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TESTING ON NULL SEQUENCES IS ENOUGH FOR
BOCHNER INTEGRABILITY

FERNANDO MAYORAL AND PEDRO J. PAUL

Dedicated to Paul R. Halmos on the

occasion of his eightieth birthday.

Let E be a normed space, a Frechet space or a complete (DF)-space satisfying
the dual density condition. Let H be a Radon measure space. We prove that a
function / : Cl —» E is Bochner p-integrable if (and only if) / is p-integrable with
respect to the topology of uniform convergence on the norm-null sequences from
E'.

1. INTRODUCTION

Our first question was: Can one deduce that a function with values in a Banach
space is Bochner integrable from the fact that it is integrable for a coarser topology?
Of course the answer is negative for the weak topology (see [3, II.3.3 on p.53] for a
concrete example or use the Dvoretzky-Rogers theorem in general). In this paper, we
want to show that the answer is "Yes" for the topology of uniform convergence on the
null sequences of the dual.

Let $7 be the measure space, E be the Banach space and r be the coarser topology.
If / : f2 —» E is the T-integrable function candidate to be Bochner integrable, two
problems are involved here: to prove that absolute integrability with respect to the
r-seminorms implies that t —» ||/(t)|| is in L1 and to show that / is norm-measurable
if it is T-measurable. The aim of this paper is to show that there is a (somehow natural)
class of spaces for which these two problems have a solution and that this class includes
normed spaces, Frechet spaces, strict (ZjP)-spaces and complete (DF)-spa.ces satisfying
the dual density condition of Bierstedt and Bonet.
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2. TERMINOLOGY AND NOTATION

In what follows (fi,E,/z) stands for a <r-finite Radon measure space, where fi is a

locally compact and a-compact topological space. Let (E, T) be a locally convex space

with a topology defined by a family of continuous seminorms Q(E,T). We consider

measurabih'ty of functions in the sense of Lusin: we say that a function / : fl —> E is r-

measurable if there is a sequence (Kn) (that we may take either disjoint or increasing)

of compact sets such that the restriction / | jcn is continuous for every n £ N, and

fj, f ft \ IJ Kn ) = 0. When (E, T ) is metrisable, the notion of a r-measurable function in

the sense of Lusin coincides with the usual definition of a strongly measurable function
as the ji-almost everywhere limit of a sequence of simple functions. If T\ and TI are
two topologies defined on E, the identity (E,T{) —> (22,T2) is said to be universally
measurable if (among several equivalent conditions) every Ti-measurable function is
also T2-measurable (for arbitrary fi and fi).

A function / : fi —» E is said to be integrable with respect to r , or simply r-

integrable, if it is r-measurable and the scalar functions q(f) : t E fi —> q(f(t)) £ ^
are in L1^) for every q £ Q(E,r). When (E,r) is a Banach space, r-integrability
equals Bochner integrability. ^(EJT) will denote the space of all (classes of ^i-almost
everywhere equal) T-integrable functions endowed with the locally convex topology
defined by the family of seminorms / —> l l ^ / ) ^ as q 6 Q(E,r). For 1 < p ^ 00, the
space LP(E, T) is defined in the analogous way.

We say that a locally convex space [E,T) has property (B) of Pietsch if for each
bounded subset M of the space i1 {E, T} of all absolutely summable sequences in (E, r ) ,
there exists a disc B C E such that for all (xn) £ M the following hold: a;n G EB for
each n and ^PB(xn) ^ 1, where Eg is the linear span of B and pg is its natural

n

norm, the gauge of B. In other words, each bounded subset of ^ 1 { £ , T } is a bounded
subset of some t1

 {EB,PB} • Metrisable and (df)-spaces have property (B), for instance.
A locally convex space {E,r) is said to have property (BM) if it has property (B)

and the topology r is metrisable when restricted to bounded sets. Metrisable or, more
generally, strict (Xi^)-spaces have property {BM). For a quasi-complete locally convex
space (E,T) with property (BM) the identity (E,cr(E,E')) -> (E,T) is universally
measurable [4, 4.13].

We introduced in [4, 3.5] the notion of fundamental JDp-boundedness as an exten-
sion of property (B). Let 1 ^ p ^ 00. A locally convex space (E, r) is said to be
fundamentally Lp-bounded, with respect to (fi,E,^), if each bounded subset M of
LP{E, T} is contained in a bounded set of the form

[UP,B] := {/ € LP{E,T} : f(t) E EB almost everywhere and pB{f) £ Up},

where £ is a disc in E and Up stands for the unit ball of Lp(fi). This definition
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applied to the particular case of the counting measure on the power set of N, tells us
that fundamental £1-boundedness is just property (B) (this is the terminology of [7],
by the way).

The dual density condition was introduced by Bierstedt and Bonet in connection
with their solution to the problem of when a Kothe echelon space is distinguished.
They proved [1, Theorem 5] that a (Z).F)-space E satisfies the dual density condition
if and only if every bounded subset of E is metrisable, or if and only if £°°(E,T) is
quasi-barrelled. (£>jF)-spaces satisfying the dual density condition are quasi-barrelled
(but not the opposite!). In particular, for (£)iJ1)-spaces property (BM) equals the dual
density condition.

We refer the reader to the books by Jarchow [5], Kothe [6], Perez Carreras and
Bonet [7] or Robertson and Robertson [8] for the terminology about locally convex
spaces and to the monographs by Bourbaki [2], Diestel and Uhl [3], Schwartz [9] or
Thomas [10] for the properties of measurable functions. Our paper [4] contains several
results about localisation of bounded sets in LP(E,T) and Radon-Nikodym theorems.

3. RESULTS

MAIN THEOREM. Let (E,r) be a locally convex space. Let TQ be another locally
convex topology on E coarser that r and such that

(1) the identity (E,To) —> {E,T) is universally measurable,
(2) every To-bounded subset of E is also T-bounded,

(3) the space (E,TQ) is fundamentally Lp-bounded for some p £ [l,oo).

Then a function f : fl —> E is p-integrable with respect to r if (and only if) f is

p-integrable with respect to To, that is

LP(E,T) = LP{E,T0)

holds as an equality of vector spaces.
PROOF: Let / : SI —> E be T0-integrable. Since the identity {E,T0) -» {E,T) is

universally measurable, it follows that the function / is r-measurable. It remains to
prove that for every T-continuous seminorm q the scalar function t —> g(/(t)) is in
Lp(fj,). The space (E,TO) is fundamentally Lp-bounded, therefore there exists a disc
B in {E,T0) such that the scalar function t —> PB{f(t)) is in Lp(fj.). Since B is also
T-bounded, it is contained in some multiple of the unit ball of q, hence t —> g(/(t)) is
in Lp(fi), as desired. U

We shall give several applications of this theorem.

COROLLARY 1. Let E be a normed space and let To be the topology of uniform
convergence on the sequences that converge to zero in E'. Let p € [l,oo). Then a
function / : f2 —» E is Bochner p-integrable if (and only if) f G LP(E,TQ).
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PROOF: We only have to check that conditions (1) and (3) above hold in this case.
A consequence of the Grothendieck-Phillips theorem [9, Part II, I.I. Theorem 3 on
p.162] or [10, p.50], is that for a Banach space E the identity (E,a(E,E')) -> (E, \\-\\)

is universally measurable. It is easy to see, by passing to its completion, that the same
holds when E is a non-complete normed space. This proves (1). To see (3) note that
(E,To) is a (<i/)-space [5, 12.4-5], that is, it has a fundamental sequence of bounded
sets (the integer multiples of the unit ball) and every norm-null sequence in E' is
equicontinuous. Now [4, 3.10] states that (<f/)-spaces are fundamentally ip-bounded
for every p £ [l,oo). D

REMARKS. Given p £ [1, oo), Corollary 1 tells us, in other words, that if E is a normed
space and / : fi —» E is strongly measurable then / is Bochner p-integrable provided
that for every null sequence (a;^) from E', the scalar function

is p-integrable.

The (<i/)-space (E,r0) is not complete if E is not reflexive [5, 12.5.1 and 2]. If

A is a measurable set, the integral JA f d/j, of a function / £ I}(E,TQ) is obtained as

the limit of a net of Riemann sums so that they belong, a priori, to the completion of

(E,To) and this completion coincides (as a vector space) with the bidual E" [5, 12.5.1].

However, it follows from Corollary 1 that these integrals are, indeed, elements of E.

Corollary 1 also holds for every locally convex topology between To and the norm

topology. For all of these topologies E is again a ((ff)-space.

Let us consider now the situation on the dual E' of a Banach space E. The

difficulty is to lift integrability from the topology T'Q of uniform convergence on the

null sequences on E to the norm topology in E'. The main problem will be that the

behaviour of the measurability is not so good; a measurable function with respect the

weak*-topology a(E',E) may not be measurable with respect the norm topology on

E' as the cases [9, Exercise 1 and 2 on p.168] E = I1 or E = C[0,l] show.

COROLLARY 2 . Let E be a Banach space with dual E' and p 6 [l,oo). Tien

the following hold.

(a) A strongly measurable function f : fi —> E' is Bochner p-integrable if

and only if for every null sequence (xn) in E the scalar function

is in Lp(fi).

(b) If E' is separable, then a function f : fi —» E' is Bochner p-integrable if

and only if it is p-integrable with respect to the topology T'O of uniform,

convergence on the norm-null sequences in E.
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PROOF: Part (a) can be proved as in the Main Theorem using the fact that (E1, T'Q)

is also a (<f/)-space and so is fundamentally ip-bounded. Part (b) follows from a
theorem due to Meyer and Schwartz [9, Part I, II.3 Corollary 2 of Theorem 10 on pp.122-
124] [10, p.51] stating that if E' is separable then the identity (E1, a(E', E)) -> (E1, | | | |)
is universally measurable. D

By the Banach-Dieudonne theorem, T'O equals the topology of uniform convergence
on the compact subsets of E [5, 9.4.3]. Moreover, {E',T'O) is not only a (df)-space; it
is also a complete, Schwartz (gDF)-spa.ce [5, 9.4.1-3, 11.1.4 and 12.5.2 and 6].

COROLLARY 3 . Let p e [l,oo) and (E,T) be a complete (DF)-space with the

dual density condition. Let To be the topology of uniform convergence on the sequences

from E' that converge to zero in the strong topology (3(E',E). Then a function f :

fi —> E is p-integrable with respect to r if (and only if) f is p-integrable with respect

to T0 .

PROOF: Since every (.D.F)-space with the dual density condition has property
(BM), condition (1) is a particular case of [4, 4.13]. On the other hand, it is clear that
if {E,T) is a (£>.F)-space then (E,To) is a (<f/)-space and the proof finishes as in the
proof of Corollary 1. U

Corollary 3 can be also obtained as a consequence of Corollary 4 below —the
corresponding result for quasi-complete spaces having property (BM) — but the proof
of the latter requires more work.

LEMMA . Let (E, T ) be a quasi-complete locally convex space with property (BM)

and let To be the topology of uniform convergence on the sequences that converge to

zeroin (E',(3(E',E)). Then (E,T0) is fundamentally Lp-bounded for each p € [l ,oo).

PROOF: We start by proving that (E,TO) has property (B). Since (E,T) has
property (B), it will be enough to prove that if M is a bounded subset of 11{E,TQ}

then M is also bounded in ^ 1 { S , T } . Let q be any r-continuous seminorm and assume
that

sup

Then there exists a sequence { ( i , ') : k = 1,2,... } C M and an increasing sequence
of indices (n*) such that

n!b+l

xn) : (a:n) 6 M > = oo.

J

Let V C E' be the polar of the unit ball associated to q. Then we can find a sequence
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(vn) C V such that

nt+i

£ (xik\vn) > 2 " for every fc = 1 , 2 , . . . .
n=l+nk

Since V is /3(.E',.E)-bounded it follows that the sequence

Vl YlH Vl+nl Vn2
20 ' '" •' 2° ' 21 ' ' 21 ' 22 ' ' ' ' 22 '

converges to zero in the strong topology (3(E',E) and satisfies

nk+l
{ i k \ ^ ) k for every * = 1,2,...,

contradicting the fact that M is bounded in (}{E,TQ}.

We now prove that (22,To) is fundamentally i1(^i)-bounded. By [4, 4.13] the
identity (E,a{E,E')) —* {E,T) is universally measurable so that the identity (E,TO) —>
(^ , r ) will also be universally measurable. (This proves, by the way, that condition (1)
of the Main Theorem is satisfied.) Therefore, given / £ i1(£,ro) there is a disjoint
sequence (Kn) of compact sets such that the restriction /!«•„ is r-continuous for every
n £ N, and fj,(£l \ UnKn) — 0. In particular (see [2]), / will be integrable on every
measurable set A contained in some Kn\ that is, there is an element J. f dfi £ E such
that

(JA f dp, v) = JA (/(*), v) dp for every v £ E1.

Let F C i1(JB,T0) be a bounded set. For each q £ Q(E,T0) take

^, := sup I J q{f) dp : / £ F \ < oo.

Let î o be the set of all ^-valued sequences of the form

(SAl f ^, JA2 f dp, . . . )

where f £ F and J4I,J42>--- is a sequence of pairwise disjoint, measurable sets with
positive and finite measure such that each one of them is contained in some compact
set where / is r-continuous. As pointed out above, for each / £ JF" there is at least
one such sequence {An). For each seminorm q £ Q(E,r) and each of these sequences,
we have

£ q{JAn fdp)<J£[ g(f) dp^ f q(f) dp < Pq.
7»=1 n = l JA» J a
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This tells us that FQ is a bounded subset of ^{E^TQ}. We have proved above that
(E,To) has property (B), hence there is a closed disc B C E such that for every

oo

sequence (a;n) £ FQ we have xn £ EB for each n £ N, and ^ PB{xn) ^ 1- We shall

prove that for every / £ F we have (i) f(t) £ EB almost everywhere and (ii) the

function t —» ps( / (0) *s m *ne u n ^ ball of L1(^).
(i) If there is f E F such that /i{< £ $7 : /(i) ^ EB} > 0, then there is a compact

set K C f2 with positive measure such that f : K ^ E is r-continuous and f(t) (fc EB
for all t E K. By [4, 3.7] for every n £ N there exists a simple function zn : K —> B° C

.E' such that Re (f{t),Zn(t)) > n f°r all < £ Jf. If we write 2n = ^ ' "JXA,- , where

{.Ai,.42,... ,j4i} is a measurable partition of K and {v\,vv,... ,Vk} C 5 ° , then the
sequence

( f. f da, f. f du, ..., f. f da, 0, 0, . . . )

is in i*o • However, we also have

Re {f,V{) dfi

it

contradicting the boundedness of Fo in ^{EBIPB}•

(ii) Assume that the set of functions {ps(/) : f E F} is not contained in the
unit ball of i1(/i) . This can happen because this set is not contained in X1(/i) at
all, or simply because HpeC/)^ > 1 for some / £ F. In either case, we can find a
function / £ F and a compact set K C f2, such that the functions / : K —> E and
P B ( / ) : K —* M. are T-continuous, and ||ps(/) • XK]|X > 1 + S, for some positive 6. It
is well-known that for ip £ L1 (fi) one has

j = sup < / <p • 8 dfj. : 6 a simple function with Ĥ H,,,, ^ 1 > ,

so we can find a simple function 9 in the unit ball of L°°(fJ.) such that JK P B ( / ) -0 dfi>
1 + 6; note that we may assume that 0 is non-negative. Again by [4, 3.7], given e > 0
there is a simple function z : K —* B° C E' such that

PB (f(t)) < Re (f(t), z(t)) +e for all t £ K.

Write 0 and z as

t = l
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where the sets (Ai) are pairwise disjoint and have positive finite measure, and each a;

is in [0,1]. Take the sequence (xi) C E defined by X{ := JA fdfi, for i — 1,2, . . . , A;

and a;,- = 0 afterwards. Then (a;;) is in Fo because each Ai is contained in K, where

/ is r-continuous. Now, since each a,- is in [0,1] and Fo is contained in the unit ball

of £ 1 { J B J 5 , P B } , we have that

k k k

Xi) = ̂ 2<*iPB(JA. fdfi) > ^ a j Re (JA.fd(j,, v{)

* r
Re (/, Vi) dp>J2aiJ i?B(f) ~ e) ^

= ! 9PBU) dfi-e ||flxjr|li > 1 + * - ep(K),
JK

where the last inequality holds because JKPB(f) • 0 d/i > 1 + 6, on the one hand, and
ll^Xiflli ^ Halloo llXiflli ^ MC-^OJ

 o n the other. Since e was arbitrary, we obtain a
contradiction.

To finish the proof of the Lemma apply [4, 3.6]; this result tells us that fundamental
i1(^)-boundedness implies fundamental Lp-boundedness for every p 6 [l,oo]. D

COROLLARY 4 . Let p e [l,oo) and let (E,T) be a Frechet space or, more gen-

erally, a strict (LF)-space. Let To be the topology of uniform convergence on the

sequences from E' that converge to zero in the strong topology fi(E'', E). Then a func-

tion f : Q —> E is p-integrable with respect to r if (and only if) f is p-integrable with

respect to To.
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