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HIGHER MONOTONICITY PROPERTIES OF CERTAIN 
STURM-LIOUVILLE FUNCTIONS. Il l 

LEE LORCH, M. E. MULDOON, AND P E T E R SZEGO 

1. Introduction. A Sturm-Liouville function is simply a non-trivial 
solution of the Sturm-Liouville differential equation 

(1.1) y" +f(x)y = 0, 

considered, together with everything else in this study, in the real domain. 
The associated quantities whose higher monotonicity properties are determined 
here are defined, for fixed X > — 1 , to be 

(1.2) Mk(W;\) = Mk = r+1 W(x)\y(x)\xdx (ife = 1, 2, . . .), 

where y(x) is an arbitrary (non-trivial) solution of (1.1) and xx, x2, . . . is any 
finite or infinite sequence of consecutive zeros of any non-trivial solution z(x) 
of (1.1) which may or may not be linearly independent of y(x). The condition 
X > — 1 is required to assure convergence of the integral defining Mk, and the 
function W(x) is taken subject to the same restriction. 

This study continues the type of analysis of higher monotonicity properties 
initiated in [12]. Earlier work concerned itself with simple monotonicity and, 
for oscillatory Sturm-Liouville equations, was confined to particular cases of 
(1.2). Leaving aside the specializations W(x) = 1, z(x) = y(x), made in [12] 
as well as elsewhere, previous studies (originating in 1836 with Sturm [22]) 
provided information on the increase or decrease of the sequence 

{xk+1 — xk) (k = 1, 2, . . .). 

This corresponds to the case X = 0. Occasionally, monotonie properties of 
areas were discussed. This corresponds to the case X = 1. None dealt with 
higher monotonicity in this context. 

The interested reader should consult [12, Introduction] for further back
ground, motivation, and references. To the comments made there, it should 
be added that Watson established [26, p. 518], and Hartman and Wintner 
utilized [7; 6, p. 511], a result which also corresponds to the case X = 1 and 
simple monotonicity. Watson's result has implications also for the case X > 0. 

Roughly speaking, it is shown here that the conditions imposed on the 
equation (1.1) in [12; 13] imply that the sequence {Mk(W; X)} (fe=l, 2, . . .) 
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possesses the same order of higher monotoniaty (including complete mono-
tonicity) as that exhibited by W(x). In the previous studies, W(x) = 1 and 
z(x) = y(x). 

A similar extension (Theorem 3.4) is provided for results of Vosmansky [25] 
involving y'(x) and its zeros rather than y(x) and its zeros. 

The desirability of introducing the function W(x) into the definition (1.2) 
of Mk(W; X) was suggested principally by two considerations. Both can be 
illustrated in the Bessel function case. 

In applying the general results to the Bessel equation in the self-adjoint 
form (1.1), f(x) becomes 1 — (v2 — \)x~2 and the general solution is 
y(x) = x^v(x) = x\AJv(x) + BYv(x)]y where Jv(x) and Yv(x) are the 
usual Bessel functions of the first and second kind, respectively, of order v, 
and A and B are arbitrary constants. 

When W{x) = 1, z(x) = y(x), and X = 1, an earlier result [12, Theorem 3.1] 
implies, in particular, that the sequence of areas 

(1.3) J "'k+1 x*\<ifv(x)\dx ( £ = 1 , 2 , . . . ) 

between successive positive zeros cvk, cv<k+i of ^v{x) under the graph of 
|x*^%(x)| form a completely monotonie sequence when \v\ > ^. But this 
neither implies nor is implied by the corresponding property for the graph 
of the Bessel function \c(fv(x)\ itself. However, the results presented here cover 
both cases, since taking in (1.2) W(x) = x~*, a completely monotonie function, 
deletes the adventitious factor x* from (1.3), while putting Wipe) = 1, also a 
completely monotonie function, yields again the previous information about 
(1.3). 

Thus, the factor W(x) in (1.2) permits extending to complete monotonicity 
the theorems of Cooke [2] and Makai [17] on the monotonicity of the areas 
of the successive arches between non-negative zeros of Bessel functions for 
\v\ > \ (in fact, even for \v\ ^ \\ cf. Theorem 5.4 below). (Cooke showed [2] 
that, for v > — 1, the areas under the arches of the graph of | /^(x)| are 
decreasing, starting with an arch between x = 0 and x = jvi, even though 
JP(0) T^ 0 when — 1 < v ^ 0. Our result excludes this arch unless v ^ \.) 

The other initial motivation was a search for a proof of Theorem 6.1 below, 
establishing an inequality involving Bessel functions. This inequality arose in 
a problem of numerical analysis [28]. A proof valid for v ^ 3/2 was found [15], 
but seemed excessively dependent on manipulations. The proof provided in 
§ 6 below, due to the flexibility provided by the presence of W(x) in (1.2), 
requires little calculation and, moreover, has a greater range of validity, 
namely v ^ \. 

Still other applications come to hand. In a subsequent paper [16] there is 
an extension to higher monotonicity of Sonin's theorem (which establishes 
that the squares of the extrema of a Sturm-Liouville function form a decreasing 
sequence when f(x) is positive and increasing). For this application, X = 2 
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and W(x) mus t be chosen sui tably. (The value X = 2 can also be applied to 
probabil i ty densities if z(x) = y(x) is normalized appropria te ly . ) 

T h e scope afforded by W(x) yields results concerning *$ v(x) no t only for 
\v\ > | , the only range accessible to the earlier work [12; 13; 25], b u t also for 
other values of v, chiefly \v\ ^ | . T h u s , this is a beginning into the problem 
of proving higher monotonici ty propert ies of cé?

v(x) for |*>| < \ analogous to 
(although often not identical wi th) those i t possesses when \v\ > \. Addit ional 
such results will be presented in [16]. 

T h e difficulties in the range \v\ < \ are intrinsically greater than those 
arising when \v\ > \. When \v\ < §, the f u n c t i o n / ( x ) = 1 — (v2 — \)x~2 in 
(1.1) is decreasing in x; when \v\ > \, f(x) is an increasing function of x. 
Hence, as has been well known since S tu rm ' s work in 1836 [22], the distances 
between consecutive zeros of *& v(x) increase when \v\ < \ and decrease when 
\v\ > \. But , as Cooke showed [2], there is no such change in behaviour for 
the areas of the arches, a t least when ^v{x) = Jv(x), v > — 1. Thus , when 
\v\ > 4, both the areas and bases of the arches of (é?

v(x) decrease, b u t when 
\v\ < \ the bases increase, while, a t least for \ ^ \v\ < \, the areas decrease. 

Theorem 5.4 below shows t h a t this completely monotonie (defined after 
(1.5)) behaviour of the areas does no t change with v for general ^ „ ( x ) , a t 
least in the range \v\ ^ \. In this theorem there arises our first need to restr ict 
the range of X; its assertion is no t valid for all X > — 1 , b u t only for a sub-
interval including X ^ 1, enough to give the areas. 

Our information concerning Bessel functions in the range \ ^ \v\ < \ is 
derived, on appropr ia te choice of W(x), from Theorem 5.3 below on generalized 
Airy functions which are related to Bessel functions. 

Finally (§ 8) , we construct (and apply to Bessel functions) still o ther 
sequences possessing higher monotonici ty properties. These arise from 
(l + \)Mk(W;\) on let t ing X—>—1 + . Consideration of this case was 
suggested by I .M. Gel'fand when some of the other results of this s tudy were 
presented to his Seminar a t the Universi ty of Moscow in 1966. 

T h e notat ion used th roughout is s tandard . 
A function <p(x) is said to be N-times monotonie (or monotonie of order N) 

on an interval / if 

(1.4) ( - 1 ) V W ) C * 0 ^ 0 {n = 0, 1, ...,N;x G I). 

If (1.4) holds for N = co, <p(x) is said to be completely monotonie on / . A 
sequence {M0, Mi, . . .} is said to be N-times monotonie (or monotonie of 
order N), if 

(1.5) (-l)nAnMk ^ 0 {n = 0, 1 , . . . ,N;k = 0, 1, . . . ) . 

Here A°Mfc = Mk, AM, = Mw - Mk, . . . , AnMk = A(An^Mk), . . . . If (1.5) 
holds for N = co , the sequence {M0, Mi, . . .} is said to be completely monotonie. 
Our general theorems are s ta ted so as to apply to iV-times monotonie functions 
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and sequences. Results on complete mono tonicity follow from these, on 
putting N = oo . 

2. Preliminary results. Two lemmas on N-times monotonie functions are 
required. The first of these is useful in [16], where some of the results of the 
present paper are extended to solutions of the more general self-adjoint 
equation 

(h(x)y'y + f{x)y = 0. 

LEMMA 2.1. Let g(x) be an N-times differentiable function on an interval 7, 
satisfying 

(2.1) (-l)n+Yn)(x) ^ 0 (n=l,2,...,N\xei). 

Let <p(x) be an N-times differ entiable function on g (I) satisfying 

(2.2) ( - l ) V n ) ( * ) ^ 0 in = 1,2, ...,N)x G g(I)). 

Then 

(2.3) ( - l m V f e W ] ^ 0 (n=l,2,...,N;xei). 

If, in addition, g'' {%) > 0 and strict inequality holds throughout (2.2), or if 
<pf (x) < 0 and strict inequality holds throughout (2.1), then strict inequality holds 
throughout (2.3). 

Proof. Using the formula of Faa di Bruno (see e.g. [9, § 81, pp. 92-93]) for 
the nth derivative of a function of a function, we find, for each n, 

(2.4) (-D"zw[g(*)] = (-i)œ z {£prk'(x)r... [g^wn^dw) , 

where pr > 0 (all r), and the summation inside the braces is taken over all 
non-negative integers aly . . . , an such that 

oil + • • • + ocn = fe, «i + 2a:2 + . . . + w«re = w. 

Now, the sign of cp(jc) (g(x)) times each term of the sum inside the braces in (2.4) 
is, on account of (2.1) and (2.2), 

( — l ) 2 a i ( — 1 ) 3 « 2 . . . (— l ) ( w +D«n(_i ) fc 

= ( — l ) a i + 2 a 2 + . . . + w a » ( _ \\al+a2+ • • -+an ( _ ] U 

= ( - l ) w +2* = ( ~ 1 ) \ 

Thus, the conclusion (2.3) holds. 
If we assume, in addition, that g'(x) > 0 and that strict inequality holds 

throughout (2.2), we find that the right-hand side of (2.4) includes the 
(strictly) positive term 

(-l)"[g'(*)]V*"(g(*)) 

(obtained by taking k = n\ a\ = n, a2 = «3 = . . . = an = 0). Hence there 
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is strict inequality in (2.3). To see that the same situation prevails when 
<p'' (x) < 0 and strict inequality holds throughout (2.1), we need only notice 
that in this case the right-hand side of (2.4) includes the (strictly) positive 
term 

(-W°(*V(g(*)) 
(obtained by taking k = 1, ai = a2 = . . . = an-i = 0, an = 1). 

This completes the proof of Lemma 2.1. 

Remarks. In the precise form given, Lemma 2.1 appears to be new. The proof 
is modelled on that used in a slightly different situation [14, p. 95]. (In [14, 
p. 95 (15)] there is a misprint: g™ (t) should begw{cv(t)}.) Duff [4, p. 472] has 
recently proved the result in the case where N = oo and <p(x) ^ 0. His method 
is similar to that given here, but does not make explicit use of the formula of 
Faa di Bruno. Under the additional assumption that g(0) = 0 and that 
I = [0,oo ), the lemma (again with N=co) was proved by Bochner 
[1, pp. 498-499], using a more complicated method. Subsequently, Schoenberg 
[21, p. 833, Theorem 8] extended Bochner's result and proved a converse. 

Next we need a generalization of [12, Lemma 2.2], where the special case 
W{x) = 1 was considered. In the proof we use both [12, Lemma 2.2] and 
Lemma 2.1 above. An alternative but longer proof, following the lines of the 
proof of [12, Lemma 2.2], but avoiding the use of our present Lemma 2.1, 
could also be given. 

LEMMA 2.2. Let p(x) and W(x) be N-times differentiable functions on an 
interval I. Suppose that, for x £ I, 

(2.5) (-l)npw(x) > 0 (n = 0, 1), 

(-l)npw(pc) ^ 0 (n = 2, 3, . . . , N), 

(2.6) W(x) > 0, (-l)nW™(x) è 0 (n = 1, 2, . . . , N). 

Map I onto an interval of a variable t, through the relation xf (t) = p{x). Then 
on this t-intervalj we have for any a > 0, 

(2.7) (-l)nDt"[W(x){p(x)}'] > 0 (n = 0, 1, . . . , N). 

If strict inequality holds throughout (2.6), the condition p' {x) < 0 may be 
weakened to p' (x) ^ 0. 

Proof. We know, from an extension found in [18] of [12, Lemma 2.2], that, 
under the hypothesis (2.5), 

(2.8) ( - 1 W[{/>(*)}'3 > 0 (n = 0,l,...,N). 

In particular, for a = 1, 

(2.9) ( - l ) * * 1 * ^ ) > 0 (» = 1, 2, . . . , N + 1). 
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Thus, using Lemma 2.1, we have 

(2.10) (-lYDt"[W(x)] ^ 0 (k = 0,l,...,N). 

Leibniz's formula for the nth derivative of a product shows that for each 
n = 0, 1 N, 

(2.11) {-l)nD?[W(x){p{x)}°\ 

= t (l)(-i)kDnw(x)K-ir-kDrk[{p(x)n 
It is clear from (2.8) and (2.10) that the right-hand side of (2.11) consists 
entirely of non-negative terms and includes the positive term 

(-l)nW(x)Dt"[{p(pc)}*]. 

Hence (2.7) holds. 
Suppose now that we replace the hypothesis p' (x) < 0 by pf (pc) ^ 0, and 

that we replace (2.6) by 

(2.6') (-l)nWM(x) > 0 (n = 0, 1, . . . , N). 

The result of [18] is not applicable and so we cannot make the assertion (2.8). 
However, 

(2.8') (-l)nDt»[{p(x)}'] ^ 0 (n = 0, 1, . . . , N), 

from [12, Lemma 2.2, and p. 70, Remarks (i) and (ii)]. Hence, 

(2.9') xf{t) > 0, ( - l y ^ ^ O O ^ 0 {n = 2, 3, . . . , N + 1). 

Using Lemma 2.1, modified as in its last sentence, we have 

(2.10r) (-l)*Dt*[W(x)] > 0 (k = 1, 2, . . . , N). 

From (2.8r) and (2.10r), we see that the right-hand side of (2.11) is again a 
sum of non-negative terms and that in the present circumstances it includes 
the positive term (—l)nD"[W(x)]{p(x)}c. Thus (2.7) again holds and the 
proof is complete. 

3. The principal results. Throughout this section we suppose that yi(x) 
and y2(x) are linearly independent solutions of 

(3.1) / ' +f(x)y = 0 

in some open interval I. We define 

p(x) = [yi(x)f + [y2(x)Y, 

and suppose that for some positive integer N, pm (x) exists in the open 
interval I. We use y(x) to denote an arbitrary non-trivial solution of (3.1) 
on / , and denote by {xi, x2, . . .} any finite or infinite increasing sequence of 
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consecutive zeros on / of a non-trivial solution z(x) of (3.1). In most applica
tions of our results, z(x) will be taken to be y(x), as is the case in the earlier 
papers [12; 13]. Also, {x/, x2', . . .} denotes any finite or infinite increasing 
sequence of consecutive zeros of z' {%) on I. The function Wix), defined on / , 
is assumed to be differentiate as many times as may be necessary in the 
context in which it is used. For fixed X > — 1 (this restriction is to assure 
convergence of the integrals) we define (for suitable W(x)) 

J **k +i 

W(x)\y(x)\xdx (k = 1 , 2 , . . . ) . 
xk 

The symbol MQ also occurs frequently in the following; its meaning will 
be analogous to that of Mk (k = 1, 2, . . .) and obvious from the context. 

In case/(x) > Oon J, we define, again for fixed X > — 1 and suitable W(x), 

(3.3) Mk
f = Mk'(W;\) 

- ; 
*A+1 1 

W(x)\y'(pc)[f(x)r\xdx (k= 1 ,2 , . . . ) . 

We then have the following result. 

THEOREM 3.1. (f) Suppose that, for x £ I, 

(3.4) (-l)npw(x) > 0 in = 0, 1); 
(-iyp^(x) ^ 0 (n = 2, 3, . . . , N), 

(3.5) W{x) > 0, (-l)nWW(x) ^ 0 (n = 1, 2, . . . , N). 

Then 

(3.6) (-l)nAnMk > 0 (n = 0, 1, . . . , N; k = 1, 2, . . .). 

The conclusion (3.6) remains true if the hypotheses (3.4) and (3.5) are replaced 
simultaneously by 

(3.4') p(x) > 0, (-lYp^ix) ^ 0 in = 1, 2, . . . , N), 

(3.5r) ( - l)nWW (x) > 0 in = 0, 1, . . . , N). 

Finally, all of the above remains true if the factors (— \)n are deleted simul
taneously from (3.4), (3.5) {or (3.4'), (3.5')) and (3.6). 

Proof. The proof is similar to that of the first part of [12, Theorem 2.1], 
which deals with the special case where W(x) = 1 and z(x) = y(x). We 
normalize the solutions yi(x) and ^2^ ) so that their Wronskian is 1 and then 

fThe quantities Mk and Mi/, discussed in Theorems 3.1, 3.3, and 3.4, are denned by (3.2) 
and (3.3), respectively. These involve the functions y(x), explicitly, and z(x), implicitly. These 
functions, it should be recalled, are arbitrary non-trivial solutions of (3.1) and may or may 
not coincide with one another, at the convenience of the user. Moreover, neither one need 
have any particular connection with the functions yi(x) and 3̂ 2(*) used in the definition of p(x). 
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apply [12, Lemma 2.3] to show that the change of variables y (x) = [p {x)]^u it), 
p(x) = x'(t), transforms the differential equation (3.1) into 

u"{t) + u(t) = 0. 

Since p(x) = x'it) > 0 on 7, there is a one-to-one correspondence between 
the zeros of z(x) and those of v{t) = [p(x)]~h(x). But v(t) = A cos(t — b), 
where A and b are constants, so that the consecutive zeros tk of v(t) are equi
distant from one another with Atk = TT (fe = 1, 2, . . .), where tk is the zero of 
v{t) corresponding to xk. If y(x) = s(x), then u(t) = v(t). 

Thus, (3.2) becomes 

Mk = J "+1 [W{x(t)}][x'(t)]1+hx\u(t)\xdt, 

and, as in [12, p. 60], it follows that 

AnMk = f'*+1 {A/{Mx(0][^(0]1+"xiii^(0ix^, 

where ATF(t) = F(t + TT) — F(t). A mean-value theorem for higher differences 
and derivatives [20, p. 55, no. 98; 9, p. 74] implies that 

AnMk = irn ( k+1 {Dt
n{W[x(t + dmr)][x'(t + dmr)]1^}}^)^dt, 

where 0 < 6{t) < 1. Lemma 2.2 shows now that 

i-\YAnMk > 0 in = 0, 1, ...,N;k = 1, 2, . . .). 

If the hypotheses (3.4) and (3.5) are replaced by (3.4r) and (3.5'), the 
same result follows on using the modified form of Lemma 2.2 described in its 
last sentence. 

The final assertion of the theorem follows on making obvious changes in 
the above proof; modified forms of Lemmas 2.1 and 2.2 in which the factors 
( - l ) w are deleted and p'{x) < 0 (gO) is replaced by p'' (x) > 0 ( ^0 ) can 
be employed. 

This completes the proof of Theorem 3.1. 

Taking X = 0 and Wipe) = wr ix), Theorem 3.1 can be stated as follows. 

COROLLARY 3.1. Let pix) satisfy (3.4) on I and suppose that 

(3.7) w'ix) > 0, ( - i y ^ + 1 > ( x ) ^ 0 in = 1, 2, . . . , N; x G I). 

Then 

(3.8) i-l)nAn+lwixk) > 0 in = 0, 1, . . . , N; k = 1, 2, . . .). 

The result remains valid when (3.4) is replaced by (3.4r), provided strict 
inequality holds throughout (3.7). 
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The following analogous result holds as well. 

COROLLARY 3.2. Let p(x) satisfy (3.4) on I and let w(x) be a function on I 
for which 

(3.9) ( - l ) ^ + 1 > ( x ) > 0 (n = 0, 1), 
(_l)»w<*+i)(a) ^ o in = 2, 3, . . . , N). 

Then 

(3.10) ( - l ) w A V f e ) > 0 (n = 0, 1, . . . ,N;k = 1,2, . . .) . 

The result remains valid when (3.4) is replaced by (3.4'), provided strict 
inequality holds throughout (3.9). 

Proof. We have A V f e ) > 0, by hypothesis (3.9). Moreover, 

J ^k +i 

[—w"(x)]\y(x)\ dx, 
Xk 

and, since 

-w"(x) > 0, (-l)nDx
n[-w"(x)] ^ 0 (n = 1,2, . . . , N - 1), 

we see, from Theorem 3.1, that 

(-l)nAn(-Aw'(xk)) > 0 (w = 0, 1, . . . , iV - 1). 

Thus (3.10) holds and the proof is complete. 

Corollary 3.2 generalizes a result given by Widder [27, p. 158, Theorem l id ] 
to the effect that if W(x) = w' (x) is completely monotonie on a ^ x < co 
and if ô is any positive number, then the sequence { W(a + nô)} (n = 0, 1, . . .) 
is completely monotonie. To obtain Widder's result we need only apply 
Corollary 3.2 to the differential equation (3.1) in the case in which 
f(x) = 7r2/(52, where p(x) = 1, since (when N = co) strict inequality prevails 
throughout (3.9) for non-constant W(x) [3, p. 98; 12, p. 72]. 

For these corollaries, companion results can be formulated arising from the 
final sentence of Theorem 3.1. 

Next we extend [12, (2.9)] which becomes the case w(x) = x of the following 
theorem. 

THEOREM 3.2. Let p(x) and W(x) satisfy conditions (3.4) and (3.5) (or, 
alternatively, (3.4r) and (3.5')) for x G / and suppose that y(x) and y(x) are 
non-trivial solutions of (3.1) having respective sequences of consecutive zeros 
{xi, x2, . . .} and {xly x2, . . .} on I with xx > x\. If W(x) = wr (x), then 

(3.11) (-l)nAn{w(xk) - w(xk)} > 0 (n = 0, 1, . . . , N; k = 1, 2, . . .) . 

The result remains valid if all factors (— l)n are deleted from (3.4), (3.5), 
(or (3.4r), (3.5')) and (3.11). 

Proof. Making the same changes of variable as in the proof of Theorem 3.1, 
letting /i, h + 7T, £i + 27T, . . . be the sequence of /-values corresponding to the 
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zeros Xi, x<>, x3, . . . , and letting fa, fa + ir, fa + 2T, . . . be the sequence of 
/-values corresponding to X\, x-2, Xz, . . . , we have fa — tk = rj, a number 
independent of &. Moreover, 

(-l)nA"{w(xk) - w(**)} 
= ( - i r A / { w ( x ( 4 ) ) - «;(*(** - 77))} 
= ( - l ) Y D > W i + Ornr)) - w(x(fa - v + Snw))} 

for some 6, 0 < 6 < 1, on using the same mean-value theorem as in the proof 
of Theorem 3.1. This can be rewritten as 

J» tjc+Omr 

(-l)nD:+\w(x(t))]dt 
tiç+Onir—Ti 

J» t/c+dmr 

(~l)nDt
n[{W(x(t))}p(x)]dL 

tk+dnT—t) 

As in [12, p. 61], we see that rj = fa — fa > 0, and since the last integrand is 
positive by Lemma 2.2, the result (3.11) follows. 

Again the last sentence of the theorem follows by making obvious changes 
in the above proof. 

COROLLARY 3.3. The hypotheses of Theorem 3.2 imply, for w(x) > 0, that 

(-l)nAn{[w(xk)/w(xk)]i > 0 (a > 0; n = 0, 1, . . . , N; k = 1, 2, . . .), 

so that, in particular, with xk = xk-i, 

(-l)nA"{[w(xk+1)/w(xk)]«\ > 0 (a > 0; n = 0, 1, . . . , N; k = 1, 2, . . .). 

Proof. Under these conditions, w(x) may be replaced in (3.11) by a log w(x), 
as may be seen from Lemma 2.1. Moreover, 

(-l)»AVGi*) > 0 in = 0, 1, . . . , N; k = 1, 2, . . .) 

for <p(x) absolutely monotonie (i.e., its successive derivatives are all non-
negative) on a suitable interval, whenever 

(-1)WA>* > 0 in = 0, 1, . . .,N;k = 1, 2, . . .). 

(This can be established by minor extensions of known results [27, Chapter IV].) 
Here <p(x) = ex. 

Remark. For the case a = 1, the inequalities of Corollary 3.3 can be 
demonstrated particularly simply. Here 

—TT-f = N f c ) ~ W(xk)\ —T^TT + 1. 

Now, Lemma 2.1, with <p(x) = l/x, in conjunction with Corollary 3.2, shows 
that (-l)nAn{l/w(xk)} > 0 (w = 0, 1, ...,N; k = 1,2, . . .). The result 
follows since multiplication and addition preserve these properties. 
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If the interval I is (a ,oo) , the principal result of [13] m a y be extended so 
as to give an analogue of Theorem 3.1, in which higher monotonie propert ies 
of the sequence {Mk} are deduced from propert ies of the f u n c t i o n / ( x ) ra ther 
than from properties of p(x). T h e precise s t a t ement follows. 

T H E O R E M 3.3. Let the interval I be ( a ,oo) ( — oo < a < o o ) , and let N ^ 2. 
Let the function f (x) in equation (3.1) satisfy 0 < /(oo ) ^ oo , awrf /<?/ 

(3.12) f(x) > 0, ( - l ) * / ( * + 1 ) ( * ) ^ 0 in = 1, 2, . . . , N) 

for x £ (a ,oo) . Le/ 

(3.13) W(x) > 0, ( - i y W ^ ( x ) ^ 0 (n = 1, 2, . . . , TV; a < x < o o ) . 

(3.14) (- l)wAnÀf* > 0 (» = 0, 1, . . . , iV; k = 1, 2, . . . ) . 

77&e hypothesis fr(x) > 0 m a j 6e weakened to ff(x) g; 0, provided strict 
inequality holds throughout (3.13). 

Proof. As in the proof for the case W(x) = 1, a = 0 [13], we use results of 
H a r t m a n [5, Theorem 18.1rt when/(oo ) < oo ; Theorem 20.ln when/(oo ) = oo], 
with n = N, to show tha t , under hypothesis (3.12) (even w i t h / ' ( x ) ^ 0 ) , 
equat ion (3.1) has linearly independent solutions j\{x) and y%(x) on (a,oo) 
such t h a t for p(x) = [yi(x)]2 + [y2(x)]2, 

(3.15) p(x) > 0, (-l)npw(x) ^ 0 (» - 1, . . . , N). 

( H a r t m a n ' s work refers to the interval (0,oo), bu t a translation of the 
variable x shows it to be valid for the interval (a,GO ), for a finite.) Hence the 
last sentence of the theorem follows from the modified form of Theorem 3.1, 
in which the hypotheses (3.4 ;) and (3.5') are assumed. 

T h e principal assertion of the theorem follows from the principal assertion 
of Theorem 3.1, on noting tha t , under hypothesis (3.12), p' (x) < 0 in (3.15). 
For, suppose t h a t there were a point x0 such t h a t pf (x0) = 0. Then , since 
pfr(x) ^ 0, we would find t h a t p'' (x) = 0 on [x0,oo) and so p(x) would be 
cons tan t on this interval . F rom [12, Appendix 2, p . 72] it follows t h a t / ( x ) 
would be cons tan t on [x0,oo ), contradict ing the assumption t h a t / ; ( x ) > 0 on 
(a, oo ). This completes the proof of Theorem 3.3. 

Corresponding analogues of Corollaries 3.1 and 3.2 and Theorem 3.2, in 
which hypotheses o n / ( x ) replace those on p(x), can also be formulated and 
proved. 

Vosmansky [25] proved a theorem relat ing the higher monotonie behaviour 
of the sequence { i f / } (as defined by (3.3)) in the special case where W(x) = 1, 
and y(x) = z(x) to the higher monotonie behaviour o f / ( x ) . His result can be 
extended to the following. 
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THEOREM 3.4. Let the interval I be (a,oo ) and let N ^ 4. For the function f (x) 
in equation (3.1), suppose that 

(3.16) fix) > 0, / ' (x) > 0, ( - îy /c+^Oc) è 0 

(« = 1, 2, . . . ,N), a < x < o o . 
Le/ 

(3.17) W(x) > 0, (-l)nW™(x) ^ 0 

(» = 1, 2, . . . , N - 2), a < x < oo. 

(3.18) (- l^AMf*' > 0 (« = 0, 1, . . . ,N - 2; k = 1, 2, . . .). 

The hypothesis f'{x) > 0 may be weakened to f'{x) ^ 0, provided strict 
inequality prevails throughout (3.17). 

Proof. We use Vosmansky's method but are able to avoid his complicated 
lemmas [25, pp. 105-107, Lemmas 1, 2] by using general results on iV-times 
monotonie functions (in particular, Lemma 2.1). 

As shown by Vosmansky [25], the function Y(x) = y'(x)[f(x)]~*^satisfies, 
on (a,oo), 

(3.19) Y" + Q(pc)Y= 0, 

where 

(3.20) Q(x) = f(x) - î[f'(x)/f(x)Y + \f'(x)/f(x). 

Lemma 2.1, with its g(x) replaced by fix) and its <p(x) replaced by 1/x, shows 
that l/f(x) is (N + l)-times monotonie on (a,oo). Hence [/''(x)/f(x)]2 is 
iV-times monotonie, since the product of iV-times monotonie functions is 
N-times monotonie. Thus Dx[—%{f'(x)/f(x)}2] is (N — l)-times monotonie. 
Similarly, we find that Dx[^f;/ (x)/f(x)] is (N — 2)-times monotonie. Thus, 
(3.16) implies that 

(3.21) Q'(x) > 0, (-1)*<2 (W+1)0XO ^ 0 in = 1, 2, . . . , N - 2) 

for a < x < oo . 
It is clear from (3.16) that/(oo ) > 0, and since Vosmansky has shown that 

Q(oo ) = /(oo ), we have 0 < <2(oo ) ^ oo . 
The result (3.18) now follows on applying Theorem 3.3 to solutions of 

equation (3.19). Similarly, the last sentence of the present theorem follows 
from the last sentence of Theorem 3.3. 

An analogue of Theorem 3.2 for zeros of y'(x) and y'(x) can be formulated 
readily, and proved as was Theorem 3.2. 

4. Remarks, (i) The results in § 3 have either " > " or " ^ " in their 
hypotheses and " > " in their conclusions. It is possible to obtain similar 
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results with " ^ " in the conclusions if we have only " ; > " throughout the 
hypotheses. However, we must retain strict positivity of p(x) in Theorems 3.1 
and 3.2. (See [12, p. 70, Remark (i)].) 

(ii) In Theorem 3.1 we dealt with only those zeros of solutions of (3.1) 
which lie in the open interval I. This was primarily for ease of statement. As 
remarked in [12, p. 70, Remark (ii)], we may extend our results to zeros 
which lie at an end-point of the closure I* of I, provided p (x) is bounded away 
from 0 as x approaches the end-point. This is to ensure that there is a one-
to-one correspondence between the zeros of z{%) and those of v(t). The function 
W(x) must be chosen in such a way that the integral defining Mk(W\ X) 
converges, in case one of its limits of integration is an end-point zero. An 
examination of the proof of Theorem 3.1 shows that no other extra hypotheses 
are needed to extend the results to end-point zeros. For example, in the proof 
of Theorem 3.1, we use a mean-value theorem for higher derivatives and 
differences to show that the integrand in 

f^+1(-i)w[A/{Mx(0][x'(/)j1+x/2i]!^(0!x^ 

is positive throughout the interval of integration. It is sufficient that it be 
positive throughout the interior of this interval. Hence, there is no need to 
apply the mean-value theorem in the case where (say) t = tk, and no difficulty 
arises when tk corresponds to an end-point of the interval I*. In particular, it 
is not necessary that p(x) or W(x) be continuous at such a point. 

(iii) Theorems 3.1 and 3.2 are valid for each N = 0, 1, 2, . . . .On the 
other hand, we assume in Theorem 3.3 that N ^ 2. This is because the proof 
uses the fact that p" (x) ^ 0, a consequence of /" ' (x) ^ 0. It is not necessary 
to use this fact to prove the modification of the theorem noted in its last 
sentence, so that this form of our result is still valid in case N = 1. Thus, if we 
assume that / ' (x) ^ 0 , /" (x) ^ 0, W(x) > 0, W (x) < 0, 0 < /(oo ) ^ oo, we 
obtain AMk < 0. A similar remark applies to the case N = 3 in Theorem 3.4. 

(iv) Theorem 3.3 implies that the sequence {Mk} is completely monotonie 
when the function / ' (x) is positive and completely monotonie on 7, provided 
0 < /(oo ) ^ QO , and when W(x) satisfies (3.13) with N = co. The converse is 
not valid. To see this we consider the equation 

y" + (e2x - v2)y = 0 (-oo < x < o o ) ; y(x) = ^v{e
x) 

[26, p. 99, (21)], in the notation of §5 . Here, f (x) = 2e2x is absolutely 
monotonie on (—00,00), so that the hypotheses o n / ( x ) in Theorem 3.3 are 
far from being satisfied. On the other hand, if 

Mk= P+1 W(x)\cifv(e
x)\Kdx (X > - 1 ; £ = 1,2, . . .), 

where xk = log cvk, k = 1, 2, . . . , are consecutive zeros of ^v{ex), then 

(4.1) Mk= fei'k+l WQogfir^lfl&tMfdt. 
*)cvk 
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If W(x) is positive and completely monotonie on (xi — e,co), e > 0, 
Lemma 2.1 implies that IF (log t)^1"^ is completely monotonie on 
(cvi — e',00), for some e > 0. Thus, if \v\ > \, Corollary 5.1 (to be proved 
in the next section) may be applied to the expression (4.1) for Mk to show that 

(-1)»A»M* > 0 (n = 0, 1, . . . ; * = 1, 2, . . .), 

although/(x) = e2x — v2 does not satisfy the hypotheses of Theorem 3.3. 

5. Applications to Bessel and generalized Airy functions. Throughout 
this section *£v(%) is a cylinder (Bessel) function of order v, whose positive 
zeros, in increasing order, are c„i, cV2, . . . . The symbols dvi, dv2, • • . denote 
the positive zeros in increasing order of any cylinder function of order v, 
possibly 9%(x) again. As usual, j v k is the &th positive zero of Jv{%). 

The principal result of this section is the following. 

THEOREM 5.1. Suppose that \v\ > \ and that 

(5.1) W{%) > 0, (-lyW^ix) ^ 0 (n = 1, 2, . . . ,N), ô < x <oo , 

where 0 ^ 5 < dvl. 
Let 

(5.2) Mk= Mk(W;X) = f " ^ W(x)xX/2\tfv(x)\x dx (fe = 1,2,.. .) 

for some fixed X > — 1. Then 

(5.3) (-l)nAnMk > 0 (» = 0, 1, . . . ,N;k = 1, 2, . . . ) . 

The result (5.3) remains true in case \v\ = | , provided strict inequality holds 
throughout (5.1). 

Proof. The proof is based on [12, proof of the first part of Theorem 3.1] to 
which it reduces in case W(x) = 1, dvk = cvk (k = 1, 2, . . .) and N = oo. 
As in [12], we consider the differential equation satisfied by %**&v(x) and take 

(5.4) p(x) = ^x\[Jv{x)Y + [Yv(x)Y\. 

It is shown in [12, p. 62] that if \v\ > | , then 

(-l)npw(x) > 0 (n = 0, 1, . . . , TV, . . .). 

Hence, in this case (5.3) follows on applying Theorem 3.1. In case \v\ = \ we 
have p(x) = 1, so that (5.3) follows again from Theorem 3.1, under the 
hypotheses (3.4') and (3.5'). 

If N ^ 2, an alternative and shorter proof can be based on Theorem 3.3. 

COROLLARY 5.1. Let \v\ > \ and let W(x) be a positive, completely monotonie 
function on (ô,oo), where 0 ^ 6 < dv\. Let {Mk} be defined by (5.2). Then 

(5.5) (-l)nAnMk > 0 in = 0, 1, . . . ; k = 1, 2, . . .). 
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The result (5.5) remains true in cose \v\ = ^, provided W{x) is not constant 
on (ô,oo ). 

Proof. In case \v\ > J, the corollary is the case N = oo in Theorem 5.1. The 
same is true in case \v\ = \, but in this case it is necessary to use the remark 
that if W{x) is a non-constant completely monotonie function on (0,oo), 
then in fact 

(-l)»WW(x) > 0 {n = 0, 1,2, . . .), 0 < x < o o . 

This property of completely monotonie functions is proved in [12, p. 72]. It 
had been established earlier by Dubourdieu [3, p. 98]. 

Remark (ii) of § 4 on end-point zeros may be applied to the case *$ v{x) = 
Jv{x) when v = \. For such v, p{x), as defined by (5.4), is bounded away 
from 0 as x - ^ 0 + . Moreover, for these v, x*Jv{x) has a zero at x0 = 0. 
Denoting this zero by j„0, we have the following supplement to Theorem 5.1. 

THEOREM 5.2. Suppose that v > J, and that X > — 1. Let W{x) be a function 
on (0, oo) which satisfies (5.1) with 5 = 0, and also W{x) = 0(x e) , 
e > — 1 — ( | + v)\, as x —> 0 + . Let 

(5.6) Mk= fJV,k+1 W{x)^\Jv{x)\^dx (* = 0, 1, . . . ) • 

Then 

(5.7) (-l)nAnMk > 0 (n = 0, 1, . . . , N; k = 0, 1, . . .). 

The result (5.7) is valid for v = J, provided strict inequality prevails throughout 
(5.1), again with 5 = 0. 

Next we apply Theorem 3.3 to certain generalized Airy functions, i.e., 
solutions of 

(5.8) y" + I32x^-2y = 0, 

where 1 < ft = 3/2 [12, p. 63]. The solutions y(x) of (5.8) are expressible in 
terms of cylinder functions: 

y(x) = x^1/(2p)(xP). 

Theorem 3.3 implies an extension of [12, Theorem 4.1] which, in part, can 
be formulated as follows. 

THEOREM 5.3. Suppose that 1 < ft = 3/2 and that W(x) is positive and 
completely monotonie on (<5,oo ), 0 = b < Xi. Let 

Mk = P + 1 W{x)x^l2\^ll{m{x^)\xdx (k = 1, 2, . . .) 

for X > — 1, where xk denotes the kth positive zero of some solution of (5.8) 
{e.g., Xjc = {cvk)

1/l3, where 2ft = 1/v). Then 

{-l)nAnMk > 0 {n = 0, 1, . . . ; k = 1, 2, . . .). 

https://doi.org/10.4153/CJM-1970-142-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-142-1


STURM-LIOUVILLE F U N C T I O N S . I l l 1253 

Remarks, (i) It is possible to formulate an analogous result in which W(x) 
is assumed to be iV-times monotonie. 

(ii) In case ^1/(20) (#) = Ji/(2B)(x)y Theorem 5.3 may be extended (by-
considering the corresponding p(x) and using the remark (ii) of §4) , to 
include the zero of Ji/(28)(x) which occurs at x = 0. 

(iii) The remaining part of [12, Theorem 4.1; namely formula (4.3)] can 
be generalized by using Theorem 3.2 above. 

By combining Theorems 5.1, 5.2, and 5.3 we obtain the following result for 
Bessel functions of order v, \v\ ^ | . 

THEOREM 5.4. Suppose that \v\ ^ | and that X satisfies both X ^ 0 and 
X ^ |^|_1 — 2, with X > 0 when \v\ = \. Then 

(5.9) ( - l ) * A n | j C V ' k + l | ^ , ( x ) | x dxj > 0 (n = 0, 1, . . . ;k = 1 ,2 , . . . ) . 

/ / , in addition, v ^ \, then 

jvk 

Proof. For \v\ ^ \, (5.9) follows from Corollary 5.1 on taking 

dvk = cvlc (ft = 1 ,2 , . . .) 

(5.10) (-l)nAnlf""k+1 \Mx)\xdxf > 0 (n = 0, 1, . . . ;ft = 0, 1 , . . . ) . 

and W(x) = x~*x, which is completely monotonie since X ̂  0. Similarly, for 
v ^ \, (5.10) follows from Theorem 5.2. For the range \ ^ v < J, (5.9) is a 
consequence of Theorem 5.3, with v = 1/(2/3) and W(x) = x'3 - 1 -^, which is 
completely monotonie since X ^ |^|_1 — 2. In the range — \ < v ^ — | , 
9%(*) = AJv{x) + BJ-v{x) = BJ_v(x) + AJv(x), i.e. &v(x) is some ^_v{x) 
with different (in fact, interchanged) constants A, B. But \ ^ — v < \, so that 
tëvipc), with — \ < y ^ — \, becomes a function for which (5.9) has been 
established. Thus, (5.9) holds also for \ ^ \v\ < \. In case | ^ K i (5.10) 
follows from remark (ii) following Theorem 5.3. 

Remarks. Theorem 5.4 (with X = 1) shows that the sequence of areas under 
the arches enclosed between the non-negative zeros of \^ v(x)\ is completely 
monotonie, in case \v\ ^ \. In particular, the sequence of these areas is 
decreasing. This last fact was proved for \v\ > \ by Makai [17] and, earlier, 
in the special case *$v(x) = Jv(x) by Cooke [2] for the overlapping range 
v > - 1 ; (cf. also [6, pp. 511-512] and [7]). 

It is worth noting that (5.9) and (5.10) cannot be extended by considering 
the respective integrands |^„(x) | x and \Jv(x)\* for our usual range X > — 1. 
In fact, if ^ ^ \v\ < | , these results are false for X = 0, since by the Sturm 
comparison theorem [22, pp. 173-175], A2cvk > 0 for \v\ < \, k = 1, 2, . . . . 

When \v\ = I, our hypotheses require X ^ 1. Thus, the question arises as 
to the greatest lower bound of the set of values of X for which (5.9) and (5.10) 
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remain valid for given v. Correspondingly, it would be of interest to determine 
the greatest lower bound of the set of values of \v\ for which these inequalities 
hold for given X. This is of particular concern for X = 1, involving the areas 
of the successive arches of ^„ (x ) , since it would indicate how far the results 
of Cooke [2] and Makai [17] can be extended. 

Finally, we exhibit several additional completely monotonie sequences 
involving Bessel functions. They are interesting partly because of their 
simplicity and, in most cases, even more because their range of validity is 
not the customary range \v\ ^ \. For the first four such sequences, the range 
is \v\ g i 

(*) Each of the sequences whose kth term is given by (5.11), (5.12), (5.13), and 
(5.14), respectively, is completely monotonie for \v\ ^ | : 

(5.11) (c,*)-a ( a > 0 ) , 

(5.12) (logcv]c)-
a (a > 0), provided cv\ > 1, 

(5.13) (cv,k+iy - (cvkY (0 < a £ minjl, 2\v\}), 

(5.14) log (cVtk+1/cvk), 

k = 1, 2, 
As applied to (5.11) and (5.12) for the range \v\ ^ | , the statement (*) 

follows from Corollary 3.2 with Wipe) = w'(x) = x~a and W(x) = w' (x) = 
(log x)_o:, respectively. (That the second choice of W(x) is completely mono-
tonic is seen from Lemma 2.1, with g(x) = log x and cp(x) = x~a.) 

For the range \ ^ v < \, the assertions concerning (5.11) and (5.12) 
follow from applying to the differential equation (5.8) the corollary to 
Theorem 3.3 which is analogous to Corollary 3.2. The function wf (x) is taken 
to be x~aP and (log x)~a, respectively, 0 > 1. The transition to the case 
— 2 < v ^ — | can be done as in the proof of Theorem 5.4 and as in the 
remark (i) below. 

To the cases (5.13) and (5.14), Corollary 3.1 can be applied when |*>| ^ \, 
with w'(x) = x"-1, 0 < a ^ 1, and w' (x) = 1/x, respectively. When 
| :g v < 4, the analogous consequence of Theorem 3.3 suffices, with 
w'(x) = xae-\ 0 < a ^ 1/13 = 2v, for (5.13), and, again, w'(x) = l/x for 
(5.14). Again, the range — \ < v ^ —\ can be handled as above. 

Remarks, (i) The sequence 

(5.127) {(loge,*)-"} (<*> 0 ; ^ = 2, 3, . . .) 

is completely monotonie when \v\ ^ \. A reading of the proof for (5.12) shows 
that the present assertion holds if cv2 > 1 for \v\ ^ | . This inequality obtains, 
in fact, for all v. 
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For v §: 0, we have cv2 > jvi ^ joi > 2.4, from the interlacing theorem 
[26, § 15.24, p . 481], since j ^ is an increasing function of v [26, p . 508 (2)]. 

For \v\ ^ \, the S tu rm comparison theorem implies tha t cv2 — cPl ^ 7r, 
whence cv2 > ir. 

There remains only to consider the range 0 > v > — §. Here, an a rb i t ra ry 
cylinder function ^ v(x) ^ J v{x) can be expressed as 

<$v(x) = 4 J , ( * ) + J5 /„ , (x) = 5 7 - , ( J C ) + ^ / _ ( _ , ) ( x ) = ¥ _ „ ( * ) , J3 ^ 0, 

where ^ _ „ ( x ) is a cylinder function of order — v, 0 < — ẑ  < | . Bu t for this 
range it has already been shown t h a t cv2 = c_„t2 > Joi > 2.4. When 
^v(x) = Jv(x), - \ < v < 0, we have j„2 > j - | , 2 = (3/2)*- > 4.6. 

Hence cv2 > 2.4 > 1 for all v, and the complete monotonici ty of (5.12') is 
established. 

(ii) T h e sequence {(log jvjc)~
a} (a > 0', k = 1, 2, . . .) is completely mono-

tonic for v ^ \ and for — \ ^ v ^ — | , since j„i ^ j _ i > x = ^7r > 1 for such v. 
Similarly for {(log ^y^)-"} (a > 0; k = 1, 2, . . .) when v ^ J, where 3/^ is the 
Mh positive zero of Yv(x). 

(iii) In (5.13) taking a > 1 would destroy the complete monotonici ty of the 
sequence, since (5.13) becomes infinité with k for a > 1 [26, p . 506]. 

(iv) T h e sequence {exp(—acvk)) (a > 0; k = 1, 2, . . .) is completely 
monotonie for \v\ §: ^. This follows from Corollary 3.2 with wf (x) = e~aX. 

(v) T h e asymptot ic expression for cvk (v fixed, k —>oo) suggests t h a t the 
s t a t emen t (*) concerning (5.11)—(5.14) may hold for all v, zX least for 
sufficiently large k. 

(vi) Sequences similar to (5.13) and (5.14), bu t arising from the zeros of 
two different Bessel functions of the same order, can be shown to be completely 
monotonie by choosing w' (x) appropriately in Theorem 3.2. This provides a 
generalization of [12, p . 63, (3.9)]. Thus , e.g., for \v\ ^ | , the following 
sequences are completely monotonie (k = 1, 2, . . . ) : 

b V - 3 ^ 1 ( 0 < a ^ minf l , 2|H}) 

and 

{logC/V?»*)}-

This implies the complete monotonici ty of {{jvk/jvkY} (« > 0) , \v\ ^ J, as 
can be shown by an a rgument similar to the proof of Corollary 3.3. Here 
<p(x) = eaX. 

Similarly, i t follows t h a t the sequence {(cVtk+i/cvk)
a} (a > 0) is completely 

monotonie for \v\ ^ ^. 

Other choices of W(x), coupled with special properties of par t icular 
functions, generate additional completely monotonie sequences. Thus , with 
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W(x) = ar*-', v ̂  -|, X = 1, 

(5.15) Mk(W;l)= f+l ' W{x)xh\civ+i(x)\dx 

I ncv+i,k+i 

I x~v *ifp+i(x) dx 
J Cy+l,k 

Dx{x~v ^v(x)\ dx 

cv+i,k 

= \(cv+i,k+i) To v(cv+i)k+i) — (cv+i,ic) &v\Cv+itk)\, 

k = 1,2, . . . , 
yields a completely monotonie sequence. This sequence is of some interest in 
that it involves values of vy namely \ > v > —\, excluded from most previous 
results on complete monotonicity associated with Bessel functions. (We 
remark, in passing, that standard asymptotic expansions suggest that even 
more may be true, namely that the sequence 

{ | (CH.I .O- '^ , (CH-I .*) |} (* = 1 , 2 , . . . ) , 

may be completely monotonie for v ^ — è-) 
Two special cases present quite simply expressible completely monotonie 

sequences. 
For v = 0, (5.15) becomes the completely monotonie sequence 

(5.16) {|^o(ci,*+i) - &o(cu)\} (& = 1, 2, . . .). 

For v = | , we obtain the completely monotonie sequences whose respective 
&th terms are 

(5 .17 ) |cOS(j3/2,*+l) - C0S(J3/2,*)| 

= I (1 + J3/2,*+lH " (1 + 7l/2,*)-*l ( £ = 1 , 2 , . . .) 
and 

(5.18) |sin(y3/2,fc+i) - sin (3/3/2,*) | 

= |(1 + yî/2,*+i)-* - (1 + yï/2.*Hl (* = 1, 2, . . .), 

on taking ^\{x) to be J\{x) and Fi(x), respectively, since 

tan(j3/2,fc) = 73/2,* and — c o t ^ , * = y3/2t*. 

6. A Bessel function inequality. As an application of Theorems 5.2 and 
5.3, we obtain the following extension of an inequality, established in [15], 
which arose in a problem of numerical analysis [28]. 

THEOREM 6.1. Let v ^ \ and let qbe a number such that q < v + 3/2. Suppose 
also that q > 0 in case v = | , and that q = — Sv + 3/2 m case \ ^ v < \. Then 

J»oo x /»;,! 1 /»oo 

x^Jvipfidx < x*~qJv(x)dx < 2 x*~aJv(x)dx. 
0 *J 0 *^ 0 
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Proof. The hypothesis q < v + 3/2 guarantees the existence of the integrals 
involved in (6.1) at the end-point x = 0. Since q > 0 for all v considered, the 
infinite integrals converge. 

We let 

x*-Q\Jv(x)\ dx (k = 0, 1, . . .). 

Using Theorem 5.2, with X = 1, and W(x) = x~q
1 we find that 

(6.2) (-lY^ajc > 0 (n, k = 0, 1, . . .) 

in case v ^ \. (Actually, (6.2) is needed only for n = 0, 1, 2, but the proof 
can be formulated more briefly by using (6.2) for all n.) Theorem 5.3, with 

W(x) = ar-3/2+3/(4,o-«/(2io a n d X = 1, 

and the remark on end-point zeros which follows the statement of 
Theorem 5.3, show that (6.2) holds also in case \ ^ v < \. 

Moreover, 

(6.3) lim ak = 0, 
fc~>oo 

since x*~~QJv(x) —» 0, as x—>co, and jv,k+\ — jvk is bounded as k—>oo, for 
fixed v. Now 

oo f*co 

s = ^ ( — 1 ) ^ = I xî"QJv{x) dx. 

Obviously, 
(6.4) ^ < a0. 

As a consequence of a result given by Knopp [8, p. 270, Exercise 119], (6.2) 
and (6.3) imply that 

(6.5) a0 < 2s. 

The inequalities (6.4) and (6.5) are equivalent to the desired (6.1), so that 
the proof is complete. 

In Knopp's exercise, it is necessary to make an additional assumption for 
strict inequality to prevail in his result. It suffices in the present instance to 
have A<20 < 0 and this follows from (6.2). It must be noted that Knopp uses 
Aak to denote ak — ak+i, so that our notation differs from his. 

The right-hand inequality in (6.1) extends the result of [15], where it was 
proved for q = 1 and v ^ 3/2. 

The inequality arose in a problem on stability of least square smoothing 
considered by Wilf [28]. An alternative approach to this problem, using 
Legendre polynomials rather than Bessel functions, has been provided by 
Trench [23; 24]. A conjecture (and numerical supporting evidence) concerning 
a complete monotonicity property connected with (6.1) is contained in 
[15, § 2]. 
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7. O t h e r a p p l i c a t i o n s . We may apply Theorems 3.1 and 3.2, in the 
modified forms where (— l)n is deleted, to solutions of the Euler -Cauchy 
equat ion 

y" + (a2/x2)y = 0, 0 < x < oo, 

for a2 > \ and to solutions of the equat ion 

y" + [n2x-2v~2 - (n2 - l ) /(4x2)];y = 0, 0 < x < oo, 

where n is a positive integer. These equat ions were considered in [18], as 
applications of less general results than those of the present work. T h e present 
introduct ion of the function W(x) into the definition (3.2) of Mk permits the 
obvious generalizations of these earlier applications. 

Theorem 3.3 can be applied to give more information than is found in [13] 
on zeros of solutions of the confluent hypergeometric equat ion 

y" + (a + bx~l + cx~2)y = 0, 0 < x < oo, 

still provided a > 0, b ^ 0, c S 0, b + c < 0. 
In Theorem 3.4, it mus t be assumed t h a t / ( x ) > 0 th roughout (a,co) in 

cont ras t to Theorem 3.3 where no such assumption is made . Thus , for the 
equat ion 

y" + {i - v-^A)y = o, \v\ > è, 
Theorem 3.3 gives information on all positive zeros of xlCtfv(x), whereas 
Theorem 3.4, like Vosmansky 's result [25], gives information only on those 
zeros of Dx{x^v(x)} which fall in the interval ((V2 — î ) ^ ,oo ) . 

However, this interval contains all, except possibly the first, of the positive 
zeros of Dx{x*tfv(x)} [10, p . 144]. When the first zero of this (differentiated) 
function is preceded by a zero of ^f „(x), the interval contains all the positive 
zeros of Dx{x*(itf v(x)}, wi thou t exception [10, p . 144]. Th is has been shown to 
be the case when *$v(x) = Jv(x) and v ^ 0 [10, p . 143], b u t i t was pointed out 
there t h a t i t is indeed possible for the first positive zero of Dx{x^v{x)) to be 
less than (v2 — \)*. I t is per t inen t to observe, however, t h a t this does not 
occur for ^v{x) = Yv{x) when v ^ \, i.e.: 

(**) All positive zeros of Dx{x*Yv(x)} exceed v > (y2 — \Y when v ^ \, so 
t h a t all positive zeros of this function are covered by Theorem 3.4. 

Th i s assertion follows from the more precise inequalities 

(7.1) / M > mvl > j v l
f > v > (v2 - l)K v > i 

where JU„I is the first positive zero of Dx{x*Yv(x)}, m„i, as in [10], the first 
positive zero of Dx{x*Jv(x)} and, as usual, j \ / , the first positive zero of Jv

f (x). 
All except the first of these inequalities, i.e., /x„i > mv\, have been established 

[10, p . 143 (4)]. This remaining inequal i ty can be inferred from Nicholson's 
integral , a much deeper resul t than the ones required in [10]. Using this 
integral , Watson has shown [26, p . 446] t h a t [x*Jv(x)]2 + [x*Yv(x)]2 is a 
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decreasing function of x when v > \ (in fact, t h a t its derivat ive is str ict ly 
negat ive) , for x > 0. On the other hand, [x*Jv(x)]2 is an increasing function 
of x, 0 ^ x ^ mv\. 

Thus , [x^ F„(x)]2 is a decreasing function of x, with non-vanishing derivat ive, 
for 0 < x ^ ra„i, when v > \. Hence, its first positive extremum (occurring 
a priori either a t x = yv\ or a t x = mv\) cannot precede mv\. Thus , /z„i ^ mv\. 

If /x„i = m„i, then the Wronskian of x*Jv(x) and x^Fv(x) would equal zero, 
and this is false. 

Therefore, /x„i > m„i and (7.1) is proved. 
As by-products of (7.1), there follow the inequalities 

(7.2) yv2 > nvi > yvi > yv\ > v, v > i , 

also implying (**). 
T h a t yV2 > /x„i is clear. Also, /x„i ^ yv\, as can be seen from the differential 

equat ion for y(x) = x*Yv(x). If AI„I < yvl, it would follow t h a t y(/*„i), a 
negative quant i ty , would be a relative maximum, so t ha t the differential 
equat ion would imply /x„i < (v2 — i )% contradict ing (7.1). Thus , ju„i > yvl. 

Now, x*Yv(x) is a positive, increasing function for yvi < x ^ ^y,,/. Hence, 
AM ^ y^i'- If Mvi = yvi, then 3;,,! would equal this common value, as can be 
seen on differentiating x^Yv(x). But yvl' > yvl > v [26, p . 521] and so (7.2) 
is proved. 

8. T h e l i m i t i n g case of Mk(W; X) as X -> - 1 + . In the definition (3.2) of 
Mk(W; X) it is necessary to require t ha t X > — 1, so as to assure convergence of 
the integral. However, as I. M. Gel'fand pointed out, it is worthwhile to consider 
the limiting case, X —> —1 + . His suggestion leads directly, as shown in this 
section, to the discovery of interesting new sequences possessing higher 
m o n o t o n i a t y properties. 

T h e calculation of the relevant limit is facilitated by the following lemma. 
In it, there is no requirement t h a t y (x) be a solution of a differential equat ion. 

L E M M A 8.1. Suppose that y(x) is defined over the closed interval [a, b], that it 
vanishes only for x = xk and changes sign at x = xk, a < xk < b, that yr(x) exists 
for a ^ x ^ &, that y'(x) and yr{x)g(x) are Lebesgue integrable over [a, b], that 
g'(x) is Lebesgue integrable over [xk — 8, xk + 8] for some 8 > 0. Then 

fxg(x)yf(x)\y(x)\fX dx = g(xk)[sgny(b)], 

(8.2) lim fJig(x)yf(x)\y(x)\,x~1dx = g(xk)[sgny(b)], 

so that 

(8.3) lim f ng{x)y,{x)\y{x)\l-1dx = 2g(xk)[sgny(b)}. 
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Proof. W e shall confine ourselves to the proof of (8.1), t h a t of (8.2) being 
qui te similar, and shall consider only the case in which y(x) > 0, a = x < xk; 
the other case follows readily from this. Here sgn y(b) = — 1, and so the r ight 
member of (8.1) is — g(xk). 

I t is helpful to decompose the integral in (8.1) as follows: 

= 1 + 1 where c = xk — 8. 
a "a Jc 

(i) First , concerning the first integral on the right, we note t ha t 

lim I jdg(x)y\x)\y(x)\'i'~1 dx = \ lim J j lim I g(x)y\x)[y(x)Y~1 dx( 

= W{j\(x)y\x)[y(x)]-1dxl = 0. 

T h e passage to the limit is justified by the Lebesgue dominated con
vergence theorem, since the integrand g(x)y' (x ) l j (x ) ]^" 1 is less, in absolute 
value, than a cons tan t mult iple of the integrable function \g(x)y'(x)\ when 
a _ x = c, y(x) being positive and continuous for these x. 

(ii) In the second integral in the r ight member , the integrand can be 
rewri t ten as g(x) Dx{[y(x)y} and integration by par t s utilized. Hence 

P = P g(x)[Dx{[y(x)Y}]dx 
•Jc *>c 

= -g(c)[y(c)Y- £'{y(x)fg'(x)dx 

Cxk 
-* -g(c) - J g'(x)dx 

= — g(*k) as M - ^ 0 + , 

since y(c) > 0 and y(x) is cont inuous th roughout [c, xk], vanishing only a t 
x = xk. Again, the Lebesgue dominated convergence theorem justifies the 
interchange of l imit and integral . 

This completes the proof of L e m m a 8.1. 

L e m m a 8.1 leads directly to the construction of new higher monotonie 
sequences. However, it is convenient to modify slightly our earlier nota t ion . 
Th roughou t this section, we shall take Mk(W; X) to be 

(8.4) Mk(W;\)= (k+1W(x)\y(x)\xdx (X > -l;k = 1, 2 , . . . ) , 

where f i, £2, . • . are consecutive zeros (in the open interval 7) of a solution z(x) 
of (3.1) linearly independent of y(x). T h e consecutive zeros of y(x) in 7 are 
Xi, x2, . . . with f 1 < Xi < f 2. 
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In this notation we can state now the main lemma of this section. 

LEMMA 8.2. Let Mk(W; X) be defined by (8.4) and let W(x) be integrable. Then 

(8.5) lim (l + x)Mfc(W;X) = 2 ~ S ^ . 
x->-i+ \y te) I 

Proof. In (8.3), putM = 1 + X, g(x) = W(x)/y'(x),a = fk, and 6 = f *+i. To 
establish the existence of ô > 0 such that g'(x) is integrable over [xk — ô,xk + d], 
it is sufficient to note the existence of ô > 0 such that y'(x) ^ 0 in this closed 
interval. This is obvious, because y'ix) is continuous in [f *, f k+i] C i", and 
y f e ) 5e 0, since the derivative of a non-trivial solution of (3.1) cannot vanish 
at interior zeros of the solution. 

The difference operator being a finite linear combination, Lemma 8.2 implies 
the following result. 

THEOREM 8.1. If (-l)nAnMk ^ 0 (n = 0, 1, . . . , N; ft = 1, 2, . . .), where 
MJC is defined by (8.4), with W (x) integrable and W(x) ^ 0, then 

(8.6) ( - l ) B A n | 
W{xk) 
y'(pck) 

^ 0 (n = 1,2, . . . ,iV;ft = 1,2, . . .). 

If the factor (— l)n is deleted from the hypothesis, then (8.6) holds with the same 
deletion. In particular, the hypothesis holds (and with it (8.6)) e.g., if the 
hypotheses of Theorems 3.1 or 3.3 are satisfied. 

Remark. It should be noted that strengthening the hypothesis by replacing 
" ^ 0 " by " > 0 " does not appear to permit, in general, a corresponding 
strengthening of the conclusion (8.6), due to the limit process. However, this 
improvement can be made for an important class of differential equations of 
type (3.1), satisfied, e.g., by Bessel functions of order more than \, Airy 
functions. Coulomb wave functions, and the confluent hypergeometric function 
for appropriate values of the parameter. A case in point deals with complete 
monotonicity, where N = oo, for Sturm-Liouville functions defined over a 
half-line. 

The general result can be put as follows. 

THEOREM 8.2. If the differential equation (3.1) is oscillatory, with b = GO , / ' (x) 
continuous and non-negative, W(x) > 0, W (x) ^ 0, 0 < x < oo, and if 
(-l)nAnMk ^ 0 (ft, n = 1, 2, . . .), then 

(8.7) (-1)WA* 
W(xk) 

y'bk) 
> 0 (n, ft = 1,2, . . .), 

unless fix) is constant. 
In particular, if (- l)n / ( w + 1 )(*) ^ 0, Wix) > 0, (-l)nW™(x) ^ 0, 

n = 0, 1, . . . , a < x < oo , and if 0 < /(oo ) ^ oo, then (8.7) fo?Ws, agam 
provided f(x) is not constant. 
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Proof. To prove this theorem, it suffices to show that its hypotheses, a 
strengthening of those of Theorem 8.1, imply that equality can never occur 
in (8.6) when N = GO . I t has been shown [11] that if there should exist a 
single pair of values of n and k for which equality occurs in (8.6), when 
N = oo , then 

W(xk) = 
W(xk+1) 
y'&k+i) 

for all fe = 2, 3 
Clearly, y'(xk) and y'(xk+i) are of opposite sign (k = 1 , 2 , . . . ) , while 

Wipe) > 0, so that the above equality reduces to 

?$-?£$ <*-'••-•>• 
It remains to show that the equality (8.8) implies, in the light of our other 

assumptions, tha t / (x ) is constant. 
This follows from a formula of Wiman [29, p. 125 (15)] which states, in 

our notation, 

Ly'fe+2)]
2 - Ly'fe)]2 = P + 1 [y(x)ff(x)dx. 

The left member cannot be positive, in view of (8.8), since W(x) is positive 
and non-increasing. But the right member cannot be negative, since f'(x) è 0. 
Hence, they must both be zero. Therefore, f (x) = 0, xk < x < xk+2- Thus, 
the function/(x) is a constant, as asserted. 

Remarks, (i) The Wiman formula yields, in this way, a trivial inverse 
theorem for Sturm-Liouville equations: / / in (3.1), f(x) is a continuously 
differ entiable and monotonie function, a fg x ^ /3, and there exists a solution 
y{x) such that y (a) = y(fi) = 0, | y ( a ) | = |y(/3)| 9^ 0, thenf(x) is a constant, 
a g x g 0. 

(ii) In case the hypotheses of Theorem 8.2 are satisfied only for 
n = 1, 2, . . . , N, with N finite, k = 1, 2, . . , , the conclusion holds for 
n = 1, 2, . . . , N — 1, except that the word "constant" needs to be replaced 
by the phrase "eventually constant" in both occurrences [19]. 

Similarly, under certain circumstances equality can be deleted from (8.6) 
when N is finite. It has been shown [19] that if equality occurs in (8.6) for 
some pair of indices n, k, where n ^ N — 1, fe = 1, 2, . . . , that \W(xk)/y'(xk)\ 
is eventually constant, i.e., constant for all sufficiently large k. This implies that 

W(xk) _ W(xk+2m) 
y'(xk) y'(xk+2m)i 

for a fixed such k and all m — 1 , 2 , . . . . A knowledge of the asymptotics of 
the situation will often show this to be impossible. This would imply strict 
inequality in (8.6), except possibly for n = N. 
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Applications of Theorem 8.2 follow. 
(a) / (*) = 1 - („* - i )x- 2 ; \v\ > h y(x) = x*#,(x). 
When W(x) = 1, (8.7) becomes, for \v\ > \, 

(8.9) (-1)KA' 1 

With W(x) = x_ î , this result becomes 

1 

> 0 (n,k = 1,2, . . . ; \v\ > | ) . 

(-1)"A* 
CvkWv \Cpjc) 

> 0 (n,k = 1,2, . . . ;|H > §). 

A familiar recursion formula [26, p. 83, (3)] permits recasting this last 
inequality as 

(8.10) (-l)nAn-
1 

CvJc W v-l\CvJc) 

> 0 (n,k = 1,2, . . . ; | „ | > i ) . 

One point of interest attaching to this last inequality is that it discloses 
higher monotonicity properties for Bessel functions of order between — \ 
and | , in contrast with most of our results which exclude precisely this range 
of v. 

(b) Further results of this character can be found, but for them it is con
venient to revert to Lemma 8.1. To this end, let Mk(W; X) for the Bessel 
equation be considered for — 1 < X < 0 and rewritten as 

(8.11) M, X d W(x)x ,(i+^x \VL(x)\ 
dx, 

with dvk < cvk < dVfk+1 < cv,k+1. For v < — \ and — 1 < X < 0, the function 
x-(!+»ox is completely monotonie and so may be taken as the definition of the 
function W(x) for our purposes. The resulting sequence 

Mk(W; 
dv,k +1 

dvk 

<£%(*) 
dx ( - 1 < X < 0;» < - i ; & = 1,2, . . .) 

is, then, completely monotonie, from Theorem 5.1. Hence, so too is the sequence 

1 
lim (1 + \)Mk(W] X) = 2 

x->-i+ 
( * = 1 ,2 , . . . ) , 

\Dx[x vcé>v{x)]\x=Cvk 

where the limit has been evaluated by putting 

ix = 1 + X, y(x) = x~vCé\(x), g(x) = l/y'(x) 

in (8.3). But [26, p. 83 (4) or (6)], Dx[x~vCtfv(x)] = -x-^v+1(x). 
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Thus, the sequence 

(8.12) Cvk (v < -hk 1,2 , . . . ) 

is completely monotonie. 
For v = — 1 this yields the special case v = 1 of (8.10) since 

^__i(x) = - ^ i ( x ) . 

Finally, we apply Lemma 8.2, mutatis mutandis, to a modified form of 
(3.3), namely 

(8.13) Mk'{W;\) = (k+1 W(x)\y'(x)[f(x)]~"\xdx (k=l,2,...), 

where f/ < xk ( < f£+i < x£+i) are zeros in /o f 2/(x) and y'(x), respectively, 
z(x) and y(x) being linearly independent solutions of (3.1), and/(x) > 0. This 
yields, with W(x) ^ 0, 

(8.14) lim (1 + \)Mk'(W;\) 

= 2 
W(pck')[f(xk')]* 

y (xi ) 
= 2 

W(xt') 
lf(«* )]'y(** ) 

1 ,2 , . . . ) , 

where the last expression equals its predecessor since y" — —f(x)y. 
Theorems 8.1 and 8.2, suitably construed, apply to the sequence in (8.14). 

Proper choices of appropriate functions f(x) and W(x) then lead to further 
sequences exhibiting higher monotonicity properties. 
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