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THE DOWNTIME DISTRIBUTION AFTER A
FAILURE OF A SYSTEM WITH MULTISTATE
INDEPENDENT COMPONENTS
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Abstract

Aven and Jensen (1999) proposed an approximation to the downtime distribution for
arbitrary coherent systems with binary and independent repairable components, where
each component follows an alternating renewal process. The approximation is based
on a mixture of the duration distributions of the cut sets in the system. We extend this
approach to coherent systems composed by multistate independent components, where
every component follows a semi-Markov process and where we introduce the concept
of a minimal cut set in the multistate setting. We test our proposal on a simple power
demand–generation system, by comparing the analytic approximation with simulation
results, and we find it is accurate when the system is highly available.
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1. Introduction

Consider a system with any number of states, where every state is classified as acceptable
(or functioning) or unacceptable (or failure). By system downtime we mean a period of time
during which the system is in one of the failure states. We examine the probability distribution
of the system downtime, or system downtime distribution (SDD), after a failure. The downtime
is the time it takes to complete the repair of the system and bring it back to the functioning state.
In particular, we consider a system that is started at time −∞ and is monitored from time 0
(hence, it is found in the stationary state); the downtime is then computed directly after the first
transition from the functioning state into the failure state, and we may refer to its distribution
as the steady-state SDD.

The exact analytical form of the SDD can be obtained with difficulty even in relatively simple
systems, because, while it is easy to calculate the probability that the system has gone down
through a specific failure state, it is less easy to follow all the possible transitions among failure
states the system may experience before returning to the functioning state.

Aven and Jensen [1] and Gåsemyr and Aven [3] discussed the case of a coherent system with
binary components that evolve independently following alternating renewal processes, and
they proposed an approximation to the steady-state SDD for highly available systems, based
on the duration of the cut sets. We extend their approach to systems where every component
evolves independently as a semi-Markov process, the simplest semi-Markov process being an
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alternating renewal process. Since the components are now possibly nonbinary, the concept of
a cut set must also be extended. This operation was done in a similar way in [5] for a specific
application. Here, we develop the theoretical side of it and specify the new cut set concept
more precisely.

In Section 2 we recollect some useful results on semi-Markov processes and introduce
the Weibull–Markov system (see [7]), which will be the particular system of semi-Markov
processes we will use in our examples. Then, in Section 3 we provide and discuss the extension
of the cut set concept, and in Section 4 we motivate the proposed approximation to the steady-
state SDD, also with the help of an example. In Section 5 we reconsider the example and
compare the approximation with the sample steady-state SDD obtained through a computer
simulation.

2. Semi-Markov processes and the Weibull–Markov system

We denote the state of a system with n components by the vector x = (x1, . . . , xn), where
xc is the state of the cth component taking values in 1, . . . , mc. The state of the system at time t

is indicated as x(t) = (x1(t), . . . , xn(t)). For notational simplicity, we will use x, x(t), m, or
other quantities without the index for the component when we focus on a single component
only, without considering it as a part of the system.

Every component evolves according to a semi-Markov process, i.e. if the component has just
entered state x = i then it will move to state j with probability pij . Conditionally on the next
state being j , the sojourn time Yij is a random variable with cumulative density function Fij .
Therefore, the semi-Markov process is completely determined by the transition matrix P with
elements pij and by the distributions Fij . We will assume throughout that these distributions are
absolutely continuous, although it is not always strictly required. For this and other equivalent
characterizations of semi-Markov processes, see [6].

Now, denote by Nt the process counting the number of transitions of the component up to
time t , denote by Jr the state of the Markov process at the rth transition, and denote by Sr the
time of occurrence of the rth transition. In the following sections we will need Theorem 2.1,
below; see [6, Theorem 5.17].

Theorem 2.1. If a Markov process is irreducible and nonlattice then

lim
t→∞ P{x(t) = j, JNt+1 = i, SNt+1 − t ≤ z | J0 = k} = pji

µjj

∫ z

0
(1 − Fji(u)) du,

where µjj is the mean recurrence time of state j .

Theorem 2.1 gives the asymptotic probability that a component is found in state j , that the
next state is i, and that the residual life in state j is not greater than z.

Another very useful result gives a way of calculating the limiting probability that the process
is found in a given state, starting from any initial state. This result is stated correctly in
[2, Theorem 5.22], whereas Theorem 5.16 of [6] assumes, unnecessarily, that the Markov chain
Jr is aperiodic. Let µi denote the mean sojourn time in state j , given by

µi =
∫ ∞

0
tFi(dt), with Fi(t) =

∑
j �=i

pijFij (t).
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Theorem 2.2. Suppose that Jr is irreducible recurrent, and that π is a solution to π�P = π�
(that is, the invariant distribution for P ). Then, for any initial state i,

p(j) = lim
t→∞ P(x(t) = j | J0 = i) = πjµj∑m

k=1 πkµk

, (2.1)

provided that the distribution of the time between two successive occurrences of j is nonlattice.

We also recall that p(j) = µj/µjj .
A particular semi-Markov process is the Weibull–Markov process, introduced in [7]. We

can describe this process as follows. When the component has just entered state x = i, m − 1
independent times are generated according to m − 1 Weibull distributions with shape and rate
parameters (βi, λij ) for j = 1, . . . , m and j �= i; the next state and the sojourn time in state
i are jointly identified by the minimum of these. It can be shown, by standard probability
calculations, that this method yields

pij =
(

λij

λi

)βi

, with λi =
(∑

j �=i

λ
βi

ij

)1/βi

,

Fij (t) = 1 − exp(−(λi t)
βi ) = Fi(t).

(2.2)

Therefore, after choosing the next state according to the transition matrix P , the conditional
duration distribution depends on the current state only. As a special case, when βi = 1, the
Markov process (with exponentially distributed sojourn times) is obtained. Using Theorem 2.1,
we can show that the transition rate from state i to state j is given by

(
λij

λi

)βi λi

�(1 + 1/βi)
,

which reduces to λij when βi = 1.
A system of components which evolve independently as Weibull–Markov processes is called

a Weibull–Markov system. We will consider this particular process in our examples below.

3. Cut sets for multistate coherent systems

For a system with n components, let us consider a set of pairs

Kh = {(c, xc), c ∈ Ih}, (3.1)

where Ih denotes a set of indexes chosen from {1, . . . , n}. The cardinality of Ih can be less thann.
Let us also assume that our system is coherent, so that there exists an ordering relationship ‘≺’
of the states of the components such that the structure function of the system is nondecreasing.
Let us denote by x+

c the smallest state x′
c such that x′

c 
 xc.

Definition 3.1. We call Kh in (3.1) a cut set if, when it occurs, it causes the system to fail. We
call Kh a minimal cut set if it is not a cut set anymore after changing xc to x+

c or after removing
(c, xc) from it for any c ∈ Ih.

In the binary case, we are back to the usual concept of a minimal cut set.
We notice that this definition does not coincide with the definition of a maximal lower vector

for level 0 (that is, the failure state of the system in our case) given, for example, in [4]. (Note that
a maximal lower vector for level 0 is a state x of the system such that the system reaches level 1
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(the functioning state) for any state x′ 
 x, where this notation means that there exists at least
one index c such that x′

c 
 xc.) A minimal cut set with n pairs in it, which corresponds to
a particular system state, is a maximal lower vector for level 0. Now let us turn to minimal
cut sets with less than n pairs; suppose, for example, that there are n = 3 components, and
let our minimal cut set be K = {(1, x∗

1 ), (2, x∗
2 )}. It spans all the states of the system of the

form (x∗
1 , x∗

2 , x3), with x3 = 1, . . . , m3. As x3 < m3, no state (x∗
1 , x∗

2 , x3) is a maximal lower
vector of level 0, because otherwise the state (x∗

1 , x∗
2 , x+

3 ) would be a functioning state and K

would no longer be a cut set. When x3 = m3, the state (x∗
1 , x∗

2 , m3) must be a maximal lower
vector, because, if it were not, either the state (x∗+

1 , x∗
2 , m3) or the state (x∗

1 , x∗+
2 , m3) would

be failure states, indicating that K is not minimal. Hence, there are as many minimal cut sets
as maximal lower vectors for level 0 in the system.

The minimal cut set can be seen as a surrogate for the set of system states that share it,
including one maximal lower vector for level 0 among these. Accordingly, we will surrogate
the downtime with the lifetime of the cut set or the cut sets that have caused the failure. In
fact, when any single component of the cut set improves its state, a transition to the system
functioning state may take place. Hence, the potential number of such transitions is larger than
that from the associated maximal lower vector of level 0, as we will show in the following
example.

Example 3.1. (Electrical power demand and generation.) From [4] we also borrow an example
of a small two-component system describing the joint evolution of generation and demand of
electrical power. Component 1 is the power requested, and component 2 is the power generated,
both discretized at three levels and forming a Weibull–Markov system. The demand level is
x1 = 1, x1 = 2, and x1 = 3, corresponding to 90 MW, 60 MW, and 5 MW, respectively; the
generation level is x2 = 1, x2 = 2, and x2 = 3, corresponding to 0 MW, 70 MW and 100 MW,
respectively. The system is in a failure state if x1 
 x2, which means that the requested power is
greater than the generated power. In Figure 1 we show the transition diagrams for the demand,

Demand (x1) Generation (x2) Demand–generation system

x1 = 1
(90 MW)

x2 = 1
(0 MW)

x1 = 2
(60 MW)

x2 = 2
(70 MW)

x1 = 3
(5 MW)

x2 = 3
(100 MW)

(1,1) (1,3)(1,2)

(2,1) (2,3)(2,2)

(3,1) (3,3)(3,2)

p 31λ3
(1) (1)

λ1
(1)

λ2

(1)

β1
(2)

λ1
(2)

p23
(2)

β2
(2)

λ2
(2)

β2
(2)

λ2
(2)

p21
(2)

β3
(2)

λ3
(2)p 32λ3

(1) (1)

Figure 1: Transition diagrams for the demand, the generation of power, and the system. In the latter, the
solid arrows indicate transition points between the sets of system failure states (grey ovals) and functioning

states, whereas the dashed arrows represent the remaining transitions.
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the generation components, and for the whole system. The demand component follows a
Markov process, whereas the generation component follows a Weibull–Markov process; the
parameter values will be specified in Section 5, below.

Minimal cut sets according to Definition 3.1 are K1 = {(1, 1), (2, 2)} and K2 = {(2, 1)}.
The elements of the cut sets are always two-dimensional vectors and must not be confused with
the states of the system (which are also two-dimensional vectors in this specific case). The
cut set K1 corresponds to state (1, 2) in Figure 1, whereas cut set K2 occurs whenever one of
the states in the first column occurs. The two maximal lower vectors for level 0 are system
states (3, 1) and (1, 2). We may observe that, from the set of states sharing cut set K2, two
transitions to the functioning state are possible, whereas there is only one direct link from (3, 1)

(the maximal lower vector for level 0) to it.

4. The approximation of the steady-state SDD after a failure

Consider the collection of all the minimal cut sets of the system, Kh, h = 1, . . . , k. When
a minimal cut set occurs at time t , there is a system failure. Conversely, if the system fails at
time t , at least a minimal cut set must have occurred. We can write this equivalence of events
as

{�Nt = 1} = {�K1,t = 1} ∪ · · · ∪ {�Kk,t = 1},
where Nt and Kh,t are now the counting processes of system failures and of occurrences of Kh

in the interval [0, t], respectively, and {�Nt = 1} and {�Kh,t = 1} mean that such processes
experience a jump at time t . Let Y (t) denote the repair time of the system after its failure
at t . As the collection of events on the right-hand side of this equivalence is not a partition of
{�Nt = 1}, we may write the following inequality for the SDD after a failure:

P(Y (t) ≤ y | �Nt = 1)

≤
k∑

h=1

P(Y (t) ≤ y | �Kh,t = 1, �Nt = 1) P(�Kh,t = 1 | �Nt = 1). (4.1)

If the system is highly available, we may assume that two minimal cut sets will occur
together with very low probability and we may expect to exit the minimal cut set that caused the
failure before any other component moves to lower states. Hence, we approximate
P(Y (t) ≤ y | �Kh,t = 1, �Nt = 1) by GKh,t

(y), i.e. the duration distribution of the cut
set Kh considered in isolation. Since the exit from the cut set Kh does not imply that the system
is repaired, GKh,t

(y) ≥ P(Y (t) ≤ y | �Kh,t = 1, �Nt = 1).
The weights appearing in the mixture distribution of (4.1) may be regarded as

lim
ε→0+

P(Kh,t+ε − Kh,t = 1, Nt+ε − Nt = 1)

P(Nt+ε − Nt = 1)
= lim

ε→0+
P(Kh,t+ε − Kh,t = 1)

P(Nt+ε − Nt = 1)
.

For the denominator, the following inequality holds:

P(Nt+ε − Nt = 1) ≤
k∑

h=1

P(Nt+ε − Nt = 1 | Kh,t+ε − Kh,t = 1) P(Kh,t+ε − Kh,t = 1)

=
k∑

h=1

P(Kh,t+ε − Kh,t = 1).
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Finally,

P(�Kh,t = 1 | �Nt = 1) ≥ lim
ε→0+

P(Kh,t+ε − Kh,t = 1)/ε∑k
h=1 P(Kh,t+ε − Kh,t = 1)/ε

=: wh,t ,

which is the frequency of occurrences of the cut set Kh at time t , normalized by the sum of
such frequencies for all the minimal cut sets.

The approximation to P(Y (t) ≤ y | �Nt = 1) is therefore the following mixture of minimal
cut set duration distributions:

P(Y (t) ≤ y | �Nt = 1) 
k∑

h=1

wh,tGKh,t
(y).

At this point we do not know whether we are approximating the left-hand side term from above
or from below, because the cumulative distribution functions are approximations from above,
and the weights are approximations from below. Taking the limit as t tends to ∞, we obtain
the following steady-state approximation:

lim
t→∞ P(Y (t) ≤ y | �Nt = 1) 

k∑
h=1

whGKh
(y). (4.2)

The form of GKh
(y) is derived in a similar way, i.e. as a mixture of duration distributions

where, for any given c ∈ Ih, the cth distribution is the distribution of the duration of the cut
set, given that it has been caused by component c taking state xc. The associated weight is
the probability that component c has caused the entry into the cut set. In Section 2 we made
the hypothesis that the Fij distributions are absolutely continuous; hence, an entry into a cut
set through the simultaneous change of state of two or more components cannot occur. This
reasoning leads to identifying the cth component of the mixture as the steady-state distribution
of the minimum among

1. the life of component c in state xc;

2. the residual lives of the other components, in the state they are found in, when component c
moves to state xc.

Then we obtain

GKh
(y) =

∑
c∈Ih

qc

{
1 − (1 − F (c)

xc
(y))

∏
j∈Ih, j �=c

1

µ
(j)
xj

∫ ∞

y

(1 − F
(j)
xj

(u)) du

}
, (4.3)

where qc is the probability that component c has caused the entry into cut set h, and between
the braces we see the steady-state duration distribution of cut set h conditional on this event.
The additional superscripts, (j) and (c), help identify the component. The distribution

1

µ
(j)
xj

∫ ∞

y

(1 − F
(j)
xj

(u)) du (4.4)

is derived with the help of Theorem 2.1 (where we must allow j =: xj ), by summing over all
the values of i �= j and using the fact that p(j) = µj/µjj .
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With regards to qc, this is, in a similar way as wh above, but without approximation, the
steady-state frequency of occurrences of state xc for component c, normalized by the sum of
such frequencies for all the components of Kh. Using Theorem 2.1 again, where we let z tend
to 0 and divide by z, we find that the steady-state frequency of state xc for component c is

pc(xc)

µ
(c)
xc

∏
j∈Ih, j �=c

pj (xj ),

so that

qc = (pc(xc)/µ
(c)
xc

)
∏

j∈Ih, j �=c pj (xj )∑
r∈Ih

(pr(xr)/µ
(r)
xr

)
∏

j∈Ih, j �=r pj (xj )
= 1/µ

(c)
xc∑

r∈Ih
(1/µ

(r)
xr

)
. (4.5)

We also see that the denominator of the first nonsimplified expression for qh is the steady-state
frequency of occurrence of the cut set Kh, so

wh =
∑

r∈Ih
(pr(xr)/µ

(r)
xr

)
∏

j∈Ih, j �=r pj (xj )∑k
h=1

∑
r∈Ih

(pr(xr)/µ
(r)
xr

)
∏

j∈Ih, j �=r pj (xj )
. (4.6)

The pr(xr) terms are calculated by means of Theorem 2.2.

5. Testing the approximation with a generation–demand system

We consider the two-component Weibull–Markov system of the example introduced in
Section 3. All the quantities needed to calculate the approximation to the steady-state SDD
of (4.2), with its expansions in (4.3), (4.5), and (4.6), are derived from the expressions that
identify the transition kernel of the Weibull–Markov process for each component in (2.2).
For example, F

(c)
xc

is a Weibull distribution with parameter (β
(c)
xc

, λ
(c)
xc

) and pc(xc) follows
from (2.1) specialized to the Weibull–Markov process. The only quantity that does not have
a simple analytic expression is the integral in (4.4). Omitting the index of the component and
letting it take state i, we have

1

µi

∫ ∞

y

exp(−(λiu)βi ) du = 1

�(1/βi)

∫ ∞

(λiy)βi

exp(−u)u1/βi−1 du,

i.e. a normalized incomplete gamma function, remembering that µi = �(1 + 1/βi)/λi .
Lisnianski and Levitin [4] considered a Markov process for both components. We adapt the

numerical values of their transition rates to our model. The transition matrix they gave for the
demand is

P1 =
⎡
⎣0 0 1

0 0 1
2
7

5
7 0

⎤
⎦ ,

and then they gave the expected duration in each state, being 8 hours for states 1 and 2 and
16 hours for state 3. For the demand, we keep the Markov model, so that the hazards for
states 1 and 2 are

λ
(1)
1 = λ

(1)
2 = 24 · 370

8
= 1110 year−1,

where we have kept a year with 370 days as in [4]. Similarly,

λ
(1)
3 = 24 · 370

16
= 555 year−1.
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For the generation component (that is, component 2) transition rates are given as follows:

λ
(2)
12 = 300 year−1, λ

(2)
21 = 1 year−1, λ

(2)
23 = 1000 year−1, λ

(2)
32 = 5 year−1,

so that ‘repair rates’ are much larger than ‘failure rates’. From these rates, we have derived the
following transition matrix, using (2.2) with β2 = 1:

P2 =
⎡
⎣ 0 1 0

1
1001 0 1000

1001
0 1 0

⎤
⎦ .

In order to exploit our Weibull–Markov process, we assign a Weibull distribution to the repair
time, with β

(2)
1 = 0.5, β

(2)
2 = 1.5, and β

(2)
3 = 1. This implies new λ

(2)
i rates, obtained by

equating the means µ
(2)
i of the Weibull–Markov process with the corresponding means given

for the original Markov process. In other words, we solve the following equations for λ
(2)
i :

µ
(2)
i = 1

λ
(2)
i

�

(
1 + 1

β
(2)
i

)
= 1∑

j �=i λ
(2)
ij

for all i,

obtaining λ
(2)
1 = 600, λ

(2)
2 = 900, and λ

(2)
3 = 5.

For a comparison with the analytic approximation, we simulated 10 000 independent down
times, by starting 10 000 independent copies of the Weibull–Markov system in the steady state,
and recording for each copy the first transition from the functioning state into the failed state
and the subsequent time to repair.

The first comparison between the empirical survival function of the downtime and the
analytical approximation of (4.2) is reported in Figure 2, where we can see that the curves
are virtually indistinguishable. The 99.9% empirical quantile is 0.006, whereas from our
approximation we obtain a close 0.004; the 99% quantiles coincide and are equal to 0.002. In
Figure 3 we also show the two components of the mixture. The curve with the heavier tail
is relative to the duration of K2 = {(2, 1)}, i.e. no power generation with Weibull-distributed
repair time, but it has very little influence because the weights in the mixture are w1 = 0.995 and

0.000 0.002 0.0040.001 0.003 0.005

0.0

0.2

0.4

0.6

0.8

1.0

Years

Figure 2: Survival function of the steady-state SDD for the demand–generation system: empirical
distribution from the simulation (dashed line) and approximation (solid line).
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0.000 0.002 0.0040.001 0.003 0.005
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Figure 3: Mixture components of the survival function of Figure 1.

0.000 0.005 0.010 0.015 0.020

0.0

0.2

0.4

0.6

0.8

1.0

Years

Figure 4: Approximation to the survival function of the steady-state SDD with its two components
(solid line) and the empirical counterpart (dashed line) for the generation–demand system when p

(2)
21 = 1

10
and p

(2)
23 = 9

10 , with the other parameters unchanged.

w2 = 0.005: indeed, in the simulation 99.4% of all the entries into the failure state occurred
through cut set K1, i.e. state (1, 2). Moreover, because of the very high repair rates of the
generation, state (1, 1) is not easily reached from state (1, 2).

Therefore, we tried to obtain a less reliable generation by modifying P2 and letting p
(2)
21 = 1

10
and p

(2)
23 = 9

10 . The result is shown in Figure 4, where, looking closely, we may see a little
more distance between the approximation and the empirical distribution.

A further step towards a less reliable system can be obtained by trying to make the state of
no power generation even more easily reachable and the sojourn in it longer. In this way cut
set K1 will be entered more often, and the exit from it will not correspond to the exit from
the failure state whenever a visit to state (1, 1) occurs. Therefore, we let λ

(2)
1 = 60, which

implies a lower repair rate for the generation, and we let p
(2)
21 = p

(2)
23 = 1

2 . The result is shown
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0.0
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0.6

0.8

1.0

Years

Figure 5: Approximation to the survival function of the steady-state SDD with its two components
(solid line) and the empirical counterpart (dashed line) for the generation–demand system when p

(2)
21 = 1

2 ,
p

(2)
23 = 1

2 , and λ
(2)
1 = 60, with the other parameters unchanged.

in Figure 5, where we note that the empirical survival function has a higher upper tail than the
approximation, a feature which can be ascertained with difficulty in Figure 4.

6. Conclusions

We have proposed a new concept for minimal cut sets in systems with multistate components,
and we have found a useful approximation to the steady-state SDD after a failure using such a
concept. A first experiment showed that the approximation behaves quite well, and we believe
it would work for more complex systems as well, provided failure states, which are very deep
into the set of system failure states, are reached with low probability and have relatively short
duration.
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