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Modelling the effect of roughness density on
turbulent forced convection
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By examining a systematic set of direct numerical simulations, we develop a model
which captures the effect of roughness density on global and local heat transfer in forced
convection. The surfaces considered are zero-skewed three-dimensional sinusoidal rough
walls with solidities, Λ (defined as the frontal area divided by the total plan area), ranging
from low Λ = 0.09, medium Λ = 0.18 to high Λ = 0.36. For each solidity, we vary the
roughness height characterised by the roughness Reynolds number, k+, from transitionally
rough to fully rough conditions. The findings indicate that, as the fully rough regime is
approached, there is a pronounced breakdown in the analogy between heat and momentum
transfer, whereby the velocity roughness function �U+ continues to increase and the
temperature roughness function �Θ+ attains a peak with increasing k+. This breakdown
occurs at higher sand-grain roughness Reynolds numbers (k+

s ) with increasing solidity.
Locally, we find that the heat transfer can be meaningfully partitioned into two categories:
exposed, high-shear regions experiencing higher heat transfer obeying a local Reynolds
analogy and sheltered, reversed-flow regions experiencing lower and spatially uniform
heat transfer. The relative contribution of these distinct mechanisms to the global heat
transfer depends on the fraction of the total surface area covered by these regions, which
ultimately depends on Λ. These insights enable us to develop a model for the rough-wall
heat-transfer coefficient, Ch,k(k+, Λ, Pr), where Pr is the molecular Prandtl number, that
assumes different heat-transfer laws in exposed and sheltered regions. We show that the
exposed–sheltered surface-area fractions can be modelled through simple ray tracing that
is solely dependent on the surface topography and a prescribed sheltering angle. Model
predictions compare well when applied to heat-transfer data of traverse ribs from the
literature.
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1. Introduction

Turbulent flow over rough walls has been an area of intense research owing to its ubiquity
in a wide range of engineering and naturally occurring systems. Despite this interest,
the effects of rough walls on momentum and heat transfer are far less understood than
their smooth-wall counterparts (Jiménez 2004; Kays, Crawford & Weigand 2005; Chung
et al. 2021). This lack of understanding, particularly for heat transfer, is attributed to the
difficulty associated with obtaining systematic, detailed flow data for rough-wall flows.
Understanding the relationship between turbulence, surface roughness and heat transfer
is crucial for maximising operational efficiency in applications like heat exchangers and
turbines.

Surface roughness exhibits a wide range of diverse topographical forms (Ligrani,
Oliveira & Blaskovich 2003; Chung et al. 2021). The objective is to understand and predict
the influence of these topographical features on drag and heat transfer. To accomplish this,
the discipline has endeavoured to classify surfaces based on attributes such as roughness
height, density and distribution, all of which have been demonstrated to impact fluid flow
(Raupach, Antonia & Rajagopalan 1991; Flack & Schultz 2010; Chung et al. 2021). Several
different measures for roughness height have been used, such as the average roughness
height, ka (the mean of the absolute roughness fluctuation relative to the mean elevation),
the peak-to-trough height, kp, and the root-mean-square height, krms (Chung et al. 2021).
Different measures are also introduced for the roughness density, including the ratio of
the frontal projected area of roughness elements in the flow direction to the total plan
area, known as the frontal solidity, Λ. The frontal solidity is also defined as half of the
mean absolute streamwise gradient of the roughness elevation, known as the effective
slope, ES. Related to density and roughness distribution, the plan solidity, Λp, is defined
as the ratio of the plan area of roughness elements to the total plan area. The roughness
distribution is also often described by the skewness, Sk, which is the roughness vertical
asymmetry, showing whether the roughness primarily comprises peaks (Sk > 0) or valleys
(Sk < 0). Skewness is closely related to plan solidity (Chung et al. 2021). By selecting the
appropriate roughness parameters, it is possible to develop useful empirical correlations
between the topographical characteristics of a surface and its effect on momentum and
heat transfer.

The effect of roughness on the mean flow and turbulence has been vigorously studied
(e.g. the early pioneering studies Nikuradse 1933; Colebrook & White 1937; Perry &
Joubert 1963). It is well established that surface roughness increases drag and thus shifts
the logarithmic region of the mean streamwise velocity profile downward by the roughness
function, �U+, (Clauser 1954; Hama 1954) when compared with that of the smooth wall

U+ = 1
κ

log(z+ − d+) + A − �U+. (1.1)

Here, �U+ is subtracted from the log law of a smooth-wall turbulent flow, where U is
the mean streamwise velocity, κ ≈ 0.4 is the von Kármán constant, z is the wall-normal
distance, d is a virtual-origin shift defined more formally in § 3.1 and A ≈ 5.0 is the log
intercept for the smooth wall. The superscript ‘+’ denotes parameters normalised with
inner variables (i.e. friction velocity, Uτ ≡ (〈τw〉/ρ)1/2, and kinematic viscosity, ν, where
〈τw〉 is the total wall shear stress encompassing pressure and viscous drag per unit plan area
and ρ is the fluid density). Rough-wall drag must be determined based on topographical
properties and the viscous length scale ν/Uτ . The logarithmic shift is zero (�U+ = 0)

when the wall is aerodynamically smooth (i.e. the roughness height is small relative to
the wall unit ν/Uτ ). With increasing viscous-scaled roughness height, a shift is observed
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Modelling the effect of roughness on forced convection

(�U+ > 0) for the transitionally rough regime. Ultimately, in the fully rough regime,
when the roughness height is much larger than ν/Uτ , this shift is given by

�U+ = 1
κ

log(k+
s ) + A − CN . (1.2)

Here, ks is the equivalent close-packed uniform sand-grain roughness as proposed by
Schlichting (1936) and CN ≈ 8.5 is Nikuradse’s fully rough constant for such surfaces
(Nikuradse 1933). Several experimental and numerical studies have shown for matched
k+ that �U+ depends on the roughness density (Dirling 1973; Simpson 1973; Macdonald,
Griffiths & Hall 1998; Waigh & Kind 1998; van Rij, Belnap & Ligrani 2002; Chan et al.
2015; Leonardi et al. 2015; Placidi & Ganapathisubramani 2015; MacDonald et al. 2016;
Forooghi et al. 2018c; Yang et al. 2022). In general, for fixed k+, these studies found a
trend of increasing �U+ with increasing Λ within the sparse regime where Λ � 0.15.
For further increases of Λ � 0.15 towards the dense regime, a reduction of �U+ was
observed. Care should be taken in interpreting these results, since some studies that
reported this trend also varied skewness (Leonardi et al. 2015; Forooghi et al. 2018c).
When the skewness is fixed in the fully rough regime, the transition from sparse to dense
regimes was reported at greater solidities of Λ = 0.21 for block roughness (Placidi &
Ganapathisubramani 2015). When irregular roughness is introduced, a monotonic increase
of �U+ with increasing Λ is observed in the fully rough regime. Examples include
roughness over hydraulic turbine blades (Yuan & Piomelli 2014) and irregular rough
surfaces (Kuwata & Nagura 2020; Kuwata 2021).

These different observations suggest that the transition from sparse to dense roughness
spacing may also depend on the skewness (Sk), roughness regime (transitional or fully
rough) and roughness regularity. Thus, in order to better understand the effects of the
solidity on drag systematically, the present study will consider constant Sk = 0 surfaces
while varying k+ to sweep though transitionally and fully rough conditions for a regular
three-dimensional sinusoidal roughness of varying solidity.

Surface roughness has a comparable effect on the mean temperature to that on the mean
streamwise velocity when k+

s � 100 (Owen & Thomson 1963; Yaglom & Kader 1974).
The higher roughness size shifts the mean logarithmic temperature profile downward
by the temperature roughness function, �Θ+ (Yaglom 1979). Here, the superscript ‘+’
for temperature denotes normalisation with the friction temperature, Θτ ≡ 〈qw〉/(ρcpUτ ),
where 〈qw〉 is the wall heat transfer per unit plan area (i.e. heat flux) and cp is the specific
heat at constant pressure. Thus, the rough-wall logarithmic temperature profile is (Dipprey
& Sabersky 1963; Owen & Thomson 1963; Yaglom 1979)

Θ+ = 1
κh

log(z+ − d+) + Ah − �Θ+ (1.3a)

= 1
κh

log
(

z − d
ks

)
+ g. (1.3b)

Here, Θ+ ≡ (Θ − Θw)/Θτ , where Θ is the mean fluid temperature which is a function
of wall-normal distance Θ(z), Θw is the wall temperature, κh ≈ κ/Prt ≈ 0.47 is the
logarithmic temperature profile slope, Prt ≈ 0.85 is the turbulent Prandtl number, assumed
constant in the logarithmic region (Alcántara-Ávila, Hoyas & Pérez-Quiles 2021), and
Ah(Pr) is the smooth-wall log intercept which depends on the Prandtl number Pr ≡
ν/α, where α is the thermal diffusivity (Kader 1981; Pirozzoli 2023). Equation (1.3b)
provides a common alternative formulation adopting the so-called g-function, which
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Roughness geometry k+
s -range g(k+

s , Pr)

Dipprey & Sabersky (1963) Sand grains k+
s � 65 5.19(k+

s )0.20Pr0.44

Owen & Thomson (1963) Irregular k+
s � 70 0.52(k+

s )0.45Pr0.80

Sheriff & Gumley (1966) Spanwise rods k+
s � 50 5.37(k+

s )0.20 + 2.03
Webb, Eckert & Goldstein (1971) Spanwise ribs k+

s � 25 4.50(k/ks)
0.28(k+

s )0.28Pr0.57

−(1/κh) log(ks/k),
ks/k = exp[κ(8.5 − 0.95Λ−0.53)]

Yaglom & Kader (1974) Regulara k+
s � 70 0.55(k+

s )1/2(Pr2/3 − 0.2) + 9.5
Brutsaert (1975) — k+

s � 60 3.12(k+
s )1/4Pr1/2 + 3.5

Table 1. Proposals for the g-function scaling in (1.4).
aYaglom & Kader (1974) validated their expression with roughness arrangements of close-packed spheres,

cylinders and the wave-form roughness elements of Chamberlain (1968).

may be interpreted as an (inverse) rough-wall heat-transfer coefficient (Stanton number),
g−1 ≡ 〈qw〉/(ρcpUτΘks) ≡ 1/Θ+

ks
, where Θks ≡ Θ(z − d = ks) (Dipprey & Sabersky

1963; Owen & Thomson 1963; Webb et al. 1971). Fully rough heat-transfer prediction
typically takes the form of a power-law scaling for the g-function

g ∼ (k+
s )pPrm, (1.4)

where p and m are model exponents to be determined. Table 1 documents some of
the diverse proposals for (1.4) in the literature. Although most predictions for these
exponents are empirical, noteworthy are the theory-based predictions of Brutsaert (1975),
g ∼ (k+

s )1/4Pr1/2, and Yaglom & Kader (1974), g ∼ (k+
s )1/2Pr2/3. The correct values

to take for these exponents have remained a topic of debate in the literature (Li et al.
2017, 2020; Zhong, Hutchins & Chung 2023). Notably, however, we highlight how an
understanding of the dependency of g with respect to Λ, i.e. g(k+

s , Pr, Λ) is currently
lacking (table 1), except for the formulation of Webb et al. (1971). In figure 1, we showcase
our present direct numerical simulation (DNS) data at varying (k+

s , Λ) alongside the
experimental data of Webb et al. (1971). Here, a clear sensitivity of g with respect to
Λ presents itself, which should be encapsulated in predictions for g. One of the first
efforts in understanding the (k+

s , Pr, Λ) dependency was conducted by Webb et al. (1971),
where they performed experiments over two-dimensional (2-D) ribs. Although their data
comprise, perhaps, the most comprehensive parameter sweep to date, e.g. k+

s ≈ 20–104,
Pr = 0.7–37.6, Λ = 0.025–0.100, their data are still ultimately restricted to mean-flow
measurements like those in figure 1. Moreover, although their proposed correlation for the
g-function in table 1 has been sensitised to Λ, this Λ dependency arises as a byproduct
only by considering the drag ks/k = f (Λ), and does not treat the heat-transfer dependency
on Λ explicitly. An understanding concerning the underlying physics associated with heat
transfer and its dependency on Λ in particular, is still lacking.

It is well known that Λ is a crucial parameter in characterising rough-wall
momentum transfer (drag) (e.g. Schlichting 1936; Fackrell 1984; Macdonald et al. 1998;
Millward-Hopkins et al. 2011; Yang et al. 2016, 2022; Chung et al. 2021), with more recent
literature on the effects of Λ on heat transfer now emerging (e.g. Miyake, Tsujimoto &
Nakaji 2001; Ji, Yuan & Chung 2006; Leonardi et al. 2015; Forooghi, Stripf & Frohnapfel
2018b; Kuwata 2021; Yang et al. 2023). Notably, towards dense regimes (Λ � 0.3),
a phenomenon known as sheltering occurs, whereby separated flow downstream from
roughness elements will impinge onto successive roughness elements. In the context of
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Present 3-D sinusoids DNS

Webb et al. (1971)
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Figure 1. The influence of frontal solidity Λ on the (inverse) rough-wall heat transfer coefficient g ≡ Θ+
ks

,
at fixed Pr = 0.7 for (circle markers with lines) our present DNS; (square markers) the experimental data of
Webb et al. (1971).

drag, this effect has been investigated and modelled extensively (Macdonald et al. 1998;
Millward-Hopkins et al. 2011; Yang et al. 2016; Busse, Thakkar & Sandham 2017), where
the effects of flow sheltering will typically reduce drag in dense regimes (Chung et al.
2021). For heat transfer, Forooghi et al. (2018b) proposed that the sheltering effect may
also have the same impact on the heat-transfer coefficient (Stanton number, Ch), owing
to the weaker temperature gradients that tend to form in the low-speed, sheltered, wake
regions. For example, the recent DNS of Kuwata (2021) varied Λ at a fixed k+

rms = 17.0 and
fixed Sk = 0.53 or −0.53 for irregular rough surfaces, showing that �Θ+ (corresponding
to the change in Ch) increases with Λ regardless of Sk, consistent with the previously
discussed trend of �U+. The observations from the above cited studies suggest that
a heat-transfer model in relation to the sheltering effect, akin to the progress in drag
modelling (Macdonald et al. 1998; Millward-Hopkins et al. 2011; Yang et al. 2016), can be
pursued once a systematic understanding of Λ and its influence on heat transfer is attained.

In view of the lack of understanding on the effects of the roughness height and density
on drag and heat transfer, the present study aims to further understand the change of drag
and the enhancement of heat transfer by systematically varying k+ and Λ. For this purpose,
we performed DNS using minimal channels, which can resolve the roughness sublayer at
lower computational cost (MacDonald, Hutchins & Chung 2019), enabling access to the
fully rough (high-k+) regime at varying Λ, thereby providing an extensive data set to
scrutinise.

In § 2, we outline our DNS set-up. In § 3, we showcase our present data, where
we will argue that local rough-wall heat transfer can be understood through a simple
decomposition between exposed and sheltered regions. Hinging on this finding, in § 4, we
develop a predictive model for a rough-wall heat-transfer coefficient, i.e. Ch,k(k+, Pr, Λ).

2. Numerical methodology

This section describes the numerical methodology used in this study and is divided
into two parts. First, descriptions of the flow configuration and the DNS algorithm are
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provided (§ 2.1). Second, details of the three-dimensional (3-D) sinusoidal roughness and
the simulation parameters are given (§ 2.2).

2.1. Direct numerical simulations
Direct numerical simulations of turbulent forced convection over 3-D roughness have been
performed in an open-channel configuration. The continuity, Navier–Stokes and passive
scalar transport equations solved in this study are

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ uj

∂ui

∂xj
= −Πδ1i − 1

ρ

∂p
∂xi

+ ν
∂2ui

∂xj∂xj
, (2.2)

∂θ

∂t
+ uj

∂θ

∂xj
= α

∂2θ

∂xj∂xj
+ Q, (2.3)

where the velocity components in the streamwise (x), spanwise (y) and wall-normal (z)
directions are u, v and w, respectively, and t is time. Buoyancy (due to gravity) and
thermal expansion (β) properties of the fluid are neglected, i.e. gβΘτ h/U2

τ = 0 (forced
convection), and so temperature behaves as a passive scalar. The flow is driven through
the open-channel domain by adding a spatially uniform body force to the right-hand side
of the streamwise momentum equation, Π ≡ −(1/ρ) dP/dx > 0 (where ρ is density and
P(x) is the mean pressure). The hydrodynamic pressure that is solved for is the fluctuating
(or periodic) component, p. To simulate forced convection, a body force was also added to
the right-hand side of the transport equation for temperature, Q = −u dTw/dx > 0, where
u is the instantaneous streamwise velocity, dTw/dx is a prescribed mean wall-temperature
gradient which drives the heat transfer and θ is the fluid temperature relative to the wall.
This internal-heating technique can correspond to both a fluid moving along a cooled
(dTw/dx < 0, Θ > Θw, Θτ > 0) or heated (dTw/dx > 0, Θ < Θw,Θτ < 0) wall and is a
common forcing strategy amongst passive scalar channel-flow DNS (e.g. Kasagi, Tomita &
Kuroda 1992; Alcántara-Ávila et al. 2021). Among both configurations, the dimensionless
mean temperature Θ+ ≡ (Θ − Θw)/Θτ remains the same. Our present framework adopts
a prescribed temperature fluctuation θ = 0 (Dirichlet) boundary condition at the wall,
which, with our present choice of temperature forcing Q = −u dTw/dx, can be shown
to correspond to a statistically uniform wall heat flux (e.g. Kasagi et al. 1992; Kays
et al. 2005) that mimics a Neumann boundary condition at the wall. For a statistically
steady channel flow, volume integration shows that Uτ is related to the mean pressure
gradient body forcing, Π , by Π ≡ −(1/ρ) dP/dx = U2

τ /h (e.g. Pope 2000). This then
enables a target value of Reτ ≡ hUτ /ν to be achieved by prescribing Π to set Uτ , for
a given value of h and ν. For our present temperature forcing Q = −u dTw/dx, volume
integration shows that the average wall heat flux is given by 〈qw〉/(ρcp) = hUb(dTw/dx),
where Ub ≡ (1/h)

∫ h
0 U dz is the bulk velocity (e.g. Alcántara-Ávila et al. 2021). This

then sets the friction temperature for normalisations of temperature quantities, Θτ ≡
〈qw〉/(ρcpUτ ). We imposed no-slip, impermeability conditions (u = v = w = 0), a zero
fluid–wall temperature difference (θ = 0) at the bottom wall and free slip, impermeable
and adiabatic boundary conditions at the top boundary. Other internal-heating techniques
are possible, e.g. a spatially uniform body force (Kim & Moin 1989; Pirozzoli, Bernardini
& Orlandi 2016; Peeters & Sandham 2019). The average wall heat flux is defined here
as 〈qw〉/(ρcp) = α〈∂θ/∂n|wall〉, where n is the local wall-normal direction, the overline
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denotes temporal averaging and angle brackets denote an integral over the surface wetted
area, normalised on the total plan area. The thermal diffusivity α is a property of the
working fluid and is related to the molecular Prandtl number, Pr ≡ ν/α. Presently, we fix
the Prandtl number to match that of air at standard atmospheric conditions, Pr = 0.7. The
simulations have been run at a constant, prescribed bulk velocity as opposed to setting the
pressure gradient forcing, Π . For each simulation, the bulk velocity is set by a trial and
error procedure such that the friction Reynolds number, Reτ ≡ Uτ h/ν, matches its target
value to within ±1 %. This latter step is done to set the value of the roughness Reynolds
number k+ ≡ kUτ /ν which, for our simulations, will be determined by k+ ≡ (k/h)Reτ ,
where k/h is the inverse of the channel blockage ratio.

The governing equations (2.1) and (2.3) are solved using a low-storage third-order
Runge–Kutta scheme (Spalart, Moser & Rogers 1991) in conjunction with a fractional
step algorithm (Perot 1993), which was implemented in past work by Chung et al.
(2015). Spatial discretisation is achieved using a fully conservative fourth-order symmetry
preserving scheme (Verstappen & Veldman 2003). The passive scalar transport (2.3) is
solved using a fourth-order implicit scheme for the wall-normal diffusive term, whereas
the streamwise and spanwise terms are treated with an explicit scheme and advected
using the Quadratic Upstream Interpolation for Convective Kinematics (QUICK) scheme
(Leonard 1979). We have validated these discretisation schemes extensively in prior
work applied to thermal convection configurations, demonstrating that both thermal
dissipation (to 2 %) and the global heat transfer (to 0.1 %) are accurately captured
provided the characteristic mesh size is at most two times larger than the Kolmogorov
length scale η ≡ (ν3/ε)1/4 for Pr = 0.7 where ε is the turbulent dissipation rate (table 2
Rouhi et al. 2021). For our present study, the most stringent resolution requirements
are in the vicinity of the roughness and Zhong et al. (2023) reported that η+(z = k) ≈
(κk+)1/4 in the fully rough regime for our present 3-D sinusoids at fixed Λ = 0.18.
For our k+ ≈ 33–94, this yields an estimate η+(z = k) ≈ 1.9–2.5, which we amply
resolve in the wall-normal direction (�z+

w � 1, cf. table 2). This is relaxed in the
streamwise grid resolution for instance, where we have used �x+ ≈ 7.3–9.9 > η+(z =
k). The roughness geometry is resolved using a direct-forcing variant of the immersed
boundary method (IBM) based on a volume-of-fluid interpolation detailed in Rouhi,
Chung & Hutchins (2019). Our present IBM code has been validated in earlier works
for both momentum and heat transfer (Rouhi et al. 2019; Zhong et al. 2023). Periodic
boundary conditions were enforced in the streamwise and spanwise directions. A free-slip
boundary condition was enforced on the top boundary of the computational domain.
A no-slip boundary condition was enforced on the bottom boundary using the IBM.

2.2. Roughness geometry and simulation parameters
The bottom boundary of the computational domain is covered with 3-D sinusoidal
roughness (Chan et al. 2015), which follows a 2-D height distribution of the form

zw(x, y) = k cos(2πx/λ) cos(2πy/λ), (2.4)

where k is the semi-amplitude (i.e. half of the peak-to-trough height, kp/2) and
λ is the wavelength. The mean absolute height (ka) and root-mean-squared height
(krms) of the present 3-D sinusoids are constant multiples of its semi-amplitude,
where k = 2krms = (π2/4)ka, whilst its skewness (Sk) is equal to zero (Chan et al.
2015). In addition, the effective slope (ES) of the present roughness can be expressed
as ES = (8/π)(k/λ), which is the mean absolute streamwise gradient of the height

979 A22-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
63

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1063


W. Abu Rowin and others

C
ol

ou
r

Re
τ

h k
λ k

λ h
k+

λ
+

L+ x
L+ y

N
x

N
y

N
z

�
x+

�
y+

�
z+ w

�
z+ h

λ �
x

λ �
y

k p �
z w

d k
TU

τ

m
in

(z
c,

h)

39
5

72
14

.2
0.

2
5.

5
79

12
56

47
1

38
4

28
8

22
5

3.
27

1.
64

0.
12

3.
45

24
48

92
0.

02
25

.9
39

5
36

14
.2

0.
4

11
.1

15
7

25
13

12
56

38
4

38
4

22
5

6.
54

3.
27

0.
26

7.
57

24
48

85
0.

08
17

.9
59

0
36

14
.2

0.
4

16
.5

23
5

37
53

18
77

51
2

51
2

30
0

7.
33

3.
67

0.
38

6.
19

32
64

87
0.

13
19

.7
L

72
0

36
14

.2
0.

4
20

.2
28

6
22

90
85

9
25

6
19

2
35

0
8.

95
4.

47
0.

38
6.

74
32

64
10

6
0.

18
19

.3
12

00
36

14
.2

0.
4

33
.6

47
7

38
17

14
31

38
4

28
8

45
0

9.
94

4.
97

0.
60

7.
38

48
96

11
2

0.
18

17
.6

14
40

36
14

.2
0.

4
40

.3
57

3
45

80
17

18
49

6
36

0
45

0
9.

23
4.

77
0.

77
8.

42
62

12
0

10
5

0.
18

16
.5

24
00

36
14

.2
0.

4
67

.2
95

4
76

34
28

62
76

8
57

6
90

0
9.

94
4.

97
0.

77
12

.3
96

19
2

17
5

0.
12

8.
68

39
5

36
7.

1
0.

2
11

.1
79

12
56

47
1

38
4

28
8

22
5

3.
27

1.
64

0.
23

2.
76

24
48

97
0.

20
45

.8
39

5
18

7.
1

0.
4

22
.1

15
7

25
13

12
56

38
4

38
4

22
5

6.
54

3.
27

0.
51

6.
05

24
48

87
0.

19
14

.1
59

0
18

7.
1

0.
4

33
.0

23
5

37
53

18
77

51
2

51
2

30
0

7.
33

3.
67

0.
77

4.
82

32
64

86
0.

30
20

.2
M

72
0

18
7.

1
0.

4
40

.3
28

6
22

90
85

9
25

6
19

2
35

0
8.

95
4.

47
0.

60
7.

05
32

64
13

4
0.

38
24

.1
12

00
18

7.
1

0.
4

67
.2

47
7

38
17

14
31

38
4

28
8

50
0

9.
94

4.
97

0.
75

7.
49

48
96

17
9

0.
42

19
.1

16
80

18
7.

1
0.

4
94

.1
66

8
53

44
20

04
54

4
40

8
65

0
9.

82
4.

91
0.

77
8.

56
68

13
6

24
4

0.
44

13
.6

39
5

36
3.

6
0.

1
11

.1
39

12
56

39
3

76
8

48
0

22
5

1.
63

0.
82

0.
23

2.
76

24
48

97
0.

45
28

.0
39

5
18

3.
6

0.
2

22
.1

79
25

13
39

3
76

8
24

0
22

5
3.

27
1.

64
0.

51
6.

05
24

48
87

0.
45

39
.1

59
0

18
3.

6
0.

2
33

.0
11

7
37

53
58

6
76

8
24

0
30

0
4.

89
2.

44
0.

77
4.

82
24

48
86

0.
46

38
.7

H
72

0
18

3.
6

0.
2

40
.3

14
3

22
90

71
6

38
4

24
0

35
0

5.
96

2.
98

0.
77

7.
33

24
48

10
5

0.
50

19
.7

12
00

18
3.

6
0.

2
67

.2
23

9
38

17
11

93
38

4
24

0
50

0
9.

94
4.

97
0.

77
7.

27
24

48
17

5
0.

52
25

.1
16

80
18

3.
6

0.
2

94
.1

33
4

53
44

16
70

54
4

34
0

65
0

9.
82

4.
91

0.
77

8.
56

34
68

24
4

0.
54

17
.8

Ta
bl

e
2.

Si
m

ul
at

io
n

pa
ra

m
et

er
sf

or
th

e
ni

ne
te

en
ro

ug
h-

w
al

lc
as

es
pe

rf
or

m
ed

in
th

is
st

ud
y.

Se
ts

L
,M

an
d

H
co

nt
ai

n
th

e
lo

w
so

lid
ity

(Λ
=

0.
09

),
m

ed
iu

m
so

lid
ity

(Λ
=

0.
18

)

an
d

hi
gh

so
lid

ity
(Λ

=
0.

36
)

ca
se

s,
re

sp
ec

tiv
el

y.
T

he
si

m
ul

at
io

n
pa

ra
m

et
er

s
in

cl
ud

e:
th

e
fr

ic
tio

n
R

ey
no

ld
s

nu
m

be
r(

Re
τ
);

th
e

ra
tio

s
of

th
e

op
en

-c
ha

nn
el

m
ea

n
he

ig
ht

to
th

e
ro

ug
hn

es
s

se
m

i-
am

pl
itu

de
(h

/
k)

,t
he

ro
ug

hn
es

s
w

av
el

en
gt

h
to

th
e

ro
ug

hn
es

s
se

m
i-

am
pl

itu
de

(λ
/
k)

an
d

th
e

ro
ug

hn
es

s
w

av
el

en
gt

h
to

th
e

op
en

-c
ha

nn
el

m
ea

n
he

ig
ht

(λ
/
h)

;
vi

sc
ou

s-
sc

al
ed

ro
ug

hn
es

s
he

ig
ht

or
ro

ug
hn

es
s

R
ey

no
ld

s
nu

m
be

r(
k+

)
an

d
ro

ug
hn

es
s

w
av

el
en

gt
h

(λ
+ )

;v
is

co
us

-s
ca

le
d

do
m

ai
n

le
ng

th
(L

+ x
)

an
d

w
id

th
(L

+ y
);

nu
m

be
ro

fg
ri

d
po

in
ts

in
th

e
st

re
am

w
is

e
(N

x)
,s

pa
nw

is
e
(N

y)
an

d
w

al
l-

no
rm

al
(N

z)
di

re
ct

io
ns

;v
is

co
us

-s
ca

le
d

st
re

am
w

is
e

(�
x+

),
sp

an
w

is
e

(�
y+

),
w

al
l-

no
rm

al
sp

ac
in

g
w

ith
in

th
e

ro
ug

hn
es

s
ca

no
py

(�
z+ w

)
an

d
at

th
e

op
en

-c
ha

nn
el

m
ea

n
he

ig
ht

(�
z+ h

);
nu

m
be

ro
fg

ri
d

po
in

ts
pe

rr
ou

gh
ne

ss
w

av
el

en
gt

h
in

th
e

st
re

am
w

is
e

di
re

ct
io

n
(λ

/
�

x)
,s

pa
nw

is
e

di
re

ct
io

n
(λ

/
�

y)
an

d
nu

m
be

r
of

gr
id

po
in

ts
fr

om
th

e
ro

ug
hn

es
s

pe
ak

-t
o-

tr
ou

gh
(k

p/
�

z w
);

th
e

ra
tio

of
th

e
vi

rt
ua

l-
or

ig
in

sh
if

tt
o

th
e

ro
ug

hn
es

s
he

ig
ht

(d
/
k)

;t
he

no
n-

di
m

en
si

on
al

sa
m

pl
in

g
pe

ri
od

(T
U

τ
/

m
in

(z
c,

h)
).

V
is

co
us

-s
ca

le
d

qu
an

tit
ie

s
ar

e
no

n-
di

m
en

si
on

al
is

ed
us

in
g

U
τ

an
d

ν
.

979 A22-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
63

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1063


Modelling the effect of roughness on forced convection

z z

x
y Flow

z
λ ≈ 14.2k λ ≈ 7.1k λ ≈ 3.6k

2k

(b)(a) (c)

Figure 2. Open-channel-flow configuration with (a) low solidity (Λ = 0.09), (b) medium solidity (Λ = 0.18)

and (c) high solidity (Λ = 0.36) sinusoidal roughness on the bottom boundary. The roughness mean plane is
located at z/h = 0 and is shown as the dashed black line (- - -) on the side views.

distribution (Napoli, Armenio & De Marchis 2008), and is related to frontal solidity
through the formula Λ ≡ ES/2 = (4/π)(k/λ) (MacDonald et al. 2016). For a fixed
roughness amplitude, a greater frontal solidity or, equivalently, a steeper ES, can be
achieved by shortening the roughness wavelength. Alternatively, frontal solidity can be
held constant by varying k and λ in proportion such that the geometric scaling factor k/λ
remains fixed (Chan et al. 2018; Jelly et al. 2020). The present study directs attention to
both techniques with the principal aim of understanding how systematic changes of frontal
solidity affect heat and momentum transfer in rough-wall turbulent flow.

While turbulent forced convection over the present 3-D sinusoids has been investigated
from smooth up to the fully rough regime in a minimal channel configuration by
MacDonald et al. (2019), only a single value of frontal solidity of Λ = 0.18 was considered
in their study. The present study builds upon the past work of MacDonald et al. (2019) by
extending the investigation of turbulent forced convection over 3-D sinusoids to two new
values of frontal solidity, namely, Λ = 0.09 and Λ = 0.36, in addition to the intermediate
value of Λ = 0.18. Three-dimensional sketches of the sinusoidal roughness for each
value of frontal solidity considered here are shown in figure 2. The three solidity cases
Λ = 0.09, 0.18 and 0.36 are obtained by varying the roughness wavelength as λ ≈ 14.2k,
7.1k and 3.6k shown in figures 2(a), 2(b) and 2(c), respectively.

Table 2 details the simulation parameters for the nineteen rough-wall cases considered
in this study. The simulations have been grouped into three separate sets according to
their frontal solidity as low (L), medium (M) and high (H) corresponding to Λ = 0.09,
0.18 and 0.36. Set L contains the low solidity cases Λ = 0.09, which falls into the
sparse regime of Λ < 0.18, as shown by MacDonald et al. (2016) for similar roughness
geometry. This set has a blockage ratio of h/k = 36, except for one case where h/k =
72 to ensure that Reτ � 395 for all cases to minimise low-Reynolds-number pressure
gradient effects (Nickels 2004). The roughness Reynolds number, k+ ≡ kUτ /ν, for this
set covers 5 � k+ � 67. Set M contains the medium solidity cases (Λ = 0.18), which
has a blockage ratio of h/k = 18, except for one case where h/k = 36, and covers the
roughness Reynolds-number range 11 � k+ � 94. Set H contains the high solidity cases
Λ = 0.36, which falls into the dense regime of Λ > 0.18 (MacDonald et al. 2016), which
also has a blockage ratio of h/k = 18, except for one case where h/k = 36, and covers
the roughness Reynolds-number range 11 � k+ � 94. Past work by Chan et al. (2015)
and Chung et al. (2015) fitted the data of the present 3-D sinusoidal roughness with
Λ = 0.18 in the fully rough regime, obtaining an equivalent sand-grain roughness of
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ks ≈ 4.1k. Based on this previously obtained value, the group M cases span the range
of 21 � k+

s � 268 and encompass both the transitionally and fully rough regimes. The
ratio of ks/k will be further investigated in § 3.3 after applying the virtual-origin shift.
To reduce the computational cost of achieving fully rough conditions (which is needed
to compute an equivalent sand-grain roughness for groups L and H), the spanwise
domain width, Ly, was kept narrow in the spirit of the minimal channel for rough-wall
flows proposed by Chung et al. (2015). Although restricting the spanwise channel width
produces unphysical results in the outer layer (e.g. the formation of an artificial wake),
the near-wall flow remains unaffected and closely resembles a full-span simulation up
to a wall-normal critical height of zc ≈ 0.4Ly (Flores & Jiménez 2010). For all cases
considered here, the spanwise domain width accommodates a minimum of three roughness
wavelengths (Ly/λ = 3), which is a factor of three wider than that used by MacDonald
et al. (2019). The spanwise extent of our computational domain therefore satisfies the
recommendations made by Chung et al. (2015), namely Ly � max(100ν/Uτ , k/0.4, λ).
In addition, our present choice of Ly also ensures the minimal channel critical height,
zc = 0.4Ly is greater than the roughness sublayer thickness estimated as zr ≈ 0.5λ for
our present roughness based on the wall-normal extent of roughness-induced dispersive
motions (Chan et al. 2018). The zc > zr condition then ensures that the near-wall roughness
sublayer flow is correctly resolved by our minimal channels. The critical height zc also
applies to the temperature field, as shown by MacDonald et al. (2019) and Zhong et al.
(2023). The streamwise domain lengths used throughout this study also satisfy the
condition Lx � max(3Ly, 1000ν/Uτ , λ), as recommended by MacDonald et al. (2017).
For the wall-normal grid, a uniform grid spacing of �z+

w is used from the roughness
trough (z/k = −1) up to the roughness peak (z/k = 1), before being gently stretched to
a maximum value of �z+

h at the top boundary of the open-channel domain (z/h = 1)

using a hyperbolic tangent function. The peak-to-trough height of the roughness canopy
(kp ≡ 2k) is resolved using a minimum of eighty-five points (kp/�zw � 85). Uniform
grid spacing is used in the streamwise and spanwise directions, which ranges from
3.3 < �x+ < 9.9 and 0.8 < �y+ < 5.4 for all cases considered here. In line with past
recommendations made by Chan et al. (2015), the roughness topography was resolved
using a minimum of twenty-four points per wavelength in the streamwise direction
(λ/�x = 24, where �x is the streamwise grid spacing) and a minimum of forty-eight
points per wavelength in the spanwise direction (λ/�y = 48, where �y is the spanwise
grid spacing). Further details are given in table 2. Validation of the current simulations
against the past work of MacDonald et al. (2019) using a different (finite volume) solver at
matched medium solidity (Λ = 0.18) is included in Appendix A. Statistical quantities were
computed using a space-then-time averaging methodology. Specifically, an instantaneous
field variable, say, φ(x, y, z, t), was first spatially averaged across the xy-plane at each
wall-normal height and then time averaged. Only in-fluid cells contribute to spatially
averaged quantities within the roughness canopy (−1 < z/k < 1), which corresponds to
an intrinsic average (Gray & Lee 1977). Throughout this manuscript, U(z) and Θ(z) denote
the mean streamwise velocity and mean fluid temperature relative to the wall respectively.
Statistical quantities reported herein were collected for a minimum of fifteen large-eddy
turn over times, depending on the spanwise domain width and the friction Reynolds
number.

3. Results and discussion

In this section we first show the influence of the virtual origin (§ 3.1). Then, we present
the effect of the solidity and the roughness Reynolds number k+ on the mean profiles
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(§ 3.2) and roughness functions (§ 3.3). Lastly, we provide a local view to the flow and
heat-transfer behaviour, using these observations to motivate a model (§ 3.4).

3.1. Investigation of the virtual origin
The virtual origin could have a significant impact on the obtained results, especially
for large k+ (Perry, Schofield & Joubert 1969). Several frameworks have been proposed
for the virtual-origin offset, d, such as: the logarithmic origin (Perry & Joubert 1963;
Perry et al. 1969), the moment of forces acting on the roughness elements (Jackson
1981) or the Reynolds shear stress for transitionally rough surfaces (Luchini 1996;
Luchini & Quadrio 2022). Significant effort has been directed towards implementing
and improving the previous techniques such as Chan et al. (2015), Abderrahaman-Elena,
Fairhall & García-Mayoral (2019) and Ibrahim et al. (2021). Prior works that have
considered an identical 3-D sinusoidal topography to the present work (Chan et al. 2018;
MacDonald et al. 2019) have neglected any virtual-origin influences, instead taking the
origin to be the roughness midplane. To understand the sensitivity of the following
results on the virtual-origin shift (d), we first estimate d as the value that yields to a
close approximation of κ = 0.4 in the logarithmic region of the mean velocity profiles.
We note the uncertainties that may arise in adopting this approach, as a more recent
high-Reynolds-number DNS has shown that κ ≈ 0.38–0.39 (Lee & Moser 2015; Pirozzoli
et al. 2021; Hoyas et al. 2022), and that our present lowest Reτ ≈ 395 may not provide
robust logarithmic regions, all of which will contribute to uncertainties in how we obtain
d. As we will see, however, in figure 3, these uncertainties in the precise measurement
of d will not be important when considering the overall trends of �U+, �Θ+. Presently,
we define the limits of the logarithmic region to estimate d as the roughness sublayer
thickness for the lower limit, zr − d ≈ 0.5λ (Chan et al. 2018) and the upper limit as
0.2h (Marusic & Monty 2019). The lower limit for the logarithmic region based on the
roughness influence at 0.5λ may still be within the buffer layer for cases where λ+ is
small (i.e. high solidity, low k+). However, even when we restrict the lower limit of the
logarithmic region to max(0.5λ+, 50), we find that the variation in d/k does not exceed
0.02. To also ensure that a logarithmic region with a substantial wall-normal distance (of at
least 40 wall units) is maintained, it is sometimes necessary to extend the upper limit of the
logarithmic region beyond 0.2h, especially in low-Reynolds-number cases. For example,
when dealing with groups L and M where Reτ = 590, the upper limit of the logarithmic
region is extended to 0.3h. Figure 3(a) shows the ratio of d to the roughness height k, for
groups L, M and H as a function of k+. The ratios of d/k are also listed in table 2.

Figure 3(a) shows that d is confined between the roughness mid-plane and crest
0 � d/k � 1. We have also included recent data from the DNS of Zhong et al. (2023).
This work adopted an identical 3-D sinusoidal roughness to the present study, with a fixed
value of Λ = 0.18. The authors obtained d through a similar ad hoc fit to the logarithmic
regions, wherein the fitting was adjusted to match both the logarithmic mean velocity
and temperature slopes, which were approximately κ ≈ 0.4 and κh ≈ 0.47, respectively.
In contrast, the present work only tunes to match κ ≈ 0.4, resulting in slightly different
values of d that are evident in figure 3(a). While there are noted limitations in accurately
estimating d across the investigated k+ range, any potential variations in d are not found
to significantly influence our conclusions. This observation is supported in figure 3(b),
wherein the error bars for the velocity and temperature roughness functions, denoted
as �U+ and �Θ+ respectively, are plotted for groups L, M and H, representing the
uncertainty due to situating the virtual origin at the roughness crests (d = k) and midplane
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Figure 3. (a) The ratio of the virtual origin to the roughness height (d/k) as a function of k+ for low (◦,
red), intermediate (◦, green) and high (◦, blue) solidity cases. Results of d/k of Zhong et al. (2023) for 3-D
sinusoidal roughness with Λ = 0.18 and k+ = 33, 40, 56, 111 (•) are also included in (a) for comparison. (b)
Roughness function of velocity, �U+, (diamond markers) and temperature, �Θ+ (square markers) against k+.
The darker shaded markers refer to increasing roughness height k+, while the error bars refer to the uncertainty
of estimating �U+ and �Θ+ due to selection of extreme virtual origin values of d = [0, k].

(d = 0). Error bars are also included in this figure to present the uncertainty in �U+ and
�Θ+ due to selecting extreme bounds of the virtual origin, where d = k and d = 0 at the
roughness crest and trough, respectively. The effect of varying d from the roughness crest
to roughness mid-plane causes a maximum of ∼6 % relative error for �U+ and ∼12 %
for �Θ+ for k+ = 94.1 and Λ = 0.36. Despite these extreme limits, we observe from
figure 3(b) that the overall trends of �U+ and �Θ+ are robust. Hereafter, for definiteness
and simplicity we will present data with d obtained from fitting the logarithmic region
[0.5λ, (0.2 − 0.3)h] to a best-fit logarithmic slope of κ = 0.4. The same d values obtained
from fitting the slopes of the logarithmic region of the velocity profiles are used for the
temperature data.

The uncertainty of d/k also influences the ratio of ks/k. Here, ks is the equivalent
sand-grain roughness height obtained by overlaying the current �U+ with the fully rough
asymptote (1.2). For example, for group M, the ratio ks/k is expected to change from
ks/k ≈ 1.9 at d = k to ks/k ≈ 2.8 at d = 0. The sensitivity of ks/k to d could explain
the difference between ks/k of the current data and other simulations over 3-D sinusoidal
surface (with Λ = 0.18) such as ks/k = 4.1 of Chan et al. (2015) and ks/k = 3.7 of Ma
et al. (2020), although other parameters like the blockage ratio and the logarithmic-law
constants (κ and A) will also impact ks/k.

3.2. Mean profiles
The normalised mean streamwise velocity profiles, U+, vs the inner-scaled wall-normal
distance, z+, for the low (L), intermediate (M) and high (H) solidity groups are shown
in figure 4(a,c,e). Details of the three solidity groups are listed in table 2. As expected,
the increase of the roughness Reynolds number, k+, creates an increasing downward
shift within the logarithmic region limits, corresponding to an increase of the velocity
roughness function, �U+. This trend remains consistent irrespective of the roughness
solidity. The downward shift is more pronounced at the higher solidity (see figure 4e).
The insets of figure 4(a,c,e) show the difference between the reference smooth-wall DNS
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Figure 4. Viscous-scaled mean velocity, U+, against (a,c,e) (z − d)+ and (b,d, f ) (z − d)/k. The solid lines are
rough-wall open channels for low solidity Λ = 0.09 (a,b), medium solidity Λ = 0.18 (c,d) and high solidity
Λ = 0.36 (e, f ). The darker shaded lines and markers refer to increasing roughness height (k+) as listed in
table 2. The black dot-dashed line in (a,c,e) is the smooth-wall profile from the DNS of Bernardini, Pirozzoli &
Orlandi (2014). The fully rough asymptote (U+ = κ−1 log[(z − d)/k] + CFR) is shown with the black dotted
lines in (b,d, f ), where CFR = {2.6, 4.0, 4.5} for Λ = {0.09, 0.18, 0.36}. The velocity difference between the
smooth wall of Bernardini et al. (2014), U+

s , and the rough wall, U+
r , is shown in the insets in (a,c,e) for each

corresponding solidity case. The velocity at the roughness crest U+
k (cross marks, ×) vs k+ is also shown in the

insets in (b,d, f ). The vertical marks show the critical height z+
c = 0.4L+

y . The limits of the logarithmic region
are shown with plus marks, +, in (a,c,e) and their corresponding insets.
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velocity profile, U+
s , of Bernardini et al. (2014) and the velocity profile for the rough

walls, U+
r . The flat portions depicted in these insets signify the presence of a logarithmic

region over the rough cases with a slope (κ−1) comparable to that of the smooth wall, and
are a result of our manual tuning of d in § 3.1 to match the smooth-wall κ−1 slope. The
logarithmic region limits, as indicated by the black plus marks in figure 4, are the same
as those used in § 3.1 to determine d. These limits will be utilised to compute the velocity
and temperature roughness functions in § 3.3. The crest velocity U+

k retains a constant
value for k+ � 20 in the insets of figures 4(d) and 4( f ), suggesting fully rough conditions
have been attained for Λ = 0.18 and Λ = 0.36 (Flack & Schultz 2010). However, the
non-constant U+

k for the lowest solidity case Λ = 0.09 in the inset of figure 4(b) suggests
that the attainment of fully rough conditions in this case is uncertain.

The mean temperature normalised by the friction temperature, Θ+ = Θ/Θτ as a
function of (z − d)+ for the three solidity cases is shown in figures 5(a), 5(c) and 5(e).
The temperature profile of Pirozzoli et al. (2016) for a smooth wall is also included for
comparison. The increase of k+ leads to increasing downward shifts in the logarithmic
region of the mean temperature profile, although this seems to plateau at k+ = 33.6, 40.3
and 67.2 for Λ = 0.09, 0.18 and 0.36, respectively. Beyond this, the increase in k+ results
in comparable temperature profiles in the logarithmic region. This change in the shift
between the temperature profile of smooth and rough walls suggests a slow down of the
increase of the temperature roughness function, �Θ+ with increasing k+, as previously
reported by MacDonald et al. (2019) and Peeters & Sandham (2019) and embodied in the
models suggested by Owen & Thomson (1963), Brutsaert (1975) and Yaglom & Kader
(1974). More details about the velocity and temperature roughness functions are given in
§ 3.3. The increase in the solidity has a clear effect on the shift between the smooth- and
rough-wall-temperature profiles even at a comparable k+. This is clearly illustrated in the
insets of figure 5(a,c,e), where (Θ+

s − Θ+
r ) ≈ 2.5 and ≈ 5.1 for Λ = 0.09 and Λ = 0.36,

respectively, at k+ ≈ 67 (see insets in figure 5a,e). The greater downward shift of Θ+
at higher Λ hints at higher heat transfer at higher Λ. A similar increase in heat transfer
with increasing Λ was reported for the fixed-skewness fully rough irregular surfaces
of Kuwata (2021). The temperature profiles Θ+ for the three solidity cases within the
roughness canopy (z − d)/k � 1 are shown in figure 5(b,d, f ). Regardless of the solidity,
Θ+ increases with k+ within the roughness canopy. The location of the roughness crest
is marked with the ‘×’ symbols in figure 5(b,d, f ). This observation is consistent with
increased mixing from eddies that straddle the logarithmic region near the crest with
temperature Θ+

k down into the roughness canopies, as allowed by the increasing and
sufficiently large k+. Here, Θ+

k ≡ Θ+(z = k) denotes the crest temperature. The insets
in figure 5(b,d, f ) present a logarithmic increase of Θ+

k (and is also listed in table 3) with
increasing k+. This trend was also documented previously by MacDonald et al. (2019).
All three solidities show the same trend of increasing peak temperature with increasing
k+, with the lowest solidity Λ = 0.09 exhibiting the greatest rate of increase.

3.3. Roughness function
The velocity (�U+) and temperature (�Θ+) roughness functions are presented in
figure 6, plotted against k+

s in (a,c) and against Λ in (c,d). The roughness functions here are
estimated as the averages of (U+

s − U+
r ) and (Θ+

s − Θ+
r ) within the logarithmic region as

indicated by the black plus marks in figures 4 and 5. Error bars are included in figure 6(a,b),
which show the maximum observed deviation for each case for virtual-origin values of
d = [0, k]. The ratio of ks/k for figure 6(a,c) is estimated directly by overlaying the current
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Figure 5. Viscous-scaled mean temperature against (a,c,e) (z − d)+ and (b,d, f ) (z − d)/k. The solid lines are
rough-wall open channels for low solidity Λ = 0.09 (a,b), medium solidity Λ = 0.18 (c,d) and high solidity
Λ = 0.36 (e, f ). The darker shaded lines and markers refer to increasing roughness height (k+) as listed in
table 2. The black dot-dashed line in (a,c,e) is the smooth-wall profile from the DNS of Pirozzoli et al. (2016).
The temperature difference between the smooth wall of Pirozzoli et al. (2016), Θ+

s , and the rough wall, Θ+
r , is

shown in the insets in (a,c,e) for each corresponding solidity case. The temperature at the roughness crest Θ+
k

(cross marks, ×) vs k+ is also shown in the insets in (b,d, f ). The vertical marks show the critical height z+
c =

0.4L+
y . The limits of the logarithmic region are shown with plus marks, +, in (a,c,e) and their corresponding

insets.
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k+ Cf Ch �U+ �Θ+ U+
k Θ+

k Θks/Θk

5.5 0.0060 0.0034 1.41 0.28 3.34 2.90 1.58
11.1 0.0071 0.0039 2.88 0.88 5.05 4.65 1.46
16.5 0.0073 0.0039 4.06 1.53 5.82 5.70 1.36

L 20.2 0.0074 0.0039 4.65 1.82 6.12 6.23 1.31
33.6 0.0076 0.0038 6.16 2.43 6.57 7.50 1.22
40.3 0.0077 0.0038 6.70 2.48 7.68 7.98 1.20
67.2 0.0074 0.0035 7.67 2.52 7.22 9.44 1.15

11.1 0.0078 0.0042 3.67 1.29 4.03 3.96 2.14
22.1 0.0107 0.0053 6.01 2.53 4.62 5.24 1.74
33.0 0.0114 0.0055 7.43 3.25 4.68 5.96 1.58

M 40.3 0.0115 0.0054 7.97 3.44 4.74 6.38 1.51
67.2 0.0117 0.0051 9.30 3.62 4.74 7.54 1.39
94.1 0.0119 0.0049 10.24 3.65 4.74 8.32 1.34

11.1 0.0074 0.0041 3.23 0.91 3.23 3.21 2.84
22.1 0.0111 0.0056 6.74 3.21 3.67 4.16 2.18
33.0 0.0117 0.0058 7.97 4.02 3.72 4.58 1.98

H 40.3 0.0121 0.0059 8.75 4.49 3.75 4.90 1.87
67.2 0.0125 0.0058 10.29 5.30 3.75 5.63 1.70
94.1 0.0127 0.0057 11.07 5.46 3.68 6.16 1.64

Table 3. Bulk flow properties for the nineteen rough-wall cases simulated in this study including the expected
full-span skin-friction coefficient and Stanton number defined on the centreline values U+

h ≡ U+(z = h) of
(1.1), Θ+

h ≡ Θ+(z = h) of (1.3), (Cf ≡ 2/(U+
h )2 and (Ch ≡ 1/(U+

h Θ+
h )); roughness functions (�U+, �Θ+);

the velocity at the roughness crest (U+
k ); the temperature at the roughness crest (Θ+

k ) and the ratio of the
temperature at z − d = ks and z = k (Θks/Θk) used to pass from the g-function (1.3b) to the rough-wall heat
transfer coefficient Ch,k (§ 4).

results for �U+(k+) with that of the sand-grain roughness of Nikuradse (1933) or with
(1.2). The ratio of ks/k could also be computed from

ks

k
≈ exp [κ(CN − CFR)] , (3.1)

where CN ≈ 8.5 is the Nikuradse fully rough intercept for sand-grain roughness and CFR
is the offset of the fully rough asymptote for the current data as shown in figure 4(b,d, f ).
For Λ = 0.09, 0.18 and 0.36, ks/k ≈ 1.6, 2.7 and 3.5, respectively. It is worth noting that
the value of ks/k for Λ = 0.09 is perhaps uncertain as it is not clear whether fully rough
conditions have been achieved. Also, it is important to highlight that the ratio of ks/k is
anticipated to change with the virtual origin. For instance, when d = 0 (implying that the
origin is at the roughness semi-amplitude) and for Λ = 0.18, ks/k ≈ 2.8, as discussed in
Appendix A. The increase of ks/k with Λ could be attributed to the monotonic increase of
�U+ with Λ previously seen in Yuan & Piomelli (2014), Kuwata & Nagura (2020) and
Kuwata (2021). Waigh & Kind (1998) also suggested that ks/k ≈ XΛa, where X and a are
constants depending on the roughness structure. For the current 3-D sinusoidal roughness,
ks/k ≈ 6.2Λ0.55. For an identical 3-D sinusoidal topography in pipe flows, Chan et al.
(2015) found ks/k ≈ 10Λ0.45.

Figure 6(a) demonstrates that �U+ follows the fully rough asymptote (1.2) beginning at
k+

s,FR ≈ 64, 100 and 235 for Λ = 0.09, 0.18 and 0.36. For k+
s < k+

s,FR (i.e. aerodynamically
smooth and transitionally rough regimes), �U+ for the three solidity cases do not overlap,
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Figure 6. Velocity roughness function �U+ as a function of (a) k+
s and (b) Λ and temperature roughness

function �Θ+ as a function of (c) k+
s and (d) Λ for low (◦, red), intermediate (◦, green) and high (◦, blue)

solidity cases. The darker shaded markers refer to increasing k+. The dashed line in (a) is the fully rough
asymptote (1.2). In (c), the solid line is (3.2) assuming the value of term 2 is zero. The horizontal lines in (c)
represent the values of �Θ+ corresponding to the anticipated initiation of fully rough behaviour, specifically
k+

s,FR ≈ 64, 100 and 235 for Λ = 0.09, 0.18 and 0.36, respectively.

indicating that the solidity also plays a strong role in determining drag behaviour in the
transitionally rough regime, a consistent finding with the transitionally rough literature
(Chung et al. 2021).

The influence of Λ in different roughness regimes can be examined in figure 6(b),
which plots �U+ against Λ for different k+. For the transitionally rough regime at
k+ ≈ 11, �U+ increases with Λ up to the limit of the sparse regime Λ � 0.18. Beyond
this range, where the dense regime starts Λ � 0.18, �U+ decreases. This trend was
previously reported by MacDonald et al. (2016) with matched roughness geometry and
k+ = 10 (also in the transitionally rough regime). MacDonald et al. (2016) and Sharma &
García-Mayoral (2020) related this trend to the reduction of the spacing between roughness
elements in viscous units and thus at very high solidities the eventual establishment
of an effective smooth wall at the roughness crest. It is noteworthy that, for k+ � 21,
�U+ exhibits a monotonically increasing trend with increasing Λ at matched k+. This
finding is in contrast to the peak behaviour of �U+ that occurs between dense and sparse
density regimes as observed at k+ ≈ 11.0. The monotonic increase of �U+ with Λ trend
was also previously observed in Yuan & Piomelli (2014), Kuwata & Nagura (2020) and
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Kuwata (2021). Kuwata (2021) attributes the monotonically increasing trend of �U+ with
Λ for fixed-skewness fully rough surfaces to the increase of pressure drag at higher values
of Λ.

In contrast to the trend in figure 6(b), where �U+ approaches a plateau at high
Λ and k+

s , figure 6(d) indicates that �Θ+ increases sharply with Λ at high k+. An
extrapolation of these observations implies that a rough wall operating in the fully rough
regime with very high Λ could potentially yield a �Θ+ that approached �U+. Previous
investigations conducted by Forooghi, Magagnato & Frohnapfel (2018a) and Forooghi
et al. (2018c), which involved simulations and analysis of irregular roughness, suggested
that the variations in heat transfer with respect to Λ may be attributed to a sheltering
mechanism. In the subsequent section, we will focus on examining the validity of this
hypothesis by analysing the local heat-transfer variations and their relationship to flow
conditions involving sheltered and exposed regions.

An interesting observation arising from the comparison between figures 6(a) and 6(c)
is that the onset of fully rough drag, characterised by k+

s,FR, roughly coincides with the
point whereby �Θ+ no longer continues to increase with k+

s and instead, attains a peak
value. For k+

s < k+
s,FR, an analogous behaviour between rough-wall heat and momentum

transfer (�Θ+ and �U+) persists, whereby both continually increase with k+
s . Once

k+
s ≥ k+

s,FR, a pronounced breakdown in this heat and momentum transfer analogy begins,
and, since k+

s,FR depends on Λ, the onset of this pronounced breakdown is therefore
dependent on Λ. The horizontal lines in figure 6(c) illustrate that the value of �Θ+ at
k+

s,FR serves as a reliable approximation for the peak value of �Θ+. This breakdown in
the analogy between �U+ and �Θ+ may also be viewed in the context of the widely
employed canonical Reynolds-analogy prediction in engineering, expressed as Cf /2 ≈ Ch,
the Pr = O(1) approximation to the Chilton–Colburn relation Cf /2 ≈ ChPr2/3 (Chilton
& Colburn 1934). Here, Cf and Ch represent the bulk skin friction and Stanton number,
respectively (as defined below) (Kays et al. 2005). By manipulating the logarithmic laws
for velocity (1.1) and temperature (1.3) it is possible to establish an explicit relation
between �Θ+ and its association with �U+

�Θ+ = Ah − PrtA + Prt�U+︸ ︷︷ ︸
term 1

−
(

Cf

2Ch
− Prt

)√
2

Cf︸ ︷︷ ︸
term 2

, (3.2)

where Cf ≡ 〈τw〉/(ρU2
h/2) ≡ 2/(U+

h )2 and Ch ≡ 〈qw〉/(ρcpUhΘh) ≡ 1/(U+
h Θ+

h ) are the
bulk skin-friction coefficient and Stanton number, respectively, which are defined
on the logarithmic velocity and temperature evaluated at the channel centreline, i.e.
U+

h ≡ U+(z = h), Θ+
h ≡ Θ+(z = h). Values for Cf and Ch, extrapolated for minimal

channel simulations using (1.1) and (1.3), are reported in table 3. Equation (3.2) is
obtained by evaluating (1.1), (1.3) at z = h and combining the results to eliminate
the logarithmic term. Two aggregated terms may be identified in (3.2), term 1, which
includes inner-scale quantities associated with the log region that are invariant with
respect to an outer-scale Reynolds number, Re ≡ 2hUh/ν provided outer-layer similarity
holds; and term 2: outer-scale quantities involving Cf , Ch. While Cf and Ch exhibit
inherent dependencies on Re (Kays et al. 2005), it is noteworthy that term 2 in (3.2)
remains independent of Re in its entirety. Consequently, it qualifies as an inner-scaled
quantity due to the fact that �Θ+, being an inner-scaled quantity itself, is a function
of k+

s , Pr and Λ, rather than Re. Here, (3.2) provides an explicit avenue to invoke
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Reynolds analogy Cf /(2Ch) ≈ 1.0 ≈ Prt (thereby eliminating term 2) and examine its
consequences on �Θ+ in relation to �U+. For constants in (3.2), we use Ah(Pr = 0.7) ≈
3.6, A ≈ 5.0, Prt ≈ 0.85 and (1.2) for �U+. The resulting curve for �Θ+ adopting the
Reynolds-analogy assumption is shown by the solid black line in figure 6(c). Clearly, the
data deviate from this curve, indicating that rough walls do not adhere to Reynolds analogy
(Cf /2 /= Ch), a well-established finding in rough-wall heat-transfer literature (e.g. Dipprey
& Sabersky 1963). Nevertheless, valuable insights can still be gleaned by comparing the
data with this Reynolds-analogy curve. Specifically, in the transitionally rough regime,
where k+

s � k+
s,FR, the breakdown of the Reynolds analogy is more mild. Although the data

do not align with the Reynolds analogy curve, the predicted trend of a continual increase of
�Θ+ with k+

s is still preserved. However, in the fully rough regime, where k+
s � k+

s,FR, the
breakdown becomes more pronounced, and �Θ+ exhibits an entirely different behaviour
with respect to k+

s compared with �U+.
This breakdown of the analogy between heat and momentum transfer for rough walls

has been documented exhaustively in the literature (e.g. Dipprey & Sabersky 1963;
Owen & Thomson 1963; Brutsaert 1975; MacDonald et al. 2019). Conventionally, this
breakdown is attributed to the introduction of pressure drag owing to bluff roughness
elements, and the lack of any heat-transfer analogue to this mechanism (Owen & Thomson
1963). While heat transfer at a fluid–solid interface will occur solely through molecular
conduction, momentum transfer (drag) may occur through the action of viscous stresses
(the momentum analogue to conduction) or pressure drag, the latter of which will be
dominant in the fully rough regime (MacDonald et al. 2019; Peeters & Sandham 2019).
Consequently, the most drastic departures in the behaviour of momentum transfer (drag
�U+ or Cf ) and heat transfer (�Θ+ or Ch) is observed in the fully rough regime, as seen
in figure 6(a,c). In the subsequent sections, we will elaborate on how this fully rough heat
transfer can be modelled, motivated by observations of the flow locally.

3.4. Exposed and sheltered flow
In this section, we will provide a local view of the flow and heat-transfer behaviour in
the vicinity of the roughness elements. Our primary motive will be to establish, based on
observation, that the local flow (and heat transfer) can be idealised as a combination of
two distinct behaviours: sheltered and exposed. In this context, the designation ‘sheltered’
pertains to regions of reversed flow characterised by diminished and uniformly distributed
heat transfer. Conversely, the term ‘exposed’ signifies regions subjected to elevated shear,
resulting in intensified heat-transfer patterns. These distinct behaviours will then later form
the basis of a predictive model we propose in § 4. The notion of sheltered flow in particular
is not new to the roughness literature and has been extensively covered, especially in the
context of drag (e.g. Macdonald et al. 1998; Yang et al. 2016; Forooghi et al. 2018b).
Conceptually, the idea of flow sheltering is that the presence of bluff roughness elements
can cause flow separation to occur locally, modifying the drag response of any given rough
surface (Yang et al. 2016). Some authors have anticipated that this flow-sheltering effect
is likely to have physical significance in the context of heat transfer but have primarily
based this intuition on global or mean measures of the heat transfer (Forooghi et al.
2018b; Peeters & Sandham 2019). Here, we will directly examine these local variations
in the heat transfer qw and their relation to the local flow behaviour. In figures 7(a)–7(c),
we show ensemble-averaged visualisations of the streamwise velocity for our surfaces
with Λ = 0.09–0.36 and for a fixed k+ ≈ 11. We identify sheltered regions based on
the reversed-flow contour level, u+ ≤ 0 (white line). These sheltered regions form in
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Figure 7. Time- and phase-averaged (a–c) streamwise velocity fields; (d–f ) temperature fields; (g–i) and the
local heat flux qw/(ρcp) = α∂θ̄/∂n|wall (non-dimensionalised by the crest velocity and temperature, Uk, Θk,
respectively)for k+ ≈ 11 at varying Λ. The vertical grid lines track regions of sheltered flow (u+ < 0, white
lines), denoted by ‘S’, and correlate with characteristically low qw, while exposed (i.e. unsheltered) regions,
denoted by ‘E’, show spikes in qw. The θ+ = 2 contours (black lines) roughly track regions of well-mixed
temperature in the sheltered regions. ( j–r) Same as (a–i) but for k+ ≈ 67.

leeward faces downstream from roughness elements and tend to grow in size with Λ.
Unsheltered regions, which we generalise as being exposed regions, by contrast, tend to
experience faster, high-shear flow. The influence of this flow on the temperature field can
be seen in figures 7(d)–7( f ), where we observe that sheltered regions tend to correlate
with patches of well-mixed temperature (figure 7d–f, dark orange patches below the
θ+ = 2 contours), which we highlight with temperature contours close to the wall value
θ+ = 2 (black lines) and best seen for the highest solidity Λ = 0.36 (figure 7f ). The
well-mixed temperature regions correspond to weaker local heat transfer in sheltered
regions (figure 7g–i), owing to the lower temperature gradients. Exposed regions, by
contrast, tend to experience high-shear impinging flow, giving rise to sharper temperature
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Modelling the effect of roughness on forced convection

gradients and thereby, higher heat transfer qw. These exposed regions comprise the
dominant contribution to the total heat transfer. The same trends appear as well at k+ ≈ 67
in the fully rough regime (figure 7j–r). These distinct sheltered and exposed heat-transfer
signatures imply that we may understand the total heat transfer as comprising a dichotomy
between two competing heat-transfer mechanisms in these sheltered and exposed regions.
Their individual contributions to the total, integrated heat transfer is then a function of
Λ as this parameter determines ultimately the fraction of sheltered and exposed flow
(see changing proportion between shaded sheltered and unshaded exposed regions in
figures 7(p)–7(r) with Λ). In light of this observation of different heat-transfer mechanisms
observed in sheltered and exposed regions, we will develop a predictive model in the next
section.

4. Predictive model

This section aims to develop a predictive model for heat transfer over rough walls as a
function of k+ and Λ. Having observed in § 3.4 that there is a meaningful difference in
the local heat transfer between exposed and sheltered regions, we propose here a model
that partitions the total heat transfer into separate heat-transfer laws for these regions. This
is achieved by partitioning the physical definition of total wall heat flux (i.e. wall heat
transfer per unit total plan area At) 〈qw〉/(ρcp) ≡ A−1

t
∫

w α(∂θ/∂n|wall) dA (Kays et al.
2005). Here, the subscript ‘wall’ denotes the 3-D rough surface. We decompose the wetted
surface area, Aw, into an exposed area, Ae, and sheltered area, As, such that Aw ≡ Ae + As.
Substituting this area partition into the physical definition of the heat flux and reorganising
area fractions, e.g. 1/At = (Ae/Aw)(Aw/At)(1/Ae), we obtain

〈qw〉
ρcp

≡ Ae

Aw

Aw

At

1
Ae

∫
e
α

∂θ

∂n

∣∣∣∣
wall︸ ︷︷ ︸

exposed

dA + As

Aw

Aw

At

1
As

∫
s
α

∂θ

∂n

∣∣∣∣
wall

dA︸ ︷︷ ︸
sheltered

, (4.1)

Ch,k ≡ 〈qw〉
ρcpUkΘk

≡ 1
U+

k Θ+
k

≡ Ae

Aw

Aw

At

1
Ae

∫
e

α∂θ/∂n|wall

UkΘk
dA︸ ︷︷ ︸

Ch,e

+ As

Aw

Aw

At

1
As

∫
s

α∂θ/∂n|wall

UkΘk
dA︸ ︷︷ ︸

Ch,s

≡ Aw

At

[(
Ae

Aw

)
Ch,e +

(
As

Aw

)
Ch,s

]
. (4.2)

Here, (4.2) is a dimensionless form of (4.1), obtained by dividing (4.1) by UkΘk. The
area fractions in (4.2) have been deliberately manipulated such that average heat-transfer
coefficients in exposed and sheltered regions, Ch,e and Ch,s, respectively, emerge.
Weighted contributions between Ch,e and Ch,s based on exposed and sheltered area
fractions, (Ae/Aw) and (As/Aw) will then contribute to the total rough-wall heat-transfer
coefficient, Ch,k. These heat-transfer coefficients, Ch,k, Ch,e, Ch,s are all defined on the
crest velocity and temperature, Uk, Θk, respectively. The fraction Aw/At expresses the ratio
of wetted to total plan area and is dependent on the roughness geometry only (a function
of Λ for our present sinusoids), which may be treated as known. Note that Ch,k can be
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related to the g-function we introduced in (1.3b) by definition: Ch,k ≡ 〈qw〉/(ρcpUkΘk) ≡
g−1(Θks/Θk)(Uτ /Uk), where Θks ≡ Θ(z − d = ks) and g ≡ Θ+

ks
(Dipprey & Sabersky

1963; Webb et al. 1971; Brutsaert 1975). One may pass between Ch,k and g provided the
ratios (Θks/Θk), (Uτ /Uk) ≡ (1/U+

k ) are known. These ratios are reported for our present
cases in table 3 and both approach constant values in the fully rough regime dependent
on Λ. Equations (4.1)–(4.2) are exact relations, but provide no predictive capability
until models for the heat-transfer coefficients, Ch,e, Ch,s and area fractions (Ae/Aw),
(As/Aw) are prescribed. We will dedicate § 4.1 to pursuing a model representation for the
exposed–sheltered area decomposition, such that (Ae/Aw), (As/Aw) may be determined,
while § 4.2 will detail our heat-transfer models for Ch,e, Ch,s. All terms on the right-hand
side of (4.2) will then be known and our final Ch,k = f (k+, Λ) model will be compared
against DNS data in § 4.3.

4.1. Sheltered–exposed area decomposition
In this section, we present an analysis of techniques for estimating the exposed and
sheltered regions, both through direct analysis of the DNS data and through the use of
a ray-tracing model derived from the roughness geometry. Additionally, we propose a
simplified fitting expression for predicting the area fractions (Ae/Aw and As/Aw), based
on the ray-tracing model. First, we estimate the sheltered regions directly from the DNS
by whether the time-averaged u+ = 0 isosurface that lies above the roughness covers the
underlying surface. If not, the flow is considered exposed. The red isosurface in figure 8(a)
is at u+ = 0 for Λ = 0.18 and k+ ≈ 33, showing the area covered within the recirculation
region. The area partition produced from the isosurface is illustrated in the xy−plane in
figure 8(d) where the sheltered and exposed regions are shown by the white and black
contours respectively (labelled ‘S’ and ‘E’, respectively). A further possible method to
estimate the sheltered and exposed regions is from the local, time-averaged viscous stresses
τν/ρ ≡ ν(∂u/∂n|wall). Here, we note that the local τν differs from the total wall shear
stress, 〈τw〉, from which the global friction velocity Uτ ≡ (〈τw〉/ρ)1/2 has been defined in
§ 1, as 〈τw〉 encompasses both the viscous and pressure drag contributions for rough walls.
From this τν method, the sheltered regions are determined as the area enclosed by the
τν = 0 contour (red line in figure 8b). The area partition produced from the former method
in figure 8(d) and from the time-averaged contours of the τν = 0 in figure 8(e) produce
comparable results with no more than 7 % difference of the produced area partition for all
cases.

The predictions of the exposed and sheltered regions in figures 8(a,d) and 8(b,e) require
the flow fields. To enable prediction of the area fraction without need for computing
flow fields, we obtained the exposed and sheltered regions directly from the roughness
geometry. For this technique (called ray tracing), we assume that the sheltering extends
as a straight line from the crest to the consecutive roughness element with an angle θs
measured from the horizontal line, as previously proposed by Yang et al. (2016) and shown
here in figure 8(c). For simplicity, the sheltering angle for the ray tracing, is assumed
constant (i.e. independent of k+ and Λ) at θs = 15◦, although θs obtained from DNS
data using the u+ = 0 isosurface method (figure 8a) varied in the range θs = 8◦–15◦
over the three solidity cases and approached a constant value of θs ≈ 10◦, 13◦ and 15◦
for Λ = 0.09, 0.18 and 0.36, respectively, in the fully rough regime. The estimation
of θs through the u+ = 0 isosurface can be exemplified, for instance, by figure 7(a).
In this case, θs corresponds to the angle of a straight-line approximation fitted to the
sheltering contour (white line). Angles in the vicinity of this range (i.e. θs ≈ 15◦) are

979 A22-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
63

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1063


Modelling the effect of roughness on forced convection

Sheltered
Flow

Exposed

Flow

E

S

E

S

E

S

20

u+ = 0 method τν = 0 method Ray-tracing model

θs = 15º

0
–20

200

200

150

100

50

200

150

100

50

200

150

100

50

0 50 100 150

x+

y+

200 0 50 100 150

x+

200 0 50 100 150

x+

200

200
100

100
0

0

100
100

200 200

2kx

z
z+

y+

y+x+

x+

20
0

–20

θs θs

λ

(b)(a) (c)

(e)(d ) ( f )

Figure 8. Methods employed for determining sheltered and exposed areas using the k+ = 33 and Λ = 0.18
case as an example. Throughout, roughness peaks and valleys are marked by black circles and white
squares, respectively. (a) Sheltered regions are determined by whether the u+ = 0 isosurface (red) covers
the underlying flow. If not, the flow is considered exposed. (b) Time-averaged contours of the viscous stress
τν/ρ ≡ ν∂ ū/∂n|wall (darker for increasing magnitude). Sheltered regions are determined as the area enclosed
by the τν = 0 contour (red line) and exposed otherwise. (c) The sheltering is modelled as a straight line starting
from the crest and angled with sheltering angle (θs). The exposed and sheltered areas are shown with black
and white lines in (c), respectively. Area partition produced from (d) the isosurface u+ = 0; (e) the τν = 0
isocontour and; ( f ) the sheltering model. Sheltered regions are shown by white filled contours (labelled ‘S’)
and exposed regions are shown in black (labelled ‘E’).

typical of those found for separated flows (Raupach 1992; Prasad & Williamson 1997;
Yang et al. 2016, 2022). Figure 8( f ) shows that the area partition from the straight-line
sheltering assumption with θs = 15◦ can provide a reasonable prediction of the area
fractions compared with the other methods. Figure 9 shows the area fraction from the
time-averaged contours of τν = 0 and the ray tracing of the straight-line sheltering for the
three solidity cases at fixed k+ ≈ 33. The validity of the straight sheltering assumption (as
shown in figure 9e–f ) for Λ = 0.18 and 0.36 is demonstrated by the good approximation of
the area partition compared with figure 9(b,c). However, for the case of low solidity with
Λ = 0.09, the straight-line sheltering assumption appears to underestimate the sheltered
area (as illustrated in figure 9d) in contrast to the area partition in figure 9(a). This may be
attributed to either the inaccurate estimation of θs for the low solidity, or the assumption
of no lateral spreading, as will be discussed below.

The straight-line sheltering assumption clearly does not account for the lateral spreading
that is evident in the flow field data (e.g. figure 9a–c). This lateral spreading could also
be included into the current model following the same approach as Millward-Hopkins
et al. (2011), who developed an empirical relation to relate the lateral spreading angle
to the roughness height and width for uniform cube array roughness. However, the
current technique appears to provide reasonable area fraction prediction with minimal
assumptions.
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Figure 9. Comparison between sheltered–exposed area partitions at varying Λ for (a–c) the present DNS at
k+ ≈ 33 computed obtained from the τν = 0 partition and (d–f ) the present model adopting a fixed sheltering
angle, θs ≈ 15◦. White patches correspond to the sheltered (‘S’) area, while black patches are for the exposed
(‘E’) area. Black circles and white squares mark roughness peaks and valleys, respectively.

The previous results demonstrate that, while the ray-tracing technique is a reliable
tool for predicting the area fraction of 3-D sinusoidal roughness, it lacks a closed-form
analytical expression, which may make its implementation in a predictive model
cumbersome. For our present 3-D sinusoids, the area ratio Ae/Aw from ray-tracing may
instead be well approximated by the following empirical relation:

Ae

Aw
= min

(
1.0, 0.5

(
tan(θs)

Λ

)1/2
)

, (4.3)

where θs is the sheltering angle, as illustrated in figure 8(c) and assumed throughout to be
15◦. A limiting condition when all wetted areas are exposed Ae = Aw is incorporated into
(4.3). The sheltered area fraction will follow from As/Aw ≡ 1 − Ae/Aw. Figure 10 shows
the good agreement of the area fraction expression (4.3) with the DNS data. The DNS data
in figure 10 Ae/Aw are computed from the τν = 0 contour method (figure 8b,e). Figure 10
also shows the ray-tracing representation (grey lines) of the exposed to wetted area ratio
for validation of the fit (4.3). The comparison with our present DNS also validates one
crucial simplification used in our area fraction expression of (4.3), namely, that this area
fraction is independent of k+, which appears to approximately hold true for larger k+.
Thus, hereafter in this section, the area fraction expression (4.3) will be used to determine
(Ae/Aw and As/Aw).
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Figure 10. Exposed wetted area fraction Ae/Aw. The markers show area fractions determined from the DNS,
based on the τv = 0 contour method, with the same marker styles as figure 6. These data are compared against
the ray-tracing algorithm (grey lines) and the area ratio expression (4.3) (black lines) for varying choices of the
sheltering angle θs, with a best fit of θs ≈ 15◦.
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Figure 11. (a) The exposed heat-transfer coefficient Ch,e for the present DNS (markers with lines). The marker
styles are the same as in figure 6. Direct numerical simulations at fixed Λ = 0.18 for varying Pr from Zhong
et al. (2023) have also been included. The exposed heat-transfer model Ch,ePr2/3 = 0.5(k+)−1/2Λ1/2 is shown
by the coloured lines matching each solidity in the DNS. (b) Sheltered heat-transfer coefficient compensated by
an empirical Prandtl number scaling Ch,sPr0.45. The present model approximates (4.5) this behaviour as both
a Ch,s ≈ 0.012Pr−0.45 (horizontal black line) and zero.

4.2. Sheltered–exposed heat-transfer models
Here, we will provide details on the exposed and sheltered heat-transfer models for Ch,e,
Ch,s required in (4.2) for prediction. For the present DNS, Ch,e and Ch,s are computed
using the exposed–sheltered decomposition obtained from the τν = 0 contour method (e.g.
figure 8b,e), consistent with figures 9 and 10. Figure 11 summarises the content we will
present in this section. Namely, models for Ch,e = f (k+, Λ) and Ch,s = f (k+, Λ) and a
comparison with the current DNS and that of Zhong et al. (2023) (markers).

To model the exposed heat transfer, we will adopt a Reynolds-analogy-type model,
Ch,e ∝ (k+)−1/2Λ1/2Pr−2/3. The model hinges on the phenomenological ideas of Owen
& Thomson (1963) and Yaglom & Kader (1974), where they postulated that the local
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viscous–conductive regions close to the roughness elements behave analogously to a
flat-plate laminar boundary layer. The intuition is restricted to the fully rough regime
(high-k+) such that a scale separation between the roughness height and viscous scale
emerges k � ν/Uτ . Owing to this scale separation, they envision the flow locally as having
attached thermal and viscous boundary layers, developing over the roughness height k.
The consequence in envisioning this phenomenology, as argued by Owen & Thomson
(1963) and Yaglom & Kader (1974), is that we may then generalise the Reynolds-analogy
prediction for heat transfer Ch,x ∝ Re−1/2

x Pr−2/3 (Kays et al. 2005) to the case of
a rough wall. Here, Rex ≡ xU∞/ν is a Reynolds number based on the streamwise
development length, x and free-stream velocity, U∞, while Ch,x ≡ qw,x/(ρcpU∞Θ∞) is
the dimensionless heat transfer (Stanton number) defined on the free-stream temperature
relative to the wall, Θ∞. In generalising to a rough wall, Owen & Thomson (1963)
and Yaglom & Kader (1974) set the streamwise fetch as x ∝ k and the velocity and
temperature scales, U∞ ∝ Uτ ∝ Uk, Θ∞ ∝ Θk. Adopting these relations, this generalises
Rex ≡ xU∞/ν to the roughness Reynolds number k+ ≡ kUτ /ν and the heat transfer
Ch,x ≡ qw,x/(ρcpU∞Θ∞) to a rough-wall heat-transfer coefficient, say, Ch,k, yielding the
predictions: Ch,k ∝ (k+)−1/2Pr−2/3.

Our present work will adopt two additional modifications to the original form put
forward by Owen & Thomson (1963) and Yaglom & Kader (1974), such that the prediction
may be sensitised to the solidity, Λ. First, rather than take the Reynolds-analogy model
to describe the total heat transfer, Ch,k, we instead only take it to describe the exposed
heat transfer, Ch,e. The intuition underpinning this decision is based on the observations
from figure 7, where we isolate that it is only in the windward, exposed regions
where the flow remains attached and tends to experience high-shear flow, correlating to
higher heat transfer. Consequently, we may expect ideas from a canonical wall-attached
boundary-layer flow to be applicable in these regions. Notably, this behaviour is distinct
when compared with sheltered regions which appear to follow a different heat-transfer
scaling entirely. Second, rather than taking x ∝ k as the streamwise fetch, we instead
take x ∝ λ. The intuition underpinning this choice comes from recognising that x is
understood as the wall-parallel development length of the boundary layer. Thus, rather
than taking x to be analogous to the roughness height k in the case of a rough wall, the
more appropriate analogue to take for x would be the local arc length along the roughness
topography over which the local boundary layer may develop. In the interest of simplicity,
we may approximate as the in-plane roughness length scale λ. Adopting these changes, the
model changes from Ch,k ∝ (k+)−1/2Pr−2/3 to Ch,e ∝ (λ+)−1/2Pr−2/3, since λ ∝ k/Λ by
definition

Ch,e = 0.5(k+)−1/2Λ1/2Pr−2/3, (4.4)

where the 0.5 pre-factor is a tuning constant. As seen in figure 11(a), (4.4) is able to
capture the scaling trends of our present DNS reasonably well, best seen for our high-Λ
cases (�0.18). Although the model may appear to work well for transitionally rough
values of k+ (i.e. non-fully rough), this is not by design. Strictly speaking, our Ch,e
model is best applied to the fully rough regime, as the greater k � ν/Uτ scale separation
helps to ensure that the postulated phenomenology of a local laminar boundary layer is
upheld. From figure 11(a), however, we see that our Ch,e model still performs well in
the transitionally rough regime at k+ ≈ O(10). Over a smooth wall, the viscous sublayer
(i.e. the local laminar boundary layer) has a characteristic thickness of 5ν/Uτ (Pope
2000). Consequently, moderate transitionally rough values of k+ ≈ O(10) may not provide
significant scale separation between the roughness size k and the boundary-layer thickness
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5ν/Uτ . It is moreover expected that our model should fail if low-k+ values are considered
such that k is smaller than or of comparable size to 5ν/Uτ . The roughness elements in
this instance are submerged below or of comparable size to the viscous sublayer thickness
(e.g. Luchini 1996). Consequently, this would invalidate the phenomenology of a local
laminar boundary layer developing over the roughness topography which (4.4) relies upon,
owing to insufficient scale separation between k and 5ν/Uτ . To verify the validity of the
Reynolds-analogy Pr−2/3 scaling, we have also included in figure 11(a) data from the
DNS of Zhong et al. (2023). The study considered an identical 3-D sinusoidal roughness
with fixed Λ = 0.18, while varying k+ and Pr. As evidenced by figure 11(a), the Pr−2/3

scaling yields an excellent collapse for the exposed heat transfer, Ch,e, within the limited
investigated range of 0.5 � Pr � 2.0.

We now consider a model for the sheltered heat transfer, Ch,s. Figure 11(b) shows Ch,s for
the present DNS as well as the Λ = 0.18, varying Pr data from Zhong et al. (2023). Here,
we observe a behaviour where Ch,s is held approximately constant with k+ in the fully
rough regime (high-k+), with a mild dependence on the constant value with respect to Λ as
well as a dependency on Pr. A similar behaviour can be observed when examining the local
variations in figure 7(d–f ) or (p–r) where the heat transfer is held approximately uniform
in sheltered regions. Of notable difference, however, is how the exposed heat transfer
tends to provide the dominant contribution to the total when examining figure 7(p–r),
but when taking integrated measures across the entire surface area (i.e. Ch,e and Ch,s),
the trends of figure 11(a,b) suggest both Ch,e and Ch,s will approach similar orders of
magnitude for larger k+. Slight qualitative differences will also be present in comparing
the sheltered regions of figure 7 and the sheltered heat transfer Ch,s in figure 11(b), as Ch,s
is computed based on sheltered regions from the τν = 0 contour (figure 10b,e) whereas,
in figure 7, sheltered regions are identified as reversed-flow regions (u+ = 0). In light of
these observations and in the interest of a model of maximal simplicity, we will test two
separate models for the sheltered heat transfer

Ch,s = 0.012Pr−0.45, Ch,s = 0. (4.5a,b)

The first option Ch,s = 0.0012Pr−0.45 is an empirical fit to the medium–high solidity
data (figure 11b, black line). The second option of Ch,s = 0 coincides with the physical
assumption that the total heat transfer, Ch,k, may be predicted solely through the exposed
contribution in (4.2) alone and is one of the simplest approximations one may have arrived
at based on the qw observations of figure 7(p–r). It is worth noting that this approximation
may not align with the integrated sheltered heat transfer Ch,s (figure 11b), as Ch,e and Ch,s
can approach similar orders of magnitude at higher k+. Despite this, we will still examine
the case where Ch,s = 0 in order to assess its impact on the total rough-wall heat-transfer
coefficient, Ch,k.

4.3. Model comparison data
In this section, we compare our present model with the Ch,k measured from the DNS,
having now given various expressions in (4.3), (4.4) and (4.5) as required in (4.2)
for prediction. Figure 12 presents the comparison against our present DNS. Adopting
the choice of Ch,s = 0.012Pr−0.45 (solid lines), our model captures the trend of the
data reasonably well, best seen for the higher solidity cases. Worth noting too is the
performance of the model prediction when neglecting any sheltered contribution, Ch,s = 0
(dashed lines). Here, we see that the dominant scaling behaviour of Ch,k with respect to
k+ can still be maintained despite this, and does not suffer too harshly in performance
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102 103

k+

10–2
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10–2

10–110–1

101

Inc. Λ 

Inc. k+

Λ
10010–1

(b)(a)

Figure 12. (a) The rough-wall heat-transfer coefficient Ch,k for our present DNS (coloured markers) compared
against our present model (coloured lines) from (4.2) using the various proposals of (4.3)–(4.5) and a
fixed sheltering angle, θs ≈ 15◦. The solid lines adopt a constant sheltered heat transfer Ch,s = 0.012Pr−0.45

while the dashed lines neglect the sheltered heat-transfer contribution (Ch,s = 0). The solid lines adopt a
constant sheltered heat transfer Ch,s = 0.012Pr−0.45 while the dashed lines neglect the sheltered heat-transfer
contribution (Ch,s = 0), resulting in less accurate predictions of Ch,k. (b) Value of Ch,k plotted with respect to
Λ (darker coloured lines correspond to increasing k+). The black lines connect DNS data at matched values of
k+. Only model lines with constant Ch,s = 0.012Pr−0.45 are shown for clarity.

for k+ ≈ 30–100. This result then showcases that one may obtain a good estimate for the
total heat transfer, Ch,k, by solely considering contributions from exposed regions of the
flow for this k+ range. We emphasise the final point in particular regarding the k+ range,
because as seen in figure 12(a) the Ch,s = 0.012Pr−0.45 and Ch,s = 0 choices eventually
produce disparate asymptotic behaviours for Ch,k for higher k+, indicating that sheltered
heat transfer may become prominent further into the fully rough regime.

A further comment can be made regarding the range of validity with respect to Λ of
our present model. The model framework relies on a clear distinction between exposed
and sheltered regions which for particular limits of Λ may be ill defined. For sparse–wavy
regimes (Λ → 0), smooth-wall conditions potentially absent of any flow separation will
be approached (Raupach et al. 1991; MacDonald et al. 2016), which would invalidate
the concept of sheltered flow. Although for our Λ = 0.09 case, flow separation can be
observed locally (cf. figure 7a, j, u+ ≤ 0), the differences in the sheltered and exposed
heat-transfer magnitudes are not as pronounced compared with the higher solidity cases
(compare figure 7p with q,r). Consequently, the distinction between sheltered and exposed
behaviour is perhaps not as evident for our Λ = 0.09 case, which could explain why our
present model is less successful for Λ = 0.09.

It is instructive to demonstrate that our framework for predicting the rough-wall
heat-transfer coefficient, Ch,k, is also capable of handling different roughness
topographies. Here, we have applied our framework to the experimental 2-D rib data of
Webb et al. (1971). Owing to the different geometry, applying the ray-tracing exercise
as was done for our present sinusoids in § 4.1 will yield different expressions for the
exposed–sheltered area fractions, Ae/Aw, As/Aw required for prediction of Ch,k from
(4.2). These details have been left to Appendix B, and, identically to our present
sinusoids, yield expressions solely determined by Λ and an assumed sheltering angle θs.
Recall that the constant prefactors for the exposed and sheltered heat-transfer coefficient
Ch,e = 0.5(k+)−1/2Λ1/2Pr−2/3, Ch,s = 0.012Pr−0.45 and sheltering angle θs = 15◦ were
obtained by tuning to our present DNS (figure 11), where the partitions for Ch,e and Ch,s
were readily accessible. Presumably, these constants are likely dependent on the specific
roughness topography and need to be tuned, but for the experimental data of Webb et al.
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Λ = 0.36

Webb et al. (1971)

2-D ribs (Λ = k/λ)

k

λ

Λ = 0.050

Λ = 0.100

k+

103 104

Ch,k  ∼ (k +
) –1/4
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h,k  ∼ (k +
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C
h,

k(
k+

, 
Pr

 =
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)

Figure 13. The rough-wall heat-transfer coefficient Ch,k at Pr = 0.7 for the present DNS (markers with lines)
and the 2-D rib experiments of Webb et al. (1971) (square markers). The model predictions at each Λ (solid
lines for present 3-D sinusoids, dashed lines for 2-D ribs) all employ the same model constants, Ch,e =
0.5(k+)−1/2Λ1/2Pr−2/3, Ch,s = 0.012Pr−0.45, and sheltering angle θs = 15◦. The area models employed for
the 2-D ribs are given by (B1)–(B2).

(1971), only the total coefficient Ch,k is available. Consequently, we make no attempt to
tune these coefficients, instead keeping them the same as the ones used for our present
sinusoids. In figure 13, we show a comparison between our present model and the Ch,k
of both our present DNS and data of Webb et al. (1971). Our model shows excellent
agreement in capturing the fully rough (high-k+) data of Webb et al. (1971), despite
not having made any changes to the Ch,e, Ch,s constant prefactors and sheltering angle,
θs = 15◦. The trends of Ch,k with respect to Λ are also well captured. These results
then demonstrate that our sheltered–exposed framework has the potential to generalise
well to arbitrary roughness geometries. It is worth mentioning that the current model
yields accurate predictions for the 2-D rib data of Webb et al. (1971), even when low
solidities of Λ = 0.025 are considered. This contrasts with the discrepancy noted between
the model predictions and the DNS case of low solidity (Λ = 0.09) for the present 3-D
sinusoids. This distinction might be attributed to the presence of sharp corners in the 2-D
rib geometry, which forces the flow to separate and helps to ensure that there exist distinct
sheltered and exposed regions: a key assumption of our present model.

Next, we discuss the effective scaling behaviour of our model Ch,k ∼ (k+)−p, where
the correct value to take for the exponent p has remained a topic of debate (e.g. Li et al.
2017, 2020; Chung et al. 2021; Zhong et al. 2023). Amongst theoretical proposals of note
are the p = 1/2 Reynolds-analogy-type proposal of Owen & Thomson (1963), Yaglom
& Kader (1974) and the p = 1/4 surface-renewal scaling of Brutsaert (1975). It has been
argued that this scaling exponent may perhaps depend on the roughness topography (Li
et al. 2020) and in some cases it has been hinted that this exponent varies with spatial
location (Meinders, Hanjalic & Martinuzzi 1999; Nakamura, Igarashi & Tsutsui 2001;
Li et al. 2016). This latter intuition is one that directly coincides with our proposed
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model, where, namely, we have proposed that in exposed regions, Ch,e ∼ (k+)−1/2 and for
sheltered, Ch,s ∼ (k+)0. Recall from (4.2) that the total heat-transfer coefficient follows
from a weighted sum (based on area fractions dependent on Λ) between Ch,e and Ch,s.
In this sense, our Ch,k model can be interpreted as a ‘blending’ function between a
Ch,k ∼ (k+)−1/2 and Ch,k ∼ (k+)0 scaling behaviour, where the aggregated behaviour
between these two scalings can potentially emerge as the surface-renewal scaling Ch,k ∼
(k+)−1/4 depending on the particular value of Λ and k+ (figure 13). Thus, in contrast
to past rough-wall heat-transfer theories, our present model framework proposes that
rough-wall heat transfer is determined not by any singular mechanism (e.g. Reynolds
analogy or surface renewal) but rather by a blending of distinct behaviours, where
presently we identify these distinct behaviours as a sheltered and exposed behaviour.

Finally, we end this section by highlighting that our rough-wall heat-transfer coefficient
has been defined on crest values, Ch,k ≡ 1/(U+

k Θ+
k ). Although definitions based on crest

values may be common in the roughness literature (e.g. Dipprey & Sabersky 1963; Webb
et al. 1971; Macdonald et al. 1998), a more relevant quantity for practitioners to use in
prediction may be an integrated or full-scale heat-transfer coefficient, e.g. the bulk Stanton
number Ch. Therefore, in Appendix C we have provided comprehensive details on how our
proposed Ch,k model can be extended to enable full-scale prediction of the integrated heat
transfer, Ch.

5. Conclusions

To further understand the influence of the frontal solidity, Λ and roughness Reynolds
number, k+, on global and local rough-wall heat transfer, we have conducted direct
numerical simulations over a 3-D sinusoidal roughness. We considered three values of
roughness density (Λ = 0.09, 0.18 and 0.36) and a range of roughness heights. With
increasing roughness height, k+, we observe a change of the heat-transfer regime with
�Θ+ approaching a plateau for Λ = 0.09 at k+ � 33 and for Λ = 0.18 at k+ � 40. For
Λ = 0.36, both �U+ and �Θ+ continue to increase with k+ up to k+ ≈ 94, although
with signs that �Θ+ approaches a plateau at k+ ≈ 94. These results suggested that the
breakdown of the analogy between heat and momentum transfer is dependent on Λ and
occurs at higher values of k+

s for larger values of Λ. The velocity �U+ and temperature
�Θ+ roughness functions, at fixed k+ ≈ 11 in the transitionally rough regime, increase
with Λ for Λ < 0.18 and then decrease for Λ > 0.18. But in the fully rough regime, �U+
and �Θ+ continue to increase with Λ up to the simulated limit of Λ ≈ 0.36. The trends
for �U+ and �Θ+ with Λ in the fully rough regime for the present fixed-skewness regular
surfaces therefore running contrary to the typical transitionally rough behaviour observed
whereby �U+ and �Θ+ present broad peaks between sparse and dense regimes.

Local examination of the heat transfer revealed that one can idealise the local behaviour
as two distinct behaviours: exposed, where the heat transfer is characteristically higher;
and sheltered, where the heat transfer is held approximately uniform. This intuition forms
the basis of a predictive model we propose, where we have partitioned both the total
heat transfer and total area into an exposed and sheltered contribution. The area partition
model may be solely determined based on a prescribed sheltering angle, θs ≈ 15◦ given
a solidity, Λ, while for heat transfer, distinct scaling behaviours are pursued in exposed
and sheltered regions. We find that the exposed heat transfer, Ch,e, may be modelled
through a rough-wall generalisation of the Reynolds analogy, which presently, we adopt
as a modification from the ideas of Owen & Thomson (1963) and Yaglom & Kader
(1974): Ch,e ∝ (k+)−1/2Λ1/2Pr−2/3. The current DNS suggests that the sheltered heat
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transfer Ch,s is independent of k+ and approaches a constant value in the fully rough
regime, independent of k+. The model for rough-wall heat-transfer coefficient Ch,k shows
a good agreement with the DNS results for the high solidity cases and within the limited
investigated range of Pr (0.5 � Pr � 2.0). However, for the low solidity cases, precisely
Λ = 0.09, the model overestimates Ch,k compared with the DNS results. We speculate that
the model’s failure at low solidity for our present sinusoids is likely due to the ambiguity
in identifying distinct sheltered and exposed regions, as the key assumption of our model
is that the local flow can be partitioned into these two regions. This speculation may be
further supported when we consider the success of our present model when applied to the
2-D ribs of Webb et al. (1971) over a broad range of solidities Λ = 0.025–0.100. Unlike
our present 3-D sinusoids, the sharp corners present in the 2-D rib geometry ensure the
flow separates locally, thus providing a clear sheltered flow region, even in the sparse
Λ = 0.025 regime. Moreover, this sheltered–exposed dichotomy failing at low solidity for
the 3-D sinusoids can be discerned from the model’s inability to capture the individual
exposed and sheltered heat-transfer coefficients, Ch,e and Ch,s, respectively (figure 11).
Even if the correct exposed–sheltered area decomposition were used (e.g. figure 9a–c)
as opposed to our ray-tracing model, this would not remedy the mismatch between our
model’s Ch,e, Ch,s predictions and the low solidity data, as no explicit dependence on the
area decomposition enters in the prediction of Ch,e, Ch,s model (cf. (4.4), (4.5)). These
findings indicate that the applicability of our present sheltered–exposed framework is
limited for low solidity roughness topographies, where the sheltered and exposed regions
are not clearly distinguished (absent any sharp corners). In the future, it will be necessary
to establish a clear threshold or metric for identifying ‘suitably’ separated flows (on which
the current modelling framework is predicated).
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Appendix A. Validation against MacDonald et al. (2019)

In order to verify the accuracy and reliability of the current DNS algorithm, results from
the previous work of MacDonald et al. (2019) were reproduced. In that work, turbulent
forced convection over 3-D sinusoids with a frontal solidity of Λ = 0.18 was simulated
from transitionally to fully rough conditions using DNS. Here, we compare our group M
data against the results of MacDonald et al. (2019) for the friction Reynolds-number range
395 � Reτ � 1680 at matched frontal solidity of Λ = 0.18 (see table 2 for details). There
are three key differences between the present study and the past work by MacDonald et al.
(2019). First, their study used a minimal channel domain with the roughness topography
applied to both the top and bottom walls, whereas our work uses an open-channel
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Figure 14. Validation against the past results of MacDonald et al. (2019) using current data from group M cases
with the friction Reynolds-number range 395 � Reτ � 1680 (see table 2). (a) Viscous-scaled streamwise mean
velocity profiles, U+, vs viscous-scaled wall-normal height, z+. (b) Viscous-scaled mean temperature profiles,
Θ+, vs z+. The darker shading refers to increasing k+ as listed in table 2. In (a,b), MacDonald et al. (2019) data
are shown with lines while the current group M data are shown with filled circles. The black dash-dotted line
in (a,b) corresponds to the smooth-wall data of Bernardini et al. (2014) and Pirozzoli et al. (2016), respectively.
The velocity roughness function, �U+, (grey symbols) and temperature roughness function, �Θ+, (white
symbols) are shown vs (c) k+ and (d) k+

s = 2.8k+. Roughness functions of MacDonald et al. (2019) are shown
with (�) and group M are shown with (◦). The black dashed line in (d) is the fully rough asymptote (1.2).

domain with roughness on the bottom wall only. Second, their study used a numerical
algorithm with a body-conforming mesh to explicitly resolve the roughness geometry, an
unstructured finite volume code named CDP (Mahesh, Constantinescu & Moin 2004),
whereas our work uses an IBM based on volume of fluid interpolation. Third, as was
previously mentioned, the spanwise domain width in their study was at least a factor
of three narrower than any of the cases considered here. Despite these differences, the
inner-scaled streamwise mean velocity and mean temperature profiles of the current work
and the study by MacDonald et al. (2019) show excellent levels of agreement in the
near-wall region, and, as shown in figure 14(a,b), are practically indistinguishable up to
the wall-normal critical height, z+

c = 0.4L+
y . On the other hand, considerable disagreement

between the two data sets is observed for wall-normal heights greater than z+
c > 0.4L+

y ,
which occurs due to the differing spanwise domain widths. Specifically, the wider
spanwise domains used here result in so-called ‘healthy’ turbulence (Flores & Jiménez
2010) penetrating deeper into the outer layer, extending above the wall-normal critical
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Flow

2Λ + 1

Λ(1 + cot θs)

2Λ + 1

2Λ + 1 – tan θsAs
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k Exposed

Sheltered

Flow

Exposed Sheltered

No mutual sheltering (tan θs > Λ)– Mutual sheltering (tan θs < Λ)

λ λ

(b)(a)

Figure 15. Schematic illustration of ray tracing applied to 2-D rib geometry. The framework is parameterised
by the frontal solidity Λ = k/λ and a tuning parameter in the sheltering angle θs. Two situations are demarcated:
(a) no mutual sheltering and (b) mutual sheltering based on a critical sheltering angle condition tan θs = Λ.

height of the minimal channel set-up adopted by MacDonald et al. (2019). However, since
the outer layer of a minimal channel (or a minimal open channel) is inherently unphysical,
differences in this region are inconsequential and do not affect the reliability of the mean
velocity and temperature profiles in the near-wall region. The velocity roughness function,
�U+ = U+

s (z) − U+(z), and temperature difference function, �Θ+ = Θ+
s (z) − Θ+(z),

are also compared against the past work of MacDonald et al. (2019) in figure 14(c,d).
The values of U+

s (z) were taken from the smooth-wall turbulent channel flow data of
Bernardini et al. (2014) at a friction Reynolds number of Reτ ≈ 2021. Likewise, the values
of Θ+

s (z) were taken from the smooth-wall turbulent channel flow data of Pirozzoli et al.
(2016) at matched flow conditions. In this comparison, �U+ and �Θ+ are computed at
z = 0.2h, which is always less than zc for the current data and the data of MacDonald
et al. (2019). This method of computing �U+ and �Θ+ is different from that used in
§ 3.3. This approach results in small difference in �U+ and �Θ+ reported in MacDonald
et al. (2019) as they used their simulated smooth data corresponding to each rough case for
U+

s and Θ+
s , respectively. In figure 14(c), an excellent level of agreement between the two

data sets is observed. For both simulations, �U+ increases with k+, while �Θ+ reaches
a constant (≈3.8) at k+ � 33. Figure 14(d) shows �U+ and �Θ+ against the equivalent
sand-grain roughness, ks ≈ 2.8k. The factor 2.8 is obtained from collapsing �U+ with
the fully rough asymptote (1.2). This factor is smaller than that reported in MacDonald
et al. (2019) of ks/k ≈ 4.1, taken from Chan et al. (2015) presumably due to the different
approach used here to estimate the roughness functions. The ks ≈ 2.8k result also differs
from the ks ≈ 2.7k result we report in § 3 for Λ = 0.18 as this appendix does not consider
any virtual origin influences (unlike in § 3).

Appendix B. Analytical ray-tracing model for 2-D ribs

This appendix details the ray-tracing methodology applied to the 2-D rib geometry studied
in Webb et al. (1971), such that expressions for the area fractions Ae/Aw, As/Aw required
in our model for the heat-transfer coefficient Ch,k in (4.2) can be obtained. A schematic
of the 2-D rib geometries is provided in figure 15 and the latter are characterised by a rib
height k and spacing Λ with frontal solidity Λ = k/λ. In the following, we also assume
that the ribs are of negligible thickness, such that the wetted-to-total area ratio is simply

Aw/At = 2Λ + 1. (B1)
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Figure 16. (a) Exposed and (b) sheltered area fraction models obtained from simple ray tracing of 2-D ribs.
The dashed red line, tan θs = Λ demarcates the limit where mutual sheltering begins.

To model the exposed and sheltered area partition, a straight-line sheltering at an angle θs
from the horizontal and from the rib peaks is assumed, consistent with our ray tracing for
3-D sinusoids in § 4.1. Two instances are isolated: one where the spacing between adjacent
ribs is large such that no mutual sheltering occurs (figure 15a) and instances where mutual
sheltering occurs (figure 15b) for closely packed ribs. It is a matter of trigonometry to
show that these two instances can be demarcated by a critical sheltering angle, tan θs,crit =
Λ where for θs < θs,crit, mutual sheltering will occur. With reference to figure 15, the
sheltered area fraction for these two instances are

As

Aw
=

⎧⎪⎪⎨
⎪⎪⎩

Λ(1 + cot θs)

2Λ + 1
, for tan θs ≥ Λ (no mutual sheltering),

2Λ + 1 − tan θs

2Λ + 1
, for tan θs < Λ (mutual sheltering),

(B2)

where again we have neglected the thickness of the ribs. The exposed area fraction follows
simply from Ae/Aw = 1 − As/Aw. Sample curves for this area model at varying sheltering
angles θs are plotted in figure 16. Note that for the Λ = 0.025–0.100 range covered in the
study of Webb et al. (1971), this will fall exclusively into the mutual sheltering range for
the θs = 10◦–20◦ range.

Appendix C. Full-scale prediction

The purpose of this appendix will be to demonstrate how our model for the
rough-wall heat-transfer coefficient Ch,k(k+, Λ) ≡ 1/(U+

k Θ+
k ) may be used for full-scale

prediction of the outer-scale heat-transfer coefficient in the Stanton number, Ch ≡
〈qw〉/(ρcpUhΘh) ≡ 1/(U+

h Θ+
h ). This Stanton number is defined on the channel

centreline velocity and temperature relative to the wall, U+
h , and Θ+

h respectively.
A global skin-friction coefficient, Cf ≡ 〈τw〉/(0.5ρU2

h) ≡ 2/(U+
h )2 is also defined.

These quantities will depend on a bulk Reynolds number, Re ≡ 2hUh/ν, a blockage ratio,
k/h, and the solidity Λ. To link the rough-wall heat-transfer coefficient defined on the crest
velocity and temperature, U+

k and Θ+
k to Cf , Ch, we assume logarithmic profiles

U+ = (1/κ) log(z/k) + U+
k,log, (C1)

Θ+ = (1/κh) log(z/k) + Θ+
k,log, (C2)
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Figure 17. Ratio of the crest velocity (diamond markers) and temperature (square markers) extrapolated from
the log region, U+

k,log, Θ+
k,log, to the measured crest values U+

k , Θ+
k . The data are staggered upwards by +1

and +2 for Λ = 0.18 and 0.36, respectively. In the fully rough regime, the ratios plateau to 1.1, 1.2 and 1.4 for
Λ = 0.09, 0.18, 0.36.

then evaluate the expressions at the channel centreline z = h to obtain U+
h , Θ+

h . For
simplicity, we have neglected the virtual origin d and also any wake contributions. Note
that, by neglecting d, this will introduce some discrepancies to the Cf , Ch values we report
in table 3 which are obtained as extrapolations of the log region taking d into account.
Here, there is a distinction made between the familiar crest velocity and temperature,
Uk, Θk and Uk,log, Θk,log, which are extrapolations of the log region to the crest location
z = k. Formally, these can be defined in terms of ks/k by combining (C1)–(C2) with U+ =
(1/κ) log(k+

s ) + CN , Θ+ = (1/κh) log(k+
s ) + g to obtain U+

k,log = CN − (1/κ) log(ks/k),
Θ+

k,log = g − (1/κh) log(ks/k). In general, U+
k /= U+

k,log, Θ+
k /=Θ+

k,log since we expect the
crest location to lie within the roughness sublayer where the flow is inhomogeneous,
where we would not expect the flow to follow the logarithmic profile. Many authors
typically neglect this distinction (e.g. Macdonald et al. 1998; Millward-Hopkins et al.
2011; Yang et al. 2016), since the scaling behaviours of the crest values U+

k and Θ+
k can

be considered interchangeable with U+
k,log, Θ+

k,log. We show this in figure 17, where the
ratios Uk,log/Uk, Θk,log/Θk approach constant values dependent on Λ. For Λ = 0.09, 0.18,
0.36, we have close-to-unity ratios of Uk,log/Uk ≈ Θk,log/Θk ≈ 1.1, 1.2, 1.4 respectively,
with an empirical fit of Uk,log/Uk ≈ Θk,log/Θk ≈ 1.65Λ0.17. That is, a mild dependence
on Λ. These ratios enable us to pass from U+

k , Θ+
k which Ch,k is defined on to U+

k,log,
Θ+

k,log. Although this means one would require knowledge of the ratios in figure 17, we will
demonstrate later that if we ignore this distinction (i.e. assume Uk,log = Uk, Θk,log = Θk),
this will not significantly alter the trends of our model for full-scale prediction. Note that
we have attempted (not shown here for brevity) to predict �Θ+ by equating (C2) with
(1.3a). When the estimated �Θ+ is compared against �Θ+ from DNS of figure 6(d),
our model captures the observed trends of increasing �Θ+ with Λ for Λ � 0.18 provided
accurate U+

k and (Θ+
k /Θ+

k,log) shown in figure 17 are also known. However, the model’s
performance falls short in capturing the trend of increasing �Θ+ with increasing k+ for a
fixed Λ = 0.36, as depicted in figure 6(b). This suggests that the current sheltered-exposed
heat transfer modelling framework has the potential to predict �Θ+ more accurately
with the incorporation of models designed to estimate log intercepts, as demonstrated in
figure 17, and heat-transfer coefficients designed for low solidity cases
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We obtain Cf , Ch by evaluating (C1)–(C2) at the centreline, z = h√
2/Cf ≡ U+

h = (1/κ) log(h/k) + U+
k,log, (C3)√

Cf /2/Ch ≡ Θ+
h = (1/κh) log(h/k) + Θ+

k,log. (C4)

At this stage, we will define a ‘log-corrected’ rough-wall heat-transfer coefficient,
Ch,k,log ≡ 1/(U+

k,logΘ
+
k,log) ≡ (Uk/Uk,log)(Θk/Θk,log)Ch,k ∝ Ch,k, such that one may pass

from Ch,k,log to Ch,k using the prefactors reported in figure 17. By combining (C3)–(C4)
to eliminate the log(h/k) term and recognising Θ+

k,log ≡ 1/(Ch,k,logU+
k,log), we may obtain

an explicit expression for Ch

Ch = Cf /2

(κ/κh)(1 −√
Cf /2U+

k,log) +√
Cf /2C−1

h,k,log/U+
k,log

. (C5)

To compute Ch (and Cf ) for varying Re and Λ, we require a drag model in the form of
an expression for U+

k,log. As the focus of our present work is not modelling drag, here, we
will adopt a fit to our present DNS, U+

k ≈ 2.4Λ−0.43. This then enables Cf to be computed
explicitly as a function of only k/h and Λ, independent of Re from (C3) once passing from
U+

k to U+
k,log from the pre-factors of figure 17. This independence of Cf with respect to Re

is a known feature of drag in the fully rough regime (Flack & Schultz 2010). With Cf , U+
k,log

and Ch,k,log ∝ Ch,k(k+, Λ) known, we may then compute Ch. Note that by definition, k+ ≡
0.5Re(k/h)Re

√
Cf /2 so that the k+ dependency of Ch,k may be passed to k/h and Re.

For model constants, we adopt κ = 0.4, κh = 0.47 and the best-fit parameters for our
Ch,k model, Ch,e = 0.5(k+)−1/2Λ1/2Pr−2/3, Ch,s = 0.012Pr−0.45 and θs = 15◦. We may
also compute smooth-wall curves for Cf /2 ≡ 1/(U+

h )2, Ch ≡ 1/(U+
h Θ+

h ) from (1.1) and
(1.3a) with d+ = 0, �U+ = �Θ+ = 0√

2/Cf ≡ U+
h = (1/κ) log(0.5Re/U+

h ) + A (C6)√
Cf /2/Ch ≡ Θ+

h = (1/κh) log(0.5Re/U+
h ) + Ah, (C7)

where A ≈ 5.0 and Ah(Pr = 0.7) ≈ 3.2. Equation (C6) has the explicit solution
√

2/Cf =
(1/κ)W[0.5κRe exp(Aκ − 1)] where W is the product logarithm function (MacDonald
et al. 2019). The full set of model curves are shown in figure 18. Here, we show data for
a fixed h/k = 18 (figure 18a,b), which correspond only to our medium (Λ = 0.18) and
high (Λ = 0.36) cases for k+ ≥ 22, and h/k = 36 (figure 18c,d) for Λ = 0.09, k+ � 11.
The reason for this h/k separation is because our present DNS adopted choices of both
h/k = 18 and h/k = 36 depending on Λ (cf. table 2). Despite the h/k values differing
amongst choices in Λ of our DNS, it is possible to extrapolate the values of Cf , Ch from
our DNS from one value of h/k to another through the following method, to enable a
fixed h/k comparison across all Λ we consider. First, we adopt (C3)–(C4) and recognise
that the log intercepts, U+

k,log, Θ+
k,log do not change with sufficiently large h/k. Then,

taking (C3) as an example, we may evaluate the equation at two different choices of
h/k and combine the equations to eliminate U+

k,log. Supposing we wanted to extrapolate
from h/k = 36 to h/k = 18, this exercise will yield us an explicit equation for Cf ,18
where the subscript 18 denotes the value of Cf for h/k = 18 as desired:

√
2/Cf ,18 =

(1/κ) log(18/36) +√
2/Cf ,36 (the subscript 36 denotes the Cf value for h/k = 36).

A similar method follows for (C4) to obtain an extrapolation of Ch. Our present model
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Figure 18. (a) The global skin-friction coefficient Cf ≡ 2/(U+
h )2; (b) Stanton number Ch ≡ 1/(U+

h Θ+
h ) at

varying solidity Λ and fixed h/k = 18. The solid coloured lines are computed from our model equations
(C3)–(C5), while the black lines are smooth-wall curves computed from (C6)–(C7). The coloured dashed lines
correspond to our present model taking the ratios of figure 17 to be fixed at unity, Uk,log/Uk = Θk,log/Θk = 1.0.
The markers are our present DNS, with values of Cf and Ch reported in table 3. Square markers indicate DNS
data that have been extrapolated from a different value of h/k to the designated h/k of the panel (see body text
for details), while circle markers indicate unextrapolated data as reported in table 3. (c,d) Same as (a,b) but for
h/k = 36.

is compared against the present DNS data, where the square markers show data that have
undergone this h/k extrapolation and circle markers show the unextrapolated, original
data (i.e. no h/k extrapolation needed). Recall that in minimal channels, the flow is
unphysical above a critical height zc = 0.4Ly < h. Thus, in order to circumvent this and
obtain the centreline measures U+

h , Θ+
h , required for Cf , Ch, we have simply extrapolated

the logarithmic regions of our profiles to the centreline, then taken U+
h , Θ+

h to be the values
at the centreline, neglecting wake contributions. The values of Cf , Ch for the present DNS
data are included in table 3. As seen in figure 18, the trends with respect to Λ are captured
reasonably well by our present model. For a fixed h/k, the curves of increasing Λ may
also be interpreted as a ks/h effect: ks/h = (k/h)(ks/k) ≈ (h/k)(6.2Λ0.55) so that ks/h is
an increasing function of Λ. Our model curves of figure 18 are then consistent with the
known increasing behaviour of Cf and Ch with respect to ks/h (Webb et al. 1971; Chung
et al. 2021). It is worth noting that a limitation of using our model for full-scale prediction
is the requirement for knowledge of the pre-factors Uk,log/Uk and Θk,log/Θk, such as those
reported in figure 17, to convert from Uk,log to Uk and Θk,log to Θk. The dashed lines of
figure 18 present the model if this distinction were ignored, i.e. assuming Uk,log = Uk,

979 A22-37

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
63

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1063


W. Abu Rowin and others

Θk,log = Θk such that Ch,k,log = Ch,k. Both drag (Cf ) and heat transfer (Ch) are sensitive
to this change but nevertheless, the primary trends with respect to Λ are still retained.
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