 (1992) no. 3, 329–342.

2. R. Cools, ‘Monomial cubature rules since “Stroud”: a compilation—part 2’, J. Comput. Appl. Math. 112
(1999) 21–27.

3. R. Cools, ‘An encyclopaedia of cubature formulas’, J. Complexity 19 (2003) 445–453.
4. R. Cools, D. Laurie and L. Pluym, ‘Algorithm 764: Cubpack++: A C++ package for automatic two-

dimensional cubature’, ACM TOMS 23 (1997) no. 1, 1–15.
5. R. Cools and P. Rabinowitz, ‘Monomial cubature rules since “Stroud”: a compilation’, J. Comput. Appl.

Math. 48 (1993) 309–326.
6. H. J. Ritsema van Eck, J. A. Kors and G. van Herpen, ‘The U wave in the electrocardiogram: a solution

for a 100-year-old riddle’, Cardiovasc Res. 67 (2005) no. 2, 256–262.
7. T. Hahn, ‘CUBA – a library for multidimensional numerical integration’, Comput. Phys. Commun. 168

(2005) 78–95.

https://doi.org/10.1112/S146115701600005X Published online by Cambridge University Press

https://doi.org/10.1112/S146115701600005X


seven-point cubature for hexagons 185

8. D. Lee, H. C. Tien, C. P. Luo and H.-N. Luk, ‘Hexagonal grid methods with applications to partial
differential equations’, Int. J. Comput. Math. 91 (2014) 1986–2009.

9. J. N. Lyness and R. Cools, ‘A survey of numerical cubature over triangles’, Preprint MCS-P410-0194,
Argonne National Laboratory, Argonne, IL, 1994.

Daniel Lee
Department of Applied Mathematics
Tunghai University
Taichung 40704
Taiwan

danlee@thu.edu.tw

Hui-Chun Tien
Department of Financial and

Computational Mathematics
Providence University
Taichung 40704
Taiwan

hctien@pu.edu.tw

https://doi.org/10.1112/S146115701600005X Published online by Cambridge University Press

https://doi.org/10.1112/S146115701600005X

	1 Introduction
	2 The configurations and main result
	3 Integrals in a hexagon
	3.1 Moments by secant integrals

	4 Hexagonal integral stencil
	5 Conclusions
	Appendix Some low-degree barycentric identities
	References

